

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES (SITAMS) AUTONOMOUS - NAAC ACCREDITED Awarded 'A' Grade by Technical Education, Govt. of A.P. Approved by AICTE, New Delhi & Permanently Affiliated to JNTUA, Ananthapuramu

Department Of Science and Humanities

An ISO 9001:2015 Certified Institution

ENGINEERING PHYSICS

QUESTION BANK

(Common to Mechnaical& CivilBranches)

Regulations : R20

Compiled by:

Dr.H.Umamahesvari Professor Department of Science and Humanities SITAMS, Chittoor

Sreenivasa Institute of Technology and Management Studies (AUTONOMOUS)

20BSC123 **ENGINEERINGPHYSICS** L P/D C Т (CommontoCivilandMechanicalbranches) 3 3

CourseEducationalObjectives:

- 1. To enlighten the periodic arrangement of atoms in crystals, Bragg's law and toprovide fundamentals related to structural analysis through powder diffractionmethod.
- 2. To identify the importance of the optical phenomenon i.e. interference anddiffractionrelatedtoitsEngineering applications.
- 3. To understand the mechanisms of Lasers and the propagation of light wavethroughopticalfibresalongwithengineeringapplications
- 4. To acquire the knowledge in dielectric , magnetic materialsand nano materialsandtheirapplicationsindifferentfieldsofEngineering
- 5. Tofamiliarize the concepts of the oretical acoustic stop ractical use in engineering field. To explain the significance of ultrasound and its application inNDT fordiversifiedengineering application.

UNIT-1:CRYSTALLOGRAPHYANDX-RAYDIFFRACTION

Crystallography: Space lattice, Basis, unit cell and lattice parameters - Bravais Lattice -Crystal systems – Packing fraction – Coordination number – Packing fraction of SC, BCC &FCC .X-Ray Diffraction: Bragg's law – Bragg's X-ray diffractometer – Crystal structuredeterminationbyPowdermethod.

UNIT- 2:WAVEOPTICS

(9) Interference: Interference - Principle of superposition - Interference of light -Conditionsfor sustained interference - Interference in thin films (Reflection Geometry) -Colors inthinfilms-Newton'sRings-Determinationofwavelengthandrefractiveindex. Diffraction: Diffraction - Introduction -

Fresnel and Fraunhofer diffraction – Fraunhoferdiffractionduetosingleslit.

UNIT -3:LASERSANDFIBEROPTICS

Lasers: Introduction - Characteristics of laser - Spontaneous and Stimulated emission ofradiation-Einstein'scoefficients-Populationinversion-Lasingaction-Pumpingmechanisms-Nd-YAGlaser-He-Nelaser-Applicationsoflasers. FiberOptics: Introduction-

Principleofopticalfiber-AcceptanceAngle-NumericalAperture-Classification of optical fibers based on refractive index profile and modes Propagation ofelectromagneticwavethroughopticalfibers-PropagationLosses(Qualitative)-Applications.

UNIT -4:ENGINEERINGMATERIALS

DielectricMaterials:Introduction-Dielectricpolarization-

Dielectricpolarizability,SusceptibilityandDielectricconstant-

Typesofpolarizations: Electronic, IonicandOrientation polarization (Qualitative) – Lorentz internal field – Clausius-Mossotti equation. Magnetic Materials: Introduction – Magnetic dipole moment - Magnetization - Magneticsusceptibility and permeability - Origin of permanent magnetic moment - Classification ofmagnetic materials: Dia, para & Ferro -

(9)

(9)

(9)

Domain concept of Ferromagnetism (Qualitative) -Hysteresis - Soft and Hard magnetic materials. Nanomaterials: Introduction - Surfacearea and quantum confinement -Physical properties: electrical and magnetic properties -Synthesis of nanomaterials - Topdown – Ball Milling – Bottom-up – Chemical VapourDeposition–Applicationsofnanomaterials.

UNIT-5:ACOUSTICS ANDULTRASONIC

(9) **Acoustics:**Introduction–Requirementsofacousticallygoodhall–Reverberation–Reverberation time - Sabine's formula (Derivation using growth and decay method) -Absorption determination – Factors affecting coefficient and its acoustics of buildings andtheirremedies. Ultrasonics: Introduction-Properties-Productionbypiezoelectricmethods -Detection - Non Destructive Testing - Pulse echo system through transmissionand reflectionmodes-Applications.

