
 

 

 

 

 

 

 

 

 

16MEC321 - Heat and Mass Transfer 

Lecture Notes 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



CONDUCTION 

INTRODUCTION 

 The term heat conduction is applied to the mechanism of internal energy exchange 

from one Body to another, or from one part of the body to another part, by the 

exchange of kinetic energy of motion of the molecules by direct communication or by 

the drift of free electrons in the case of I heat conduction in metals. 

 This energy transfer takes place from the higher energy molecules to the lower 

energy molecules. Conduction usually takes place within the boundaries of a body, 

or across the boundary of a body into another body placed in contact with the first 

without any appreciable displacement of the matter comprising the body. 

 
ONE AND THREE DIMENSIONAL HEAT CONDUCTION EQUATIONS 

 
 

 Consider a one dimensional system as shown in Fig 1. 

 In the steady state system, the Temperature doesn't change with time. 

 If the temperature changes with time the system is known as unsteady state system. 

 This is the general case where the temperature is not constant. 
 

 

 

 
Fig 1: One dimensional heat conduction 

qx   = Energy conducted in LHS of the element = - kA 
T

 
x 

qgen = Energy generated within the elemental strip = q A dx 

qx+dx = Energy conducted out of the RHS of the element = - kA 
T

 
x xdx 



dE 
 Change in internal energy 

dt 

dE 
  c A 

T 
  

dt 

where 

t 

 

q = density 

c = specific heat of material. 

q = energy generated per unit volume. 

Making energy balance for an elemental strip dx, 

qx  qgen  
dE 

 q 
dt 

 

 
xdx 

- kA 
T 

 qAdx  cA 
T 

dx  kA 
  

x t 

= CA 
T 

dx 




xdx 

 

 T 







  

k 
T  

dx


t 
A k 

x x 
 

x 
 




Writing in differential form 

  

  
k 
T  

 q = C 
T x 

 
x 

 
t 

 

 The above equation is known as one dimensional heat conduction equation. 

 Generally the heat conduction problem consists of finding the temperature at any 

time and at any point within a specified solid that has been heated to a known initial 

temperature distribution. 

 Whose surface has been subjected to a known set of boundary condition. 

Consider a solid as shown in Fig 2 with heat conducting in and out of a unit volume in all 

Three coordinate directions x, y and z. 

q   q    q  q  q  q  q  
dE

 
 

x y z gen xdx y dy z dz 
dt

 

Making energy balance 

q  kdydz 
dT 

; q 
 

 

  

k 
T 






   
k 
T  


x 

dx xdx 
 

x x 


x 

 dx dydz 

q  kdxdz 
dT 

; q 
 

 



k 
T 






  

   
k 
T  

y 
dy y dy 

   
y

 y 


y 

 dy  dxdz 
   

T 

x 



q  kdxdy 
dT 

; q 
 

 


k 
T 







  
k 
T  

z 
dz 

z dz   
   z 

z 


z 

 dz  dxdy 

 
dE 

 cdxdydz 
T 

dt t 





; q
gen 

  


 qdxdydz 

Substituting all the values in equations above, general three dimensional heat conduction 

equation becomes 

 

 

k 
T 







  
k 
T  


 

 T 






  
k 
T  


 

 

k 
T 







  
k 
T  


 

 cdxdydz 
T


  

x x 


x 

 dx dydz - k 
y

 y 


y 

 dy dxdz 
 

z z 


z 

 dz  dydx 
t

 
           

Re arranging and simplifying the above equation 
 

 

If thermal conductivity k is constant, the above equation becomes 

2T 
 
2T 

 
2T  

q 




C 
 
T 

  

x2
 y2

 z2 k k t 
 

 

2T 
 
2T 

 
2T  

q 




1 
 
T 

  

x
2
 y

2
 z

2
 k  t 

 

 

Fig 2: Three dimensional heat conduction in Cartesian coordinates 



 In the above equation the quantity  is known as thermal diffusivity of the material. 

Rate of heat diffusion through the material is faster if  is higher. 

 The term q c is known as thermal heat capacity. Higher value of a may be either due 

to higher value of thermal conductivity or lower value of thermal heat capacity. 

 Lower value of thermal heat capacity means the energy moving through the material 

would be absorbed to a lesser degree and used to raise the temperature of the 

material. This means more energy is available for further transfer. 

 
Cylindrical coordinates 

Cylindrical coordinates are expressed in radius (r), axis (z) and longitude (0) as 

shown Fig 3. 

Three dimensional heat conduction equations in cylindrical coordinates is given by 

2T 
 

1 T 
 

1 
 

2T 
 
2T  

q 




1 
 
T 

  

r 
2

 r r r
2

  
2

 z
2

 k  t 
 

 

Fig 3: Three dimensional heat conduction cylindrical coordinates z 

. 

Spherical coordinates 

Spherical coordinates system expressed in (r, 0, z) is shown in Fig 4. 

Three dimensional heat conduction equations in spherical coordinates is given by, 



 

Fig 4: Three dimensional heat conduction spherical coordinates 

 
 

General equation for one dimensional heat conduction 

The one dimensional heat conduction equation in the Cartesian (rectangular), cylindrical and 

spherical coordinate systems is given by a single general equation as 

 

Where n = 0 for rectangular coordinates 

n = 1 for cylindrical coordinates 

n = 2 for spherical coordinates 

 
ONE DIMENSIONAL STEADY STATE HEAT CONDUCTION WITHOUT HEAT 

GENERATION THROUGH PLANE SLABS: 

 Consider a plane slab of thickness L as shown in Fig 5. 

