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UNIT-I        APPLIED PHYSICS 

WAVE OPTICS 

Introduction  

 Basically optics is the branch of science which deals with the study of light.  

 It is also known as the branch of physics, which deals with the study of 
properties and nature of light.  Optics is mainly divided into two parts.  

i) Geometrical optics which deals with the image formation by optical 
systems.  

That is the Geometrical optics concerns with the formation of images, when 
light rays passes through an optical system, such as a lens and a prism.  

ii) Physical optics which deals with the nature of light.  

That is the physical optics deals with the nature of light, such as Interference, 
Diffraction and polarization.  

Interference  

 Interference is that phenomena, in which two wave trains, when superposed at 
a point, produce collinear oscillations such that the resultant intensity at the point of 
superposition not only depends on the amplitudes of the component waves but also on 
their phase difference at the point of interference.  

 The interfered effect at any point can be observed by the eye, only if the effect 
is steady over sufficiently long intervals of observation.  

The effect is steady only if the phase relations between the interfering waves 
remain constant over that time interval.  

The phase emission of a wave train from a source, change at random. This 
random change in the emission phase changes the phase of waves train at the given 
point.  

 The phase difference between two wave trains at a point of their superposition 
will vary with time, if their frequencies are not equal.  

 Thus constant phase relations between the interfering waves requires sources of  

i) Same and single frequency and  

ii) Constant emission phase difference.  

The condition (i) is fulfilled if the sources are monochromatic and of the same 
frequency.  

The condition (ii) requires coherent sources.  
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Coherent source 
 Coherent sources are those sources, which maintain their emission phase 
difference constant for all time although each one may change its emission phase 
abruptly and at random.  

Constructive interference   
 If two wave trains at the p 

oint of superposition produced collinear vibrations interfere in the same phase, then 
the interference is said to be constructive. This is possible when the phase difference 
of the two wave trains at the point of superposition is 2nπ, where n is an integer. 

In that case the resultant amplitude is the sum of the individual amplitudes and 
the intensity is maximum. The corresponding path difference between the two 
interfering wave trains is an integral multiple of the wavelength, provided the sources 
are equiphased.  

 Path difference =  n  ,  n = 1,2,3,…… 

Destructive Interference  

 If the two wave trains interfere in the opposite phase, then the interference is 
said to be destructive. This is possible when the phase difference of the two wave 
trains at the point of super position is (2n-1), Where n = an integer.  

In this case the resultant amplitude is the difference of the individual amplitudes and 
the intensity is minimum.  

The corresponding path difference between the interfering waves should be an odd 
multiple of half the wavelength, if the sources are equally phased.  

 Path difference =  2 1 , 1, 2,3,.....
2

n n


   

Interference in thin films 

 The colors of thin films, soap bubbles and oil slicks can be explained as due to 
the phenomena of interference.  

 Let a plane wave front be allowed to incident normally on a thin film of 
uniform thickness t.  

The plane wave front is obtained with the help of a partially reflecting a glass 
plate G inclined at an angle 450 with the parallel monochromatic beam of light.  

The plane wave front is partly reflected at the upper surface of the film and 
partly transmitted into the film. This is shown in figure (1).  

The transmitted wave front is reflected again from the bottom surface of the 
film and emerges through the first surface.  
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The wave front reflected from the upper surface and the lower surface interfere 
with each other. The resultant interference pattern can be observed with eye without 
obstructing the incident wave front.  

Here the following two points are observed.  

i) The wavelength reflected light from the lower surface of the film, traverses an 
additional path 2 t. 

(t from upper surface to lower surface and t from lower surface to upper 
surface).  
Where  is the refractive index of the film.  

ii)  When the film is placed in air, the wave front reflected from the upper surface 
undergoes an additional phase change of  (Because the reflection takes place 
at the surface of a denser medium). Here it should be noted that no phase 
change takes place at lower surface because the reflection takes place at the 
surface of rarer medium.  

Now when the path difference, 2 t = n, Constructive interference takes place and 
the film appears bright.  