TotalHours: 45

CourseOutcomes:

Onsu	POs related toCOs	
CO1	Enlighten the periodicar rangement of a toms incrystals, Bragg's law and to provide fundamentals related to structural analysis through powder diffraction method	PO1,PO2
CO2	Identifytheimportanceoftheopticalphenomenoni.e.interferenceanddiffrac tion relatedtoitsEngineering applications.	PO1,PO2
CO3	Understand the mechanisms of Lasers and the propagation of light wave through optical fibres along with engineering applications	PO1,PO2
CO4	Acquire the knowledge indielectric, magnetic materials and nanomateria ls and their applications indifferent fields of Engineering	PO1, PO2,PO1 2
CO5	Familiarize the concepts of theoretical acoustics to practical use inengineering field. To explain the significance of ultrasound and itsapplicationinNDTfor diversifiedengineeringapplication.	P01,P02

TextBooks:

- 1. EngineeringPhysics, Palanisamy,Scitech.
- 2. EngineeringPhysics,K.Thyagarajan,McGrawHill.
- 3. EngineeringPhysics,Maninaidu,Pearson.

ReferencesBooks:

- 1. SolidStatePhysics,Kittel,Wiley
- 2. EngineeringPhysics,GaurandGupta,DhanpatraiPublications

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO.1	3	2	-	-	-	-	-	-	-	-	-	-
CO.2	3	2	-	-	-	-	-	-	-	-	-	-
CO.3	3	2	-	-	-	-	-	-	-	-	-	-
CO.4	3	2	-	-	-	-	-	-	-	-	-	2
CO.5	3	2	-	-	-	-	-	-	-	-	-	-
CO*	3	2	-	-	-	-	-	-	-	-	-	2

UNIT-1: CRYSTALLOGRAPHY AND X-RAY DIFFRACTION							
PART-A (Two Marks Questions)							
Q.No	Question	attainment					
1	What are space lattices?	PO1					
2	What is unitcell?	PO1					
3	What are basis?	PO1					
4	What is primitive lattice?	PO1					
5	Define co-ordination number	PO1					
6	Define packing fraction	PO1					
7	What is body centre cubic lattice?	PO1					
8	What is base centre cubic lattice?	PO1					
9	What is face centre cubic lattice?	PO1					
10	What are Lattice parameters?	PO1					
11	What is Bragg's Law?	PO1					
12	What are Bravais Lattices?	PO1					
13	How many types of crystal structures and what are they?	PO1					
14	Which crystal system has 4 types of lattices	PO1					
15	Give the lattice parameters of cubic crystal system	PO1					
16	What is packing fraction of SC structure	PO1					
17	What is packing fraction of BCC structure	PO1					
18	What is packing fraction of FCC structure	PO!					
19	Give the lattice parameters of rhombohedral crystal system	PO1					
20	Give the lattice parameters of hexagonal crystal system	PO1					
	PART-B (Marks-10)						
1	Explain	PO1.PO2					
	1. Lattice						
	2. Basis						
	3. Unit cell						
	4. Lattice Parmeters						
	5. Packing fraction						
2	Expalin about sevencrystal systems	PO1.PO2					
3	What are Bravais lattices and explain the bravais lattices in various crystal system	PO1.PO2					
4	Show that FCC is possessing the closely packed sturture	PO1.PO2					
5	Show that BCC is possessing the loosely packed sturture by calculating its	PO1.PO2					
	packing fraction.						
6	Show that SC is possessing the loosely packed sturture by calculating its	PO1.PO2					
	packing fraction.						
7	Expalin Braggs Law	PO1.PO2					
8	Explain the Powder crystal method of predicting crystal structure	PO1.PO2					
9	Compare the packing fractions of SC, BCC and FCC	PO1.PO2					
10	Expalin about seven crystal systems with the number of Bravais lattices	PO1.PO2					
	possible in each case.						

UNIT-2: WAVE OPTICS PART-A (Two Marks Questions)