 The plate is assumed to be large Enough along the y and z directions as compared 

to its thickness L. Hence heat transfer along y and z directions is negligible. 

Using the three dimensional heat conduction equation, 

2T 
 
2T 

 
2T  

q 




1 
 
T 

  

x
2
 y

2
 z

2
 k  t 



 

Fig 5: Steady state heat conduction without heat generation 

Since the conduction takes place under steady state, without heat generation above 

equation reduces to the following differential equation. 

d 
2
T 





dx2 
0 

The boundary conditions are 

At x=0; T(x) = T1 ; At x=L; T(x) = T2 

The solution for the above differential equation is T(x) = C1x + C2 

Where C1 and C2 are arbitrary constants 

Applying the above boundary conditions, 

At x=0; C2=T1 ; At x=L; T2= C1L+C2 = C1L+T1 

 
C1 = 

T2  T1 
 

L 

Substituting the constants in above equation, 

T  x= 
 T2  T1   x  T  

L 
 2 

 

The heat flow through the slab of area A is given by Fourier's conduction equation. 

 Q = - kA 
 
 -kA d  T2  T1  x  T

 
 

  

= -kA 
 T2  T1 




dx 
 

L 
 2  

L 


x0 
 

Q = kA
 T1  T2 




   

 L 
 

Rearranging the above results, Q  
T1  T2

 

R 

 
here R = 

L
 

kA 

Where R is called thermal resistance of the slab. This concept is analogous to electric 

resistance. 

dT 

dx 



1 
h1A 

L 
kA 

1 
h2 A 

1 
h1A kA h2A 

 L  1 

1 

CONCEPT OF THERMAL RESISTANCE AND ELECTRICAL ANALOGY 

Consider a slab of thickness as shown in Fig 6. A fluid at temperature Ta1 having a 

heat transfer coefficient h1 flows over the slab at x =0. Another fluid at a temperature 

Ta2having a heat transfer coefficient h2 flows over the slab at x =L. 

 

Fig. 6 Concept of Thermal Resistance 

 As there is no heat generation within the medium, heat flow rate through the slab can 

be determined by using thermal resistance concept. 

 Heat flow rate Q is by  convection from the fluid at  Ta1 to the  surface of the slab at   

x =0, by conduction through the slab and by convection from the surface at x = L to 

the fluid at Ta2. 

Q = h A T  T   kA
 T1    T2    h AT  T 1 1 1  

L 
 2 2  2 

 

Q =  
T1   T1  

 
T1   T2  

 
T2   T 2 





This is analogous to Ohm's law with each term in the denominator representing the thermal 

resistance of heat flow through an electric circuit. 

Adding the denominators and numerators of the above equation, 

Q = 
T
1 
 T

2  
T
1 
 T

2 

Ra  Rb  Rc 

 
T
1 
 T

2 

Rtotal 

 

Rtotal= Total thermal resistance to heat flow total = Ra + Rb + Rc 

R
total 

= 
1

h A 
 L 

kA 



1 
h2A 



ln 

 
r2 

 r1 





ln 

 
r2 

 r1 





 

ONE DIMENSIONAL HEAT CONDUCTION EQUATION WITHOUT HEAT GENERATION 

THROUGH CYLINDERS 

 The radial heat flow in solids with cylindrical geometry is of great engineering, 

importance. A few examples are heat flow across thick-walled circular tubes, heat 

loss from a current carrying wire etc. 

 Consider a long cylinder of length L with inside radius r1 and outside radius r2 as 

shown in Fig 7. Let T1 and T2 be the corresponding temperatures at r1 and r2 

respectively. 

 As the length of the cylinder is very large compared to diameter, it may be assumed 

that the heat flows only in a radial direction. 

The three dimensional heat conduction equations in cylindrical co-ordinates is given by, 

2T 
 

1 T 
 

1 
 

2T 
 
2T  

q 




1 
 
T 

  

r 
2

 r r r
2

  
2

 z
2

 k  t 

For one dimensional steady -state heat conduction without heat generation, above equation 

can be written in differential form as follows. 

d 
2
T 
 

1 dT 
 

dr
2

 
= 0 

r dr 

The boundary conditions are, 

At r = r1 ; T(r) = T1 ; At r = r2 ; T(r) = T2 

Equation can be rewritten as 

d 2T dT d  dT 
r 

dr
2 
 

dr 
= 0 ; 

dr 
 r 

dr 
 = 0 

Integrating the above, equation two times 

r 
dT 

dr 

dT 
= C1   or  

dr
 = 

C1 

r 

 

;T = C1 ln r + C2 

Where C1and C2 are arbitrary constants 

Applying the boundary conditions at r = r1 and r = r2, equation becomes 

T1 = C1 ln r1 + C2 and T2 = C1 ln r2 + C2 

Solving the above two equations for C1and C2 

C  = 
T2  T1 = T  T  T  ln r1 ;

 
 

C  T  C ln r 
1 1 2 1 2 1 1 1 



ln  
r 

2 

 1 r 

 

Fig 7: One dimensional steady state heat conduction without heat generation in a 

cylinder 

Substituting the values of C1 and C2 in equations 

T   
T2  

 T
1  ln r  T   ln r 

1 1 

 

 

The heat flow rate through the cylinder over the surface area A is given by Fourier’s 

conduction equation. 