Here n = 1, 2, 3 …When the path difference, 22 (2 1)t n    ,destructive 
interference takes place and the film appears dark.  
Here n = 0, 1, 2, 3…… 
Note: t is the optical thickness of the film.  
 

 

Constructive interference  

 

Destructive interference 

The constructive and destructive interferences are shown 

Above. 

 

 

Interference in the films by Reflection: 
  

B 

       t 

D 

A 

  

C 

Eye  

G 

Glass Plate 

Figure  (1) Interference in thin films  
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Let us consider a plane parallel film, as shown 
in figure (4) below.  
Let PA be a ray of light incidenting on the 
upper surface as shown in the figure (4). 
PA light ray makes an angle of incidence i.  
Now part of the light is reflected into the film 
in the direction AB and the other part is 
refracted into film in the direction AC. 
The light AC which is refracted is reflected at 
C and emerges at D. The emerged light DF is 
parallel to ABH 
At the Normal incidence, the path difference 
between rays ABH and DF is the two times 
the optical thickness of the film  2 t . 

The two parallel rays of light AB and DF will 
interfere in the field of Eye and produce 
interference pattern.  
Now the path difference between the rays AB 
and DF,  for Normal Incidence is given by 

2 t        ------ (1) 
 
At oblique incidence the path difference is 
given by  
  AC CD AB         ----- (2) 

 
Now from the figure (4), triangle AEC is a right angled triangle. 

cos
EC

r
AC

  => 
cos

EC
AC

r
                    ----- (3)      

Triangle CED and Triangle AEC are similar and are right angled triangles. 

cos
EC

r
CD

  =>
cos

EC
CD

r
    ---------- (4)    

   

Now 
cos cos

EC EC
AC CD

r r
    

 
2

cos

EC
AC CD

r
   

But EC =t, thickness of the film.  
2

cos

t
AC CD

r
       ------ (5) 

Also from the right angled triangle ABD,  

sin
AB

i
AD

 => inAB ADS i  

 AB= (AE+ED) Sini, 

AB= 2AE Sin i (since AE=ED, AE+ED=AD) 

900 

P  

B  

H  

E  i 

r   r 

D  

F   

A  

C  

t 

No phase 
change  Fig. 4: Interference in thin 

films (thin parallel films) 

 Phase 
change  of π  
 

i 

1 

2 
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Also Tan r = 
AE

EC
  from the right anlged triangle AEC   

nAE ECTa r  
2AB t TanrSini       ------- (6) 

 From equations (2), (5) and (6), we get  
2

2 sin
cos

t
t Tanr i

r


   

But we know that (Snell’s Law)  
sin

sin

i

r
 , µ=Refractive index of material of the 

Film.  
sin sini r  

2
2 an sin

cos

t
tT r r

r

     

2
2 an sin

cos

t
tT r r

r

     

1
2 an sin

cos
t T r r

r
      

 

21 sin
2

cos

r
t

r

 

   
 

= 
2Cos

2
cos

r
t

r

 
 
 

 

2 cost r   ------------- (7) 
Where   is the refractive index of the 
medium between the surfaces of the 
film. For the reflected ray AB, the 
reflection is occurring in the denser 
medium, a phase change of  occurs. 
This phase change   is equivalent to 

path difference of 
2


. 

 The condition for maxima for the air film to appear bright is  

2 cos
2

2 cos
2

t r n

t r n

 

 

 

 
  

 2 cos 2 1
2

t r n
      ------ (8) 

For the reflected ray CD and transmitted ray of light DF, No phase change occurs.  
Because, the reflection of light CD takes place at a surface of lower refractive index. 
 
 
 
The film appear dark in the reflected light 

C ^ ^ ^ 

^ ^ 

^ 
^  ^ ^  ^

L 

S  

G2 

450 

M 

Figure (5) 
Experimental setup for 
Newton’s Rings 

G1  

^  
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 

 

 

2 cos 2 1
2 2

2 cos 2 1
2 2

2 cos 2 1 1
2

2 cos

t r n

t r n

t r n

t r n

 

 



 

  

  

   



 

 
Where  0,1, 2,3,....n            

Newton’s Rings 

When a Plano convex lens with its convex surface is placed on a plane glass plate, an air film 
of gradually increasing thickness is formed between the two. The thickness of the film at the 
point of contact is zero. If a monochromatic light is allowed to fall normally and viewed as 
shown in figure (5), then alternative dark and bright circular fringes are observed.  