PART-A (Two Marks Questions)						
Q.No	Question	attainment				
1	Define Superposition Principle	PO1				
2	Define the condition for maximum displacement in Superposition Principle	PO1				
3	Define the condition for minimum displacement in Superposition Principle	PO1				
4	Define interference.	PO1				
5	Differentiate between constructive interference and destructive interference.	PO1				
6	Define constructive interference.	PO1				
7	Define destructive Interference	PO1				
8	Define the characteristics of coherence Source	PO1				
9	Give the expression of path difference between the two rays reflected from the uniform thin film	PO1				
10	Give the condition for constructive and destructive interreference in the uniform thin film	PO1				
11	List two important conditions to produce sustained Interference.	PO1				
12	Name the type of light source used in Newton's rings formation.	PO1				
13	Describe the conditions to obtain dark and bright rings?	PO1				
14	Explain Why the central spot is dark in the Newton's rings formed by reflected light.	PO1				
15	Explain why Newton's rings consists of concentric rings.	PO1				
16	Define diffraction?	PO1				
17	Which type of source and wavefronts are used in Fresnel Diffraction	PO1				
18	Which type of source and wavefronts are used in Frauhnofer's Diffraction					
19	Differentiate between Fresnel's diffraction and Frauhnofer's diffraction	PO1				
20	Define diffraction grating?	PO1				
	PART-B (Marks-10)					
1	Explain the phenomena of interference in two parallel thin films.	PO1.PO2				
2	Derive an expression for the path difference in two parallel thin films.	PO1.PO2				
3	Explain the formation of parallel fringes in a uniform thin film and hence	PO1.PO2				
	give the conditions to get bright and dark fringes					
4	Describe Newton's Rings experimental setup and hence explain the conditions to get bright and dark fringes	PO1.PO2				
5	Calculate the wavelength of the monochromatic source by Newton's rings experiment	PO1.PO2				
6	Calculate the refractive index of the given liquid by Newton's rings	PO1.PO2				
	experiment					
7	Distinguish between Fresnel diffraction and Fraunhofer diffraction.	PO1.PO2				
8	Explain Fraunhofer diffraction due to a single slit with necessary theory.	PO1.PO2				
9	What is Diffraction grating? Explain.	PO1.PO2				
10	Differentiate between diffraction and interference	PO1.PO2				

UNIT-3 LASERS& FIBER OPTICS								
PART-A (Two Marks Questions)								
Q.No	Question	attainment						
1	Give the important properties of <u>LASER</u>	PO1						
2	Give the drawbacks of conventional light sources compare to LASERs	PO1						
3	Define the process of absorption	PO1						
4	Define the process of spontaneous emission	PO1						
5	Define the process of stimulated emission	PO1						
6	Differentiate between spontaneous emission and stimulated emission.	PO1						
7	Explain What is population inversion?	PO1						
8	Name the important components of laser device.	PO1						
9	List out applications of Lasers.	PO1						
10	Who invented Helium-Neon Laser?	PO1						
11	Explain what is an optical fiber?	PO1						
12	Name the principle of optical fiber?	PO1						
13	Name the parts in optical fiber.	PO1						
14	Define numerical aperture.	PO1						
15	Define acceptance angle.	PO1						
16	List out the applications of optical fiber.	PO1						
17	Name the types of optical fibers.	PO1						
18	List the advantages of optical fibers?	PO1						
19	Differentiate between single mode step index and Multi mode Step index	PO1						
	fibers.							
20	Contrast step index and graded index fibers.	PO1						
	PART-B (Marks-10)							
1	Explain the terms	PO1.PO2						
	1. Absorption 2. Spontaneousemission 3. Stimulated emission							
2	What is mean by Pumping mechanism elaborately discuss about various types	PO1.PO2						
	of pumping mechanisms to achieve Population inversion							
3	Explain the construction and working of a He-Ne Laser with suitable	PO1.PO2						
	diagrams.							
4	Explain the construction and working of Nd: YAG With the help of suitable	PO1.PO2						
	diagram.							
5	What is the acceptance angle of an optical fiber and derive an expression for it.	PO1.PO2						
6	Define the following terms for an optical fiber	PO1.PO2						
	Coneacceptance							
	Numericalaperture							
	acceptance angle and Fractional refractive index change							
7	What is Total internal reflection? Discuss its importance in optical fibers.	PO1.PO2						
8	Describe the different types of optical fibers with neat Diagrams.	PO1.PO2						
9	Differentiate between light propagation in	PO1.PO2						

	(i)Step Index Fiber(ii)Graded Index fiber.	
10	What are monomode and Multimode Optical Fibers	PO1.PO2