Q  
2 kL T1   T2  

; Rearranging the above equation, 

 

 

r  r ln 
 2 r2 L 



T1   T2  T1   T2  2 1  
2 


Q  

ln  
r2 . 

 
 Q  and R R  ; R 2 kL  r2   r1  2 kL   r1      

2 kL 



 
 



Am = 
t 

 

A2  A1 

R  ; 

kAm 

Am =logarithmic mean area 

A1 = 2 r1L 

A2 = Outer surface area = 2 r2L 

ln  
r2

 

 r
1 





ln  
r2 

 r1 





ln 

 
A2 

 A1 







ONE DIMENSIONAL STEADY STATE HEAT CONDUCTION WITHOUT HEAT 

GENERATION THROUGH SPHERES 

Consider a hollow sphere of inside radius rl at temperature T1 and outside radius r2 at 

temperature T2. The one dimensional heat conduction equation in spherical coordinates is 

given by 

1   
r 

2 T  
 

q 




  

1 T 
 

 r 2 r 
 

r 
 

k  t 
 



Fig. 8: One dimensional steady state heat conduction in a sphere 

 
 

For one dimensional steady state heat conduction without heat generation, the above 

equation reduces to the following differential form. 
d  

r 
2 T  

 0 ; The boundary conditions are dr 
 

r 



 

At r = r1; T(r) = T1 ; At r = r2; T(r) = T2 

Integrating the above equation 

r 2 dT 
 C 

 ; 
dT 

 
C1 

 

dr 
1 

dr r2
 

Integrating again, 

T   
C

1  C 
r 

2 



 

  

Where C1 and C2 are arbitrary constants. Using the boundary conditions C1 and C2 can be 

determined as follows. 

T   
C1  C 

1 
r
 2 ; T2 

  
C1  C 
r 

2
 
; Solving the above two equations, 

1 2 

C   r1r2 T  T  ; C  
r2T2  r1T1    

 1 
r  r 1 2 2 r  r 
2 1 2 1 

 

Substituting in above equation 

T  
1 






r1r2 T  T   
r

2
T

2 
 r

1
T

1 
; On rearranging the temperature distribution, 

 
 r 

 
r 
 r 

 1 2 r  r 

 2 1  2 1 

T  
r1 
 r2  r 

T  
r2 
 r  r1 


T

 
   1 

r  r2 
r

1 
  2 

r  r2 
r

1 

The heat flow through the hollow sphere is given by, 

Q   kA 
dT

 
dr 

 

 

r r1 

 k 4 r2 C1
 

r 2 

Substituting C1 in the above equation, 

Q  4 k r1r2   T  T  ; Rearranging the above equation, 

r  r 
1 2 

2 1 

Q  
T1   T2 

R 

 
; R 



r2   r1 
 

4 kr1r2   

Where R is the thermal resistance for a hollow sphere. 

 
 

HEAT TRANSFER THROUGH COMPOSITE SLAB 

 If a medium is composed of several different layers each having different thermal 

conductivity, then the medium is known as composite medium. 

 Consider a composite slab made of three parallel layers as shown in Fig 9. 

 If Q is the heat flow rate through an area A of the slab and if ha and hb are the heat 

transfer 

 Co-efficient at temperatures Ta and Tb respectively, then 

Q 
= 

Ta  T1 
  

T1  T2  
T2  T3 

 
T3  T4 

 
T4  Tb 

 

A 




1 

ha 

 1 

 hb 




L 
1 

 1 k 



L 
2 

 2 k 
 L 3 

 3 k 





1 
h 





 a 
A 
 

L1 

k A 
 

L2 

k A 
 

L3 

k A 



1 2 4 b 



A 

n 





Fig 9: composite slab with equivalent thermal resistance network 

Rearranging the above equation, 

T   T  
Q

 ; T  T  
QL1 ; T  T  

QL2 ; T  T  
QL3 ; T   T   

Q
 

 

a 1 
Ah 

1 2 
Ak 

2 3 
Ak 

3 4 
Ak 

4 b 
Ah

 
a 1 2 3 b 

 

Adding all the above equations 

Q = 
Ta  Tb 

 

 

 

In general if there are n layers then the generalized equation becomes, 

Q 
 

Ta  Tb 

A  1 


 1 
 
 Ln 

; If the heat transfer coefficients ha and hb are neglected, 

ha hb n1 kn 

Q 
 

T
1 
 T

n1 

A Ln 

n1 kn 

Equation can be modified in terms of equivalent thermal resistance. Thus 

Q  
Ta  Tb 

Ra  R 1  R 2  R 3  Rb 

Where various thermal resistances are represented by R with corresponding subscripts. 

1 
h 

n 



Special Cases 

i) A composite of two materials in parallel paths 

Consider a composite of two materials in parallel paths with their ends maintained at 

uniform temperatures Ta and Tb. An equivalent thermal resistance network is shown in 

Fig.10. 

 
 

Fig. 10: Composite slab in parallel paths 

If Al and A2 are the areas of slabs with thermal conductivities kl and k2, using the concept of 

thermal resistance, the heat flow rate Q is given by, 

Q = 
Ta  Tb 

 
Ta  Tb 

 
Ta  Tb ;Where 1 

 
1 
 

1 
  

 Equivalent parallel resistance 
L 

 

 

k1 A1 

 
  R1 R2 R k2 A2 

R R1 R 2 

 

ii) A composite wall with materials arranged in series and parallel 

Consider a composite wall with materials arranged in parallel and series paths. 