The fringes are circular because the air film has a circular symmetry.  

Newton’s Rings are formed because of the interference between the waves reflected from the 
top and bottom surfaces of the air film between the curved surface and the glass plate as 
shown in figure (5).  

figure (5) shows the experimental setup for Newton’s Rings. In the 
setup G, is the plane glass plate. L is a Plano convex lens. S is a 
monochromatic source of light. G2 is the glass plate inclined at an 
angle 450 with the incident parallel light from the source S. C is a 
double convex lens. M is the microscope, through which we can 
observe interference fringes.  

Theory: Newton’s rings are formed due to interference  
between the waves reflected from the top and 
bottom surfaces of the air film formed between 
the glass plate and curved surface of the plano 
convex lens.  The formation of Newton’s Rings 
can be explained  by using the Figure (6).  
  

L is the Plano Convex lens. G is a plane glass, 
plate. AB is the monochromatic Ray of light, 
which is incidenting on the system.  

A part of the light is reflected at C (glass air boundary), which goes out in the form of                
rays (1). Without any phase reversal.  

This is because at the point ‘C’ a light ray is reflected from a rarer medium.  

The other part is refracted along CD, at the point D it is again reflected and goes out in the 
form of ray (2). (DEF Ray of light).  

The ray (2) suffers a phase reversal of   . This is because at the point D, the light ray is 
reflected from the denser medium glass.  

Figure (6): Interference in Newton’s rings setup. 
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The reflected rays (1) and (2) [GH and EF] are in a position to produce interference fringes as 
they have been derived from the same ray AB. Hence they fulfill the condition of 
interference. 

As the rings are formed in the reflected light, the path difference between them is  

2 cos
2

t r
      ---- (1) 

Since the interference is taking place because of the air film, for air film 1  .  

And for Normal incidence, r=0. 

Now the path difference    2 1 cos 0
2

t


     

2
2

t


       ---- (2) 

Where t= thickness of the air film.  

At the point of contact, t=0, and the path difference  
2


  . 

This is the condition of minimum intensity. Hence the central spot is dark.  

Now the condition for bright fringe is  

2
2

t n
     

2
2

t n
   

2
2

2

n
t

 
  

 2 2 1
2

t n


  ,     ----- (3) 

Where n= 1,2,3,…… 

The condition for dark fringe is  

  2 2 1
2 2

t n
 

    

  2 2 1
2 2

t n
 

    

  2 2 1 1
2

t n


      
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 2t n  ---- (4) Here n= 0, 1, 2… 

Relation between t, r and R is given by 

2

2

r
t

R
     ------- (5) 

For a 
 

Brighter Fringe

2 2 1
2

t n


 
 the condition is  

 
Now substituting the value of t, we get  

2
2

2

r  2 1
2

n
R

 
  

 
 

 2 2 1

2

n R
r


      ----- (6)  

Here r   Radius of the Ring.  
If D = diameter of the Brighter Ring, then  

2

D
r       

 2 2 1

2 2

n RD    
 

 
 2 4 2 1

2

n R
D


   ,  2 2 2 1D n R     

2 2 1D R n       ---- (7) 

From Equation (7)  2 1D n   

 The diameter of the Bright Ring is proportional to  the Square root of odd natural number.  
For mth Bright Ring (m is a higher order fringe).  

2 2 1mD R m   

For nth the Bright Ring (n is a lower order fringe). 