2 I 3 V 4 I 5 I 6 I	PART-A (Two Marks Questions) Question What is electric dipole? Define electric dipole moment What is polarization? Define is electronic polarization Define is orientation polarization Define is orientation polarization What is magnetic dipole?	PO attainment PO1 PO1			
1 V 2 I 3 V 4 I 5 I 6 I	What is electric dipole? Define electric dipole moment What is polarization? Define is electronic polarization Define is ionic polarization Define is orientation polarization	attainment PO1 PO1 PO1 PO1 PO1 PO1 PO1			
2 I 3 V 4 I 5 I 6 I	Define electric dipole moment What is polarization? Define is electronic polarization Define is ionic polarization Define is orientation polarization	PO1 PO1 PO1 PO1 PO1			
3 X 4 I 5 I 6 I	What is polarization? Define is electronic polarization Define is ionic polarization Define is orientation polarization	PO1 PO1 PO1			
3 X 4 I 5 I 6 I	What is polarization? Define is electronic polarization Define is ionic polarization Define is orientation polarization	PO1 PO1			
5 I 6 I	Define is ionic polarization Define is orientation polarization	PO1			
5 I 6 I	Define is ionic polarization Define is orientation polarization				
6 I	Define is orientation polarization	PO1			
		PO1			
	Define orbital Magnetic Moment	PO1			
	Define spin Magnetic Moment	PO1			
	Define magnetic susceptibility.	PO1			
11 I	Define magnetic permeability.	PO1			
12	What are diamagnetic materials.	PO1			
13 V	What are paramagnetic materials.	PO1			
14 V	What are ferromagnetic materials.	PO1			
15 V	What are nanomaterials?	PO1			
16 H	Eplain the significance of nanomaterials	PO1			
17	What are the types of nanomaterials	PO1			
18	What are the two approaches in the fabrication of nanomaterials	PO1			
19 (Give any two advantages of ball milling method	PO1			
20 0	Give any two advantages CVD	PO1			
	PART-B (Marks-10)				
1	Define following terms	PO1.PO2			
	a) Magnetic Dipole b) Magneticmoment				
	b) Magnetic susceptibility (χ) d) Magnetic permeability (μ)				
2 I	e) Relative permeability (μ _r) Differentiate between Hard and Soft Magnetic Materials	PO1.PO2			
	What is mean by Magnetic Hysteresis? Explain in detail the Magnetic	PO1.PO2			
	Hysteresis loop.				
	Classify Magnetic materials on the basis of magnetic moment.	PO1.PO2			
5 \	What is an Internal Field? Derive an Expression for Internal field	PO1.PO2			
	Derive Clausius-Mossotti equation	PO1.PO2			
	What are nanomaterials and Expalint the types of nanomaterials with their	PO1.PO2			
	significance Expalin Ball milling method	PO1.PO2			
	Expain Ban mining method Expalin about chemical Vapour deposition	PO1.PO2 PO1.PO2			
	Give the applications of nanomaterials	PO1.PO2			

UNIT 5 :ACOUSTICS AND ULTRASONICS						
PART-A (Two Marks Questions)						
Q.No	Question	PO				
		attainment				
1	What are acoustic waves?	PO1				
2	What is acoustics?	PO1				
3	What are the characteristics of Acoustics in a good auditorium?	PO1				
4	What is meant by Reverberation ?	PO1				
5	What is Reverberation time?	PO1				
6	Define the absorption of sound waves	PO1				
7	Define absorption coefficient	PO1				
8	What is Air-Borne noise	PO1				
9	What is Structure-borne noise	PO1				
10	Give two steps to control reverberation	PO1				
11	Write sabines formula for reverberation time	PO1				
12	Write Sabines formula for absorption coefficient	PO1				
13	What are ultrasonic waves	PO1				
14	Give any two properties of ultrasonic waves	PO1				
15	Give any two applications of ultrasonic waves	PO1				
16	What is mean by piezo electric effect?	PO1				
17	What is mean by inverse piezo electic effect?	PO1				
18	What is mean by non destructive testing?	PO1				
19	Give any two method implemented for non destructive testing	PO1				
20	What are Audible waves ?	PO1				
	PART-B (Marks-10)					
1	What are the characteristics of Acoustics in a good auditorium?	PO1.PO2				
2	What is meant by Reverberation and Reverberation time?	PO1.PO2				
3	Derive Sabine's formula using the Growth and Decay method.	PO1.PO2				
4	Explain the absorption of sound waves and absorption coefficient.	PO1.PO2				
5	Define absorption coefficient and Determination of absorption coefficient:by	PO1.PO2				
	stationary wave method and reverberation method	DO1 DO2				
6	Mention the factors affecting architectural Acoustics and their remedies.	PO1.PO2				
7	Explain Extraneous noise and sound insulation.	PO1.PO2				
8	What are ultrasonic waves and give their properties	PO1.PO2				
9	Expalin the piezoelectric method of producing piezoelectric methos	PO1.PO2				
10	Explain about non destructive testing through Pulse echo method system	PO1.PO2				