Approximating heat flow as one directional, the equivalent thermal resistance network is 

developed as shown in Fig.11. Assuming thermal conductivity of all materials same, the 

arrangement is analyzed for One dimensional heat conduction. 



 
 

 

Fig. 11: Composite slab in series and parallel paths 

 
 

Using the concept of thermal resistance the heat flow rate Q is expressed as, 

Q = 
T1   T2 

R  
1 
 R 

 

a 
R 

e 

1 
= 

1 
 

1 
 

1 

 
 

= Equivalent parallel resistance 

R Rb Rc Rd 

HEAT TRANSFER THROUGH COMPOSITE CYLINDERS 

 Consider composite coaxial cylinders in perfect thermal contact as shown in 

Fig.12.

 Let temperature of the hot fluid flowing inside and outside the cylinder be Ta and 

Tb with respective heat transfer coefficients ha and hb



 1 
 h

a 





 
 

Fig 12: Composite cylinder with equivalent thermal resistance network 

If Q is the heat flow rate through surface area A of the cylinder, then, 

Q 
 

Ta   T0     =  
k1 T0   T1  =  

k2  T1   T2   
T2   Tb 

    

A 
ln 
 r1     

 
ln 
 r2   

 



  
r 
  

r 


  0     1  

Rearranging the above equations, 

 ln 

 

 r 


ln 
 r2 




 
1 


Q 
 

r 
 

Q
 

T -T = 
Q 

; T  T = 
Q 






 r0  ;  T  T  = 


 1  ; T -T = 
 a 0 

A  h 0 1 
A k

 1 2 
A k

 2 b 
A h 

a 1 2 b 

Adding all the above equations, 

Q = 
2 L Ta   Tb 

 1 


 1 
ln 
 r1 

 


 1 
ln 
 r2 

 


 1 
h r k  

r 
 

k
  

r 
 h r 




 a 0 1  o  2  1  b 2 

In general if there are n concentric cylinders, then the generalized equation becomes, 

Q = 
2 L T1  Tn1 

 1 n    
 1  

ln 
 r  1 

   

  n1 

  


ha r0 n1 kn  rn      hb rn1 

If the heat transfer coefficients ha and hb are ignored, 

Q = 
2 L T1   Tn1 

 n     1  r 
 ln 

  n1 


 n1 kn  rn 

 h
b 

 1 






n1 n 




Above equation can be modified in terms of equivalent thermal resistance, 

Q = 
Ta   Tb 

Ra   R1   R2   Rb 



HEAT TRANSFER THROUGH COMPOSITE SPHERES 

 Consider a composite sphere as shown in Fig.13. 

 Let the interior and exterior surfaces be Subjected to two different fluids at 

temperatures Ta and Tb and heat transfer coefficients ha and hb respectively. 

 Heat exchange takes place by convection and conduction. 

It Q is the rate of heat transfer, then 

Q = h A T  T   
4 k1r1r0 T0   T1  

 
4 k2 r1r2 T1  T2  

 h
 

  

A T  T 
a a a 0 r  r r  r b b 2 b 

1 0 2 1 
 

Rewriting the above equation, 

Q = 
Ta   T0   






T0   T1  
 

T1   T2  
   

T2   T3 
  

 1     r1     r0            r2   r1   1  
4 h r 

2   
4 k r r 

  
4 k rr 




 
4 h r 2 

 a  0      1  1 0    2  1 2    b 2 

Adding the Numerators and Denominators of the equation, 

Q = 
Ta   Tb 


; Q = 4 Ta   Tb 

1 
 

r1  r0  
r2  r1 

 
 


1   1 

 
r1  r0  

r2  r1 
 1 


 

 
4 h r 

2
 4 k rr  4 k rr  4 h r 2 


h r 

2
 k rr k rr  h r 

2 


 a 0 1 1 0 2 1  2 b 2      a 0 1 1 0 2 1  2 b 2 

In general, if there are n concentric spheres the above equation modifies to, 

Q = 
4 Ta   Tb 

 1 1 n    r  r 

    n1 n 



 h r 2 h r 2 
n1 k r r  

  a  0 b  n1 n  n n1 

If heat transfer coefficients are ignored, then 

Q = 
4 T1   Tn1 



n 
r  r  ; In terms of equivalent electrical circuit, equation can be written as, 

 n1 k
n 
r

n 
r

n1 

Q = 
Ta   Tb 

Ra   R1   R2   Rb 



1 
h 

1 
h  

1 
ha A kA hb A  

 L  1 

      a 1     1 2        2 b  



Fig. 13: Heat transfer through composite spheres with equivalent electrical circuit 

 
 

OVERALL HEAT TRANSFER COEFFICIENT 

In many instances it is customary to express the heat flow rate in the cases of single 

or multilayered plane walls and cylinders with convection at the boundaries in terms of an 

overall conductance or overall heat transfer, U 

 
1. PLANE WALL 

Consider a plane wall exposed to a hot fluid A on one side and a cold fluid B on the other 

side. The heat transfer is expressed as, 

Q  h A T  T   
kA 
T  T 

 
 

  h A T  T  ; Q  T  T 
= 

T  T 
 

T  T 
a a 1 

L 
1 2 a 2 b   L   

 A  kA  A
 a   b     

Adding the numerators and denominators of the above equation, 

Q  
Ta  Tb 

; Q 
Ta  Tb 

Ra  R1  Rb 

The overall heat transfer coefficient due to combined heat transfer by convection and 

conduction is given as, 

Q  U A Toverall = 
Toverall 

1 
 

 

UA 



 

Fig.14: Overall heat transfer coefficient through a plane wall 

Comparing equations 

1 
= 

1 
 

L 
 

1 
=R  R  R 

    

U h k h 
a 1 b

 
a b 

U= 
1
 

 1 
 

L 


 1  
= 

1 

Ra   R1   Rb 
ha k hb 

CRITICALTHICKNESSOF INSULATION 

 Consider a small diameter pipe, cable or wire exposed to constant outer surface 

temperature and dissipating heat by convection into surrounding medium (air). 