2 2 1nD R n   

Similarly  2 2 2 1mD R m   

      2 2 2 1nD R n   

   2 2 2 2 1 2 2 1m nD D R m R n       

 2 2 2 2 1 2 1m nD D R m n         

2 2 2 2 1m nD D R m   2 1n     

 2 2 4m nD D R m n    

 
2

2

4
m n

D D
R

m n


 


    ----- (8)  

Also for a dark fringe, the condition is 2t n  ------ (9) 

But 
2

2

r
t

R
      

2
2

2

r
n

R
  
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2r n R  

But 
2

D
r   

 Diameter of the Ring is given by  
2

2

D
n R   

 
   

2

4

D
n R  

2 4D n R  

2D n R      --- (10) 
Thus the diameter of the rings is proportional to the square root of the Natural Numbers. 
Now Diameter of the mth Dark Ring is given by  

2 4mD m R      ---- (11) 

Diameter of the nth Dark ring is given by  
2 4nD n R      ----- (12)  

By measuring the diameters of the dark rings.  
We can calculate the Radius of curvature of the Plano convex lens. 
From Equations (11) and (12), we have  

2 2 4 4m nD D m R n R     

 2 2 4m nD D R m n    

 Radius of curvature of the Plano convex lens 

 
2 2

4
m nD D

R
m n





, Here m n …..(13) 

If R is known, the wavelength of the source  
  can be calculated as follows.. 

 
2 2

4
m nD D

R m n
 

 


 ----- (14) 

Note:  1. Determination of wave length of 
a light source  
Let R be the Radius of curvature of a 
Plano convex lens. Let   be the 
wavelength of Monochromatic light 
used.  
Let mD  and nD  are the diameters of thm  

and thn  dark Rings respectively.  
Then 2 4mD m R  

and 2 4nD n R  

Now  2 2 4m nD D m n R    

   
2 2

4
m nD D

m n
R m n

 
  


 

Newton’s Rings are formed with 
Newton’s Rings setup. By using a 
traveling microscope, the readings of the  

Fig 10: Graph between D 2 and order of ring 
 

Dm2 
B  

Dm2-Dn2 

(m-n) 

Dn2 

D2 

O n m X
  

Y
  

  

  

  

  

  

Order of the Rings 

A  

D                        C  
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different orders of dark rings were noted from one edge of the Rings to other edge. The 
diameters of different orders of the Rings are calculated. A graph between 2D  and the order of 
the Rings is drawn. A straight line graph is obtained as shown in figure (10).  

 
From the graph  

2 2
m nAB D D    

 From the graph, the values of  m n  and   2 2
m nD D  are calculated.  

The radius of curvature R of the Plano Convex lens can be obtained with the help of the 
spherometer. Substituting these values in the formulae.  

 
2 2

,
4

m nD D

R m n
 



 Can be calculated.  

Note 2: Determine of Refractive Index of a Liquid. 

 Now the Newton’s Rings system is placed into a container containing a liquid of 

refractive index  . Now we have to find the value of refractive index of the liquid.  

Now the air film is replaced by the liquid film.  

Now again the experiment is repeated. The diameters of thm  and thn  dark Rings are now 
obtained.  

Then we have  

 
 2 21 1 4

m n

m n R
D D





      --- (1) 

Also for air film, we have  

  2 2 4m nD D m n R       ---- (2) 

From equations (1) and (2), we get  

Using these formulae, we can calculate  . 

2 2

2 21 1

m n

m n

D D

D D
 



 

 

 

 

 

 

 

CD m n 
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DIFFRACTION 

Introduction  
Diffraction confirms the wave nature of light. Usually waves bend round the corner of the 
obstacles in their path. For example, water waves coming from a small hole spread out in all 
directions as if they have originated at the hole. Similarly sound waves pass round obstacles 
of moderate dimensions. Similarly light waves bends round the corners of an obstacle is 
called diffraction.  
Diffraction – Explanation  

 

 

  

Figure (1) Diffraction at a straight edge. 

Light from a monochromatic source‘s’ is allowed to fall on a lens L. Now the light is 
rendered parallel. 1S  is a slit. AB is a straight edge. The parallel beam of light passes through 

slit 1S . The light from the slit 1S  falls on the straight edge. Now a geometrical shadow is 
observed on the screen. The shadow is not a sharp one. Above the shadow, parallel to the 
edge A, several bright and dark bands are seen due to diffraction. Thus the bending of light 
waves round the edges of opaque obstacle or narrow slits and spreading of light into 
geometrical shadow region is known as diffraction of light.  
Types of diffraction  
Fresnel Diffraction 
 In this class of diffraction, the source of light and the screen are at finite distance from 
the aperture or obstacle having sharp edge. The incident wave front on the aperture or 
obstacle is either spherical or cylindrical. For the study of this diffraction lenses are not 
required.  
Fraunhofer Diffraction: In this class of diffraction the source of light and the screen are at 
infinite distance from the diffraction aperture or obstacle. Due to this for focusing the light, 
we need a lens. This diffraction can be studied in any direction. Here the incident wavefront 
is a plane wave front.  
 

Fresnel Diffraction Fraunhofer Diffraction 
1. Point source of light or an 

illuminated narrow slit is used as 
light source.  

1. Extended source of light at infinite distance is 
used as light source.  

2. Light incident on the obstacle or 
aperture is a spherical wave front. 

2. Light incident on the obstacle or aperture is a 
plane wave front.  

3. The source and screen are at finite 
distance from the aperture or 
obstacle producing diffraction.  

3. The source and screen are at infinite distance 
from the aperture or obstacle.   

4. Lenses are not used to focus the light 
rays.  

4. Converging lens is used to focus the light 
rays.  

 

  

^ ^ ^ 

L  

S1 
A 

B 
Straight edge 

Screen  

Geometrical shadow  

S 



Unit-I      Wave Optics  

[PVRamanaMoorthy]            Page 12 
 

  Fraunhofer Diffraction at a Single Slit:  

 

 

 

 

 

Figure (2) Fraunhofer diffraction at a single slit 

Consider a slit AB of width ‘e’. 'ww  is a plane wave front of monochromatic light of 
wavelength  is incidenting normally on the slit. The diffracted light through the slit is 
focused by using a convex lens on to a screen placed in the focal plane of the lens. According 
to Huygens – Fresnel every point on the wave front in the plane of the slit is a source of 
secondary wavelet. These secondary wavelets spread out in all directions to the right.  
 The secondary wavelets traveling normal to the slit, along the direction 0OP  are 

brought to focus at 0P by the convex lens L. Thus 0P  is a central bright image.  

The central bright image is formed because there is no path difference for the Ray 
traveling normal to the slit.  

The secondary wavelets traveling at an angle   with the normal are brought to focus 
at a point 1p on the screen.  

The intensity of point 1p depends upon the path difference between the secondary 
waves originating from the corresponding points of the wave front.  

To find intensity at 1p , draw a normal AC from A to the light ray at B.  
Now the path difference between the secondary wavelets from A and B in the 

direction   is given by  
 Path difference = BC. 

From the figure (2) triangle ABC is a right angled triangle.  

sin
BC

AB
   

sinBC AB   , But AB = e , width of the slit. 
sinBC e        ------ (1) 

Now the  phase difference 
2


   path difference.  

 
2

sine
 


       ---- (2) 

Now let the width of the slit is divided into ‘n’ equal parts. The amplitude of the wave from 
each part is ‘a’. 
The phase difference between any two successive waves from these parts will be given by  

 

 

 

 A

B
  

e
   

Lens 
L 

P1 

P0 

W 

W1 

WW1=Plane wave front 

AB= Rectangular slit 

L=Lens o  
C
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  1 1 2
total phase sine d

n n

 


    
  ----- (3) 

By the method of vector addition of amplitudes, the Resultant amplitude R is given by  

 
sin

2

sin
2

nd
a

R
d

 
 
 
 
 
 

    ---- (4) 

From equations (3) and (4)  

 

sina n

R 

1

n

2

2




sin

2
sin

e 
 
 
 

sin

2

e
n
 


 
 
 

 

 

sin
sin

sin
sin

e
a

R
e
n

 


 


 
 
 
 
 
 

 

Now let 
sine 


      ----- (5) 

sin

sin

a
R

n





 
 
 

 

In the above expression 
n

 
 
 

 is very small  

Hence   ,  Sin
n

 
 
 

 
n


 . 

sina
R

n




 
 
 
 

 

sinna
R




  

sinA
R




  , Here A na    ---- (6)  

We know that intensity of light is proportional to square of the amplitude.  
Intensity 2I R  

 
2

2 sin
I A




    
 

   ---- (7)1 

                                                 
1Note: When ‘n’ no. of S.H.M. are acting at a point simultaneously, having equal amplitude ‘a’ and same phase 
difference ‘d’, then the resultant amplitude is given by vector addition as  

 
 

sin
2

sin / 2

nd
a

R
d

 
 
   
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Analysis of Intensity Distribution Principal Maximum: 
The resultant amplitude is given by  

 
sin

R A



  

3 5 7

.........
3! 5! 7!