 If the surface is covered by some insulation, it is observed that sometimes increasing 

the thickness of insulation increases the heat loss until a critical value of thickness of 

insulation, and further increase in thickness of insulation results in drop in heat loss. 

 The thickness which gives the maximum heat loss is known as critical thickness of 

insulation. 

 
2. CYLINDER 

 Consider a pipe of radius ri maintained at uniform temperature Ti .covered with a 

layer of insulation of radius ro as shown in Fig. 15. 

 Let Ta be the temperature of ambient air with heat transfer coefficient ho. Heat 

transfer from the outside surface of insulation occurs due to convection into the 

surrounding air. 

 Using the concept of thermal resistance, rate of heat transfer, 



 R = Thermal resistance of insulation  
1 

ln 
 r0 


 ins 2 kL  

r 


  i  


Ro = Thermal resistance of convection at the outer surface  

1 

2 r0 Lh0 

 

 

Fig. 15: Critical thickness of insulation 

In the above equation all the factors Ti , Ta, k, L, ho and rj remain constant and only ro is 

allowed to vary to find the maximum heat loss and hence to find the critical value of radius rc 

equation is differentiated W.r.to ro. 

 
 

Simplifying the above equation, 

r   
k 

where  r    r  ; r   
k
 

  

c 
h 

o c c 
h
 

o o 

Considering the effect of radiation, heat transfer coefficient in the above equation ho 

becomes the sum of convection and radiation heat transfer coefficients. 

ho  hc  hr 



Physical significance 

 If the radius is greater than the critical radius any addition of insulation on the surface 

of the tube decreases the heat loss. 

 If the radius is less than the-critical radius as in small diameter tubes, wires or  

cables, the heat loss increases continuously with the addition of insulation until the 

outer surface radius reaches its critical value. 

 The heat loss is maximum at the critical thickness of insulation and becomes lesser 

with the addition of insulation beyond the critical radius. 

 Variation of heat loss with radius of insulation is shown in the Fig. 16 

Fig.16. Variation of Q with r 

 
 

 
B. SPHERE 

 

FINNED SURFACES 

 The rate of heat transfer by convection between a surface and fluid surrounding can 

be increased by attaching thin strips of metal to the surface. These strips are known 

as fins. 



 Fins of a variety of geometries are manufactured for the heat transfer applications as 

shown in Fig. 17. 

 The uses of extended surfaces in practical applications are very large. 

 Fins are used for cooling of air cooled engines, on the radiator tubes and heat 

exchangers. In all the above cases fins are used to increase the rate of heat transfer. 

 

Fig.17: Examples of extended surfaces: (a) and (b), straight fins of uniform thickness; 

(c) and (d), straight fins of non-uniform thickness. 

ONE DIMENSIONAL FIN EQUATION 

 The problem of determining the heat flow through a fin requires knowledge of 

temperature distribution in the fin. This distribution can be found by developing a 

governing energy equation. 

 Fig 18 shows nomenclature for the derivation of one dimensional fin equation under 

steady state conditions. 

Consider a fin either rectangular or circular of uniform cross section subjected to a base 

temperature To and surrounding ambient air at Tœ having a heat transfer coefficient h. 

 
x = Small volume element 

A = Cross section area, m2 

P = Perimeter, m 

t = Thickness of rectangular fin of width W, m 



 
 

 
Fig. 18: One – dimensional fin equation 

Making steady state energy balance, 

Net heat gain along x - direction into volume  Net rate of heat gain through lateral surface into 
element x by conduction  + volume element x by convection   0 
   

 I   II 

Net heat gain along x-direction into volume element Ax 

d d 2T 

I   qA x  kA  x 
dx dx2

 

Net heat gain through lateral surfaces into volume element Ax 
 

d 2T  x
kA 

dx
2

  h T   T  x P  0 

On rearranging 

d 2T  x 




hP 
T   T  x  0 letting m2  

hP
 

 
 

  

and  x  T  x  T

dx2
 

d 
2
  x



dx2
 

kA   kA 

 m2  x  0 

The above equation is known as one-dimensional fin equation for fins of uniform cross 

section. 

Equation is a linear, homogeneous, second-order ordinary differential equation with constant 

coefficients. The general solution for that equation is, 






1 2 
  x  C e mx  C emx

 

The constants C1 and C2 are determined from the two boundary conditions specified for the 

Fin problem. 

Equation can be written in terms of hyperbolic sine and cosine as follows. 

  x  C1 cosh mx  C2 sinh mx = C1 cosh m L  x  C2 sinh m L  x

The boundary condition for the problem one at fin base and the other at fin tip are 

required to eliminate the constants C1 and C2 and hence to determine the temperature 

distribution x) in a fin of uniform cross section. 

Usually the temperature at the fin base at x = 0 is known 

T  x  T0 at x = 0 ;  x  0  T0  T 0 

However at the fin tip several different conditions may exist. Three different possible 

conditions are discussed below. 

 
1. Fins with Convection at the Tip: 

Heat transfer by convection between the fin tip and the surrounding fluid is the more realistic 

boundary condition. The mathematical formulation for the problem becomes, 

 

The boundary conditions are, 

 

At, x=0;  x  T0  T  0 

 
 

; At x=L ; 

 

kd x 
dx 

 
 hf   x  0 

where hf is the heat transfer coefficient between the fin tip and the surrounding fluid. 

Using the general solution for the given equation from [7], 

  x  C1 cosh m L  x  C2 sinh m L  x

Applying the boundary conditions 

At x = 0, 

0 = 0  C1 cosh mL  C2 sinh mL 

At x =L;  L  C1 cosh m 0  C2 sinh m 0;  L  C1  T

d 
L  C m sinh m  L  L  C m cosh m  L  L = -C m 

 

dx 
1 2 2 



The second boundary condition becomes, 
 

Substituting the values of C1 and C2 into the equation 

 

The heat flow through the fin in determined by evaluating the conduction heat transfer over 

The fin base using the relation. 

 
 

Long Fin: 

For a sufficiently long fin it can be assumed that the temperature at the fin tip approaches 

the surrounding fluid. 

The mathematical formulation for the problem becomes, 

Hence heat flow rate, 

3. Fins with Negligible Heat loss at the Tip: 

In this case the heat transfer area at the fin tip is small compared to the lateral area of the 

fin. 

Hence loss of heat from the fin tip is negligible and the fin tip is assumed to be insulated. 

The mathematical equation for this problem becomes, 

 



 
4 


Q 

 
 

 

Important note regarding parameter m : 

1. For circular fin: 

P = Perimeter =wD 

m
2  
 

hP 

Ak 
 

h D 

   
D

2
k
 

 

 
4h 

kD 

2. For rectangular fin: 

P = Perimeter = 2 (t + W) 

FIN EFFICIENCY 

 The temperature of the fin surface away from the base goes on decreasing due to 

the thermal resistance of the fin material. 

 For efficient heat transfer the lateral area of the fin at its base is used than that at the 

fin tip. 

 Heat transfer analysis has been performed for a variety of fin geometries and is 

presented in terms of a parameter known as fin efficiency. 

“Efficiency of fin is defined as the ratio of actual heat transfer through fin to the 

ideal heat transfer through fin if entire fin surface were at base temperature of fin”. 

Actual heat transfer ;  = 
 Qa 







 = 
Ideal heat transfer from fin at base temperature To 

 
 i  



The ideal heat transfer is given by, 

Qi = af h o 

af = Surface area of fin 

h = Heat transfer coefficient 



o = To - Ta 

In practical applications a finned heat transfer surface is composed of fin surfaces and the 

un finned portion. Hence total heat transfer is given by, 

Qf = Qa+Qunfinned 

Where a = Total heat transfer area which includes both finned and un finned surface. 

Equation can be written as, 

; ’= Area weighed fin efficiency = þ+1- þ 

a 
   

a 

It can be noted that eventhough the additions of fins on a surface increases the 

surface area for heat transfer, it will also increase the thermal resistance over the portion of 

the surface where the fins are attached. To justify the use of fins, the ratio (Pk / Ah) 

should  be  much  larger  than  unity.  Fig. 19  shows the variation of the fin efficiency with 

 

parameter L 

 

 

Fig. 19(a): Efficiency of axial fins where the fin thickness y varies with the distance x 

from the root of the fin where y = t 

2h 

kt 

f 



EFFECTIVENESS OF FIN 

 The heat changing capacity of an extended surface relative to that of the primary 

surface with no fins is useful in defining the effectiveness of a fin. 

 It is assumed that no contact resistance exists at the fin base in order that the fin 

base temperature and the primary surface temperature may be taken to be the 

same. 

“The effectiveness of fin is defined as the ratio of heat lost with fin to the heat lost 

without fin”. 

   
Heat lost with fin 

Heat lost without fin 
 

 

Value of s should be always greater than 1 if the fin were to be more effective. 

For a fin with convection at the tip equation [1] above becomes, 

ANALYTICAL SOLUTION FOR TRANSIENT HEAT CONDUCTION IN A SLAB 

 There are some instances in which the internal temperature within the solid varies 

with the position instead of being uniform within the solid. 

 For such cases the transient. Temperature charts are not available. 

 Also it is not practical to construct charts for all special variations for initial 

temperature distribution. Hence it is necessary to find the analytical solution for such 

problems. 

 Simple problems involving one-dimensional transient heat conduction in a slab with 

no generation of internal energy can be solved using the method of separation of 

variables. 

 Consider a slab of thickness L confined to the region 0  x  L . 

 

The following assumptions are made to find the temperature distribution. 

 F(x) is the initial temperature distribution which is a prescribed function of position 

within the solid. 

 At t =0, the temperatures at boundary surfaces x = 0 and x = L are suddenly reduced 

to zero and maintained at that temperature for a duration t > 0. 



Mathematical formulation of this problem is, 

2T  x, t   1 T x, t 







in 0 < x < L,t > 0 

x2  t 

The boundary conditions are, 

At x = 0; t >0; T(x, t) = 0 

At x = L; t >0; T(x, t) = 0 

The initial conditions is, T(x, t) = F(x) for t =0, 0 

Method of solution 

 
 
 
 
 x  L 

 The solution for the equations is given by the method of separation of variables. 