A
R

  

 

      
 

 

2 4 6

1 .........
3! 5! 7!

R A
   

      
 

 

If the negative terms vanish, the value of R will be maximum i.e.  When 0   

 
sin

0
e 


    

sin 0   
0       ------ (8) 

Now the maximum value of R is A, R=A 
Now maximum intensity 2 2

maxI R A   

The condition 0  means that the maximum intensity is formed at oP . 

This maximum intensity is known as Principal maximum.  
 
Minimum Intensity Positions 

 Resultant amplitude 
sin

R A



  

Intensity I will be minimum when sin 0  . 
i.e. when R=0, I will be minimum  
now sin 0   
 , 2 , 3 , 4 ,......, m             

But 
sine

m
  


    

 sine m        -------(9)  
Where m=1, 2, 3… 
Therefore we get the points of minimum intensity on either side of principal maximum.  
For m=0, sin  0. This corresponds to Principal Maximum. 
Secondary maxima 
 In between these maximum intensity positions, we will have secondary maxima or 
subsidiary maxima.  

The position of secondary maxima can be obtained by differentiating the expression 
2

2 sin
I A




   
 

with respect to   and equating it to zero.  

Now 
2

2 sin
0

dI d
A

d d


  

     
   

 

2
2

2sin cos sin
0A

   
 

    
 

Here either sin 0   or cos sin 0   . 
But sin 0   gives positions of minima.  
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Now the positions of secondary maxima are given by  
 cos sin 0     
 cos sin    
 tan          ---- (10) 
The values of   satisfying the above equation are obtained graphically by plotting the curves 
y   and tany   on the same graph. The plots y   and tany  are shown in fig (2).  
 

 

 

 

 

 

 

Figure (3) plots of y   and tany  . 

From the plots, the points of intersection are given by 
3 5

0, , ,..........
2 2

      

Substituting the above values in equation (7), we get the intensities in various maxima.  
2

00, I A      (Principal Maximum). 
2

2
2

1

3
sin3 2,

32 22
2

A
I A






 
 

   
 
 

  (1st Secondary maximum) 

2

2
2

2

5
sin5 2,

52 62
2

A
I A






 
 

   
 
 

  (2nd secondary maximum) 

From the above expression it is clear that most of the incident light is concentrated in the 
principal maximum.  
 
Intensity Distribution: The variation of intensity with respect to  is shown in figure (4). 
The diffraction pattern consist of a central principal maximum for 0   
There are secondary maxima of decreasing intensity on either sides of it at 

positions
3 5

,
2 2

     . 

Between secondary maxima there are positions of minima at , 2 , 3 ,......        

5

2


            

3

2


     

2


                      

2


                

3

2


                  

5

2


  

450 

y=  

      

y  
tany   

- 2  
| 

-  
| 

  
| 

2  
| 0 
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Figure (4): Intensity Distribution 

Fraunhofer Diffraction at Double slit.  
Let 1S  and 2S  be two slits of equal widths e. the two slits are repeated by a distance d. 

The distance between the middle points of the two slits is (e+d).  A monochromatic light of 
wavelength  is incident normally on the two slits. The light diffracted from these slits is 
focused by a lens of the screen placed in the focal plane of the lens. The diffraction of two 
slits is the combination of diffraction as well as interference. That is the pattern on the screen  
is the diffraction pattern due to single slit on which a system of interference fringes is 
superposed.  

 
 
 
 
 
 
 
 
 

                                                                                   

                                                                       

 
 

Figure (5) Fraunhofer diffraction at double slit. 
  