 Thus assume that temperature T(x, t) can be represented by the product of two 

functions. 

 

 
Where 

 
 x

T  x, t  =  xt 

is a function of x only and t  is a function of t only. 

 It is easier to solve the ordinary differential equations resulting by splitting the partial 

differential equation of heat conduction 

 By knowing the functions  x and t  separately, the solution for T(x, t) can be 

determined by summing the solutions of these functions. 
 

Fig. 20: Transient heat conduction in a slab -Analytical solution 

2  xt 
 

 1  xt  
2
 1 

i.e.,   
  

x
2
  t x

2 
 t 

 

 
 

where , 1 
= 

2 
 

and  = 
n



N L 
n 

L 



USE OF TRANSIENT TEMPERATURE CHARTS 

 In many cases, the temperature gradient within a solid can not be ignored and hence 

the lumped system analysis doesn't hold good. 

 The analysis of heat conduction problems in which both time and position vary is  

very complicated. 

 However for one dimensional case the distribution of temperature is calculated and 

the results are represented in the form of transient temperature charts. 

 In this section use of transient temperature charts for slab, long, cylinder and sphere 

are discussed. 

 

SLAB  

Consider a slab of thickness 2L between the region 

 
L  x  L .The slab with an 

initial temperature Ti is suddenly exposed to an ambient temperature of Ta with heat transfer 

coefficient h at t=0. The slab is maintained for some time t > 0 as shown in Fig. 21. 

 

Fig. 21: Transient heat conduction in a slab 

 Due to geometrical and thermal symmetry about the x-axis at x = 0, we can consider 

only half portion of the slab. 

 The mathematical formulation is based by considering a slab of thickness L in the 

region 0 < x < L. Thus, 

2t 
 

1 T 
 

x2
  t 

confined to 0 < x < L, for t >0 

Subjected to boundary conditions, 

 
At x = 0; 

T 
 0; At x = L; k 

T 
 hT  hT 

  

 
for t > 0 

x x 



The transient heat conduction problem can be expressed in the form of dimensionless 

equations using non-dimensional parameters. Two of them are, 



L 

1) Fourier Number (Fo) 

 Fourier number is a measure of the rate of heat conduction in comparison with the 

rate of heat storage in a given volume element. 

 Hence larger the Fourier number deeper will be the penetration of heat into solid 

during a given time. 

 
 

Rate of heat conduction across L in volume L
3 

F
o  
= 

Rate of heat storage in volume L
3
 

2) Biot Number (Bi) 

Biot number is the ratio of the heat transfer coefficient to the unit conductance of a solid over 

the characteristic dimension. 

B  
hL 


i 

k
 

h 
 

 

 k 
 
 

= 
Heat transfer coefficient at the solid suiface 

Internal conductance of solid across length L 

 
 = Dimensionless temperature = 

T x,t  T


Ti  T

X = Dimensionless coordinate = x/L 

Bo=Biot number 

Fo = Dimension less time or Fourier number. 

Then equations can be written as, 


2


X 
2
 

 


F0 

 
confined to 0 < X < 1 for F0 > 0 

Subjected to boundary conditions, 

 
At X=0; 

  
 0 for F   0  ;  At X=1 ; 

 
 B  0 for F  0 

  

X 
0 

X 
i 0 

and  = 1 ; for F0  0 in the region 0  X  1 



ASSIGNMENT QUESTIONS 

1. Derive expressions for radial heat transfer and temperature distribution along the 

radius of a hollow cylinder whose inside and outside surfaces are maintained at 

steady state temperatures T1 and T2 respectively and constant thermal conductivity. 

Also obtain expression for overall heat transfer coefficient based on inner radius. 

 
2. Define conduction shape factor and thermal diffusivity. 

 
 

3. Derive an expression for critical thickness of insulation for a hollow sphere and 

explain its significance. 

 
4. Derive an expression for temperature distribution and heat transfer from an extended 

rectangular surface of finite length with end insulated. 

 
5. Differentiate between effectiveness and efficiency of heat transfer of extended 

surface. 

 
6. What is conduction shape factor? Explain. 

 
 

7. Write a note on thermal contact resistance between two surfaces. 

 
 

8. The effectiveness of fin should be greater than unity. Explain. 

 
 

9. Write a note on conduction shape factor. 

 
 

10. Explain the term effectiveness of fin and express the same in terms of Biot number. 

 
 

11. A concrete wall of thickness 12 cm has thermal conductivity 0.8 W/moC. The inside 

surface is exposed to air at 20°C and the outside surface to air at -18°C. The heat 

transfer co-efficient for the inside and outside surfaces are 8 W/m2C and 40 W/m2C 

respectively. Determine the rate of heat loss per square meter of wall surface. 

 
12. A 10 cm OD steam pipe maintained at 130°C is covered with asbestos insulation 3 

cm thick (k =0.1W/mC). The ambient air temperature is 30°C and the heat transfer 

co-efficient for convection at the outer surface of the asbestos insulation is 25 



W/m2C. By using thermal resistance concept calculate the rate of heat loss from the 

pipe per one meter length of pipe. 

 
13. A cylindrical storage tank of radius 0.5 m and length 2.5 m is buried in the earth with 

its axis parallel to the earth's surface. The distance between the earths surface and 

the tank axis is 2m. If the tank's surface is maintained at 70°C and the earth's 

surface is at 20°C, determine the rate of heat loss from the tank. The earth's thermal 

conductivity may be taken as 1.2 W/m C. 