Let a plane wave front is incident normally on both slits, all points within the slits 
became the sources of secondary wavelets. These secondary wavelets from the slits travel 
uniformly in all directions. The secondary wavelets traveling in the direction of incident light 
come to a focus at  oP . The secondary wavelets traveling in a direction making an angle 

 with the incident direction come to a focus at 1P . 
From the theory of diffraction due to a single slit, the resultant amplitude R due to all 
wavelets diffracted from each slit in a direction  is given by  

  
sinA

R



  

    
7

2


3

5

2


    

3

2


          0             
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2


   2  

5
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
 3    

7

2


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|             |      |       |       |         |          0        |       |         |      |       |             |  α 
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
 

Y
  

X
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L1 
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S2 

  

  
K  

L2 
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P0 

Screen  
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 Now let us consider the two slits are equivalent to two coherent sources 1S  and 2S  
arranged at mid-points of the slits. Here each source is sending a wavelet of amplitude 

sinA 


 
 
 

 in the direction . 

  The resultant amplitudes at a point 1p  on the screen will be the result of 

interference between two waves of amplitude 
sinA 


 
 
 

and having a phase . 

 For calculating , draw a perpendicular 1S K  on to the 2S  secondary wavelet making 

an angle   with the normal.  
Now the path difference between the wavelets from S1 and 2S  in the direction   is 

given by 2S K . 

From the figure triangle 1 2S KS  is a right angled triangle.  

2
2 1 2

1 2

sin sin
S k

S k S S
S S

      

   2 sinS k e d       ---(1) 

 Phase difference 
2


  (path difference) 

    2
sine d

 


       ---- (2) 

To find the resultant amplitude at 1P , vector addition method is used. Here the two sides of the 

triangle represents amplitudes of wavelets from 1S  and 2S . This is shown in figure (6). 
The third side represents the resultant amplitude.  

        2 2 2
2 cosOH OG GH OG GH     

2 2
2 sin sin

R A A
 

 
       
   

  

sin sin
2 cos

A A  
 

     
  

 

 
2

2 sin
1 1 2cos

A
R

 


    
 

 

 
2

2 sin
2 2cos

A
R

 


   
 

 

 
2

2 sin
2 1 cos

A
R

 


   
 

 

2
2 sin

2 1
A

R



   
 

 22cos / 2 1     

 
2

2 2sin
4 cos / 2

A
R

 


   
 

     ---- (3) 

Now from equations (2) and (3), we have  

  
2 2

2 2
2

4 sin
cos sin

A
R e d

  
 

    
 

O 

R 

G 

H  

sinA 


  

sinA 


 

Figure (6) Vector Addition 
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Now let 
 sine d 





  

2
2 2 2sin

4 cosR A
 


    
 

  ------------------- (4) 

Now the resultant intensity is given by  

 
2

2 2 2sin
4 cosI R A

 


    
 

     --------------------(5) 

From the expression (5) it is clear that the resultant intensity is the product of two factors.  

1. 2
2

sin
A




 
 
 

 , This represents the intensity distribution in the diffraction pattern due to 

a single slit.  
2. 2cos   which gives the interference pattern due to wavelets from two parallel slits 

(double slits) 
The resultant intensity is due to both diffraction and Interference effects.  
Intensity due to Diffraction effects 

 The diffraction 
2

2 sin
A




 
 
 

gives the principal maximum at the centre of the screen 

with alternative minima and secondary maxima of decreasing intensity. The principal 
maximum occurs at 0  . The minima occurs when sin 0   
  

, where m=1,2,3,....m    

 
sin

sin
e

m e m
    


     

The positions of secondary maxima occurs for  

 
3 5 7

, , ,........
2 2 2

        

Intensity due to interference effects 
 The interferences term 2cos  gives a set of equivalent bright and dark fringes.  

The maxima will occurs for 2cos  =1. 
 i.e. ,n    where 0,1, 2,3,.....n   
 i.e. 0, , 2 , 3 ,.............        

Now 
 sine d

n
 





   

  sine d n      

The minima will occurs for 2cos  =0. 

i.e  2 1
2

n
     where 0,1, 2,3,......n   

   sin
2 1

2

e d
n

  



     

   sin 2 1
2

e d n
      
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Intensity Distribution  
  

Figure 7(a) represents the intensity variations due to diffraction, having maxima and 
secondary maxima of decreasing intensity on either side.  
  

Figure 7(b) shows the intensity variations due to interference.  
 When the diffraction and interference effects are combined then we get the resultant 
variation, as shown in figure (7) c. From fig (7)c it is clear that the resultant intensity of 
minima are not equal to zero, but they have some minimum intensity due to interference 
effect.  
  

              3       2                0                       2          3    
|             |      |       |       |         |                  |       |         |      |       |             |    

I 

 

2
2 sin

A



 
 
 

 

   

    -5     -4    -3   -2     -       0                2    3      4    5        6  
 

2cos   

      

I 
 

   
   

Figure (7a): Diffraction effect 

Figure (7b): Interference effect 

Figure (7c): Resultant intensity 
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Diffraction Grating 
 Diffraction grating is an arrangement which consists of a large number of parallel slits 
of the same width. These parallel slits are separated by equal and opaque spacings. 
This arrangement is known as diffraction grating.  
 Fraunhofer used the first grating consisting of large number of parallel wires placed 
side by side very closely at regular intervals.  
 The gratings are designed by ruling equidistant parallel lines on a transparent material 
such as Glass with a fine diamond tip.  
 The ruled lines are opaque to light while the space between any two lines is 
transparent to light and act as a slit. This is shown in figure (8). 
 Usually gratings are designed by taking the cost of an actual grating on a transparent 
film like that of cellulose acetate.  
 

 

 

 

 

 

 

Figure (8): Diffraction Grating  

Now solution of cellulose acetate is poured on the ruled surface and allowed to dry, for the 
formation of a thin film. This thin film is easily detachable from the surface. These 
impressions of a grating are preserved by mounting the film between two glass plate thin. 

Let e be the width of each line.  
Let d be the width of the slit.  
Now  e d is known as grating element.  

If ‘N’ is the number of lines per inch on the grating, then  

 N e d  grating elements are there per inch.  

i.e.  N e d 1" 2.54cms   

  2.54
e d cm

N
   

Usually there will be 15,000 lines per inch (or) 30,000 lines per inch on the grating. 
Due to the narrow width of the slit, it is comparable to wavelength of light.  

When light falls on the grating, the light is diffracted through each slit.  

(e+d) Transparent (slit) 

Ruled lines 

Opaque  
d
  

e 

  Transparent 
   Material glass   
 
  (e+d) = grating        
   element  
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As a result, both diffraction and interference of diffracted light gets enhanced and forms a 
diffraction pattern. This pattern is known as Diffraction pattern.  
 

Grating Spectrum  
 

In a grating the condition for the formation of principal maxima is given by  
  sine d n     ---- (1) 

Here  e d  is the grating element. The equation (1) is known as grating equation. From the 

grating equation, the following points may be observed.  
 

 

1. For particular wavelength , 
the angle of diffraction  is 
different, for principal 
maxima of different orders.  

2. Since the number of lines in 
the grating is large, maxima 
appear as sharp and bright 
parallel lines. These lines are 
known as spectral lines.  

3. For white light incidenting on 
the grating, the light of 
different wavelength will be 
diffracted in different 
directions for a particular 
order ‘n’. 

 

4. At the centre, 0  , correspondents to maxima of all wavelengths. This maximum 
will coincide with the central image of the same colour as that of the light source. This forms 
zero order of the spectrum. This is shown in figure 8.  
5. The principal maxima of all wavelengths form the 1st order, 2nd order, spectra for n=1, 

2… 
6. Larger the wave length, greater is the angle of diffraction. Thus in the spectrum, violet 

lies inner most and red lies outermost. 
7. Intensity is maximum in the zero order and the rest of the orders will have distributed 

intensities. 
8. Spectra of different orders are situated symmetrically on both sides of zero order.  
9. The maximum number of orders possible with the grating is given by  

       
 

max

e d
n




  
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