 
14. A 16 cm diameter pipe carrying saturated steam is covered by a layer of lagging of 

thickness 40mm (k = 0.8 W/m C). Later an extra layer of lagging 10 mm thick (k 

= 1.2 W/mC is added. If the sounding temperature remains constant and heat 

transfer coefficient for both the lagging materials is 10 W/m2C, determine the 

percentage change in the rate of heat loss due to extra lagging layers Perimeter of 

fin is 4 cm Surrounding air temperature 30°C 
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RADIATION 

INTRODUCTION 

 If the radiation energy is emitted by bodies because of their temperature it is 

known as thermal radiation. 

 The mechanism of radiation is not a simple phenomenon and several theories are 

proposed to explain the propagation of radiation. 

 According to Maxwell's theory, “Radiation is considered as electromagnetic waves, 

whereas Max Planck's concept treats radiation as photons or quanta of energy. 

However, both accepts are used to predict the emission and propagation of 

radiation”. 

 
PHYSICAL MECHANISM 

Regardless of the type of radiation, it is propagated at the speed of light. This speed is 

equal to the product of the wave length and frequency of radiation. Thus 

C = 

C = Speed of light = 3 × 108m/s 

 = Wave length. 

 =Frequency. 

 

BLACK BODY EMISSIVE POWER 
 
 

 The total emissive power or the emissive power is defined as the total emitted thermal 

radiation leaving a surface, per unit time, per unit area of emitting surface. 

 It is of practical interest to determine the emissive power of a blackbody at an absolute 

temperature T in all directions into hemispherical space. 

 Consider an elemental area dA maintained, at a temperature T as shown in Fig 7.3 (a). 

n = Normal surface of area dA 

0 = Polar angle measured from n 

ĳ= Azimuthal angle 

 The surface is emitting radiation of spectral intensity Ib in all the directions which is 

independent of all directions. 

 Hence the spectral radiation energy emitted by the surface element dA through a solid 

angle dm in any given direction  is given by, 

Energy = Ib T  dAcos d

In the above equation dAcos0 is the projection of dA on a plane normal to the direction 
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Q as per the definition of IbA (T). 
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

Dividing equation by dA, 

Energy 

dA 
= Ib T cos d . 

= Spectral black body radiation energy emitted by a unit area in any direction K and with a 

solid angle dm. 

 

a) Emission of radiation from surface dA b) Solid angle dm in terms of (8,ĳ) 

Fig.1: Black body emissive power 

 

From figure 1(b) differential solid angle dm in terms of polar angle 0 and azimuth angle ĳ is 

given by, 

dA rd  rd  sin  
d     1     sin  d  d 

r 2 r 2 

Spectral blackbody radiation energy=Ib T  cos sin d d , 

 
The spectral blackbody radiation energy emitted in all directions is given by integrating 

equation over 0    2 and 0     
2 . 

2 2 
 

2 

Eb  Ib T   
 0  0 

cos sin d.d  2 Ib T 





 0 

cos sin d

E  2 I T  
 1 

sin2  






2  2 I T  
1 
  I 

 
 

T  W 
b b 

 2 0 

b 
2 

b m2 .m 
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Eb = Spectral blackbody emissive power. 

“Spectral blackbody emissive power is defined as the radiation energy emitted 

by a blackbody at an absolute temperature T per unit area per unit time per unit 

wavelength about  in all directions into the hemispherical space”. 

 
Introducing the value of Ib (T) from Planck's function in equation 

Eb 
 2 hc 2 ; Eb T     

c
1  

 5  exp  hc 
 kT 

  1  5 exp 
c

2  1 

   T 


c1  2 hc 2  3.743  108
 

W m 4
 

m 2 ; c 2  hc 
k
  1.4387  10 4  m.K 

 = wavelength µm. 

Equation is used to compute blackbody emissive power at any given  and T. 

 

Wien's Displacement law 
 
 

 Fig. 2 shows the variation of blackbody emissive power as a function of A at different 

values of T. 

 From the figure it is clear that increasing the temperature, emission of radiation 

increases for a given wavelength and at any given temperature the emitted radiation 

varies with wavelength and reaches a peak. 

 All the peaks tend to shift towards smaller wavelengths as the temperature increases. 

 The locus of these peaks is given by Wien's displacement law. It states that the product 

of maximum wavelength and absolute temperature is a constant and is equal  to 

2897.6 µm.K. 

Thus the displacement of the maximum monochromatic emissive power is given by 

(LT)max=2897.6 

 

“Monochromatic emissive power of a black body is defined as the rate of energy 

emission per unit area at a particular wave length ”. 
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Fig 2. Spectral black body emissive power at different temperatures. 

 
 

LAMBERTSCOSINE LAW 
 
 

 The radiation emanating from a point on a surface is termed diffuse if the intensity Ib (T) 

is constant. 

 Consider a small black body surface dA located arbitrarily at a point in a space and 

emitting radiation in all directions. A blackbody radiation collector through which the 

radiations pass is located at an angle 0 (zenith angle) towards the surface normal (n) 

and the azimuth angle 0 of a spherical coordinate system. 

 The collector subtends a solid angle dm when viewed from a point on the emitter. 

 The intensity of radiation Ib (T) is the energy emitted over all wavelengths in a particular 

direction per unit surface area through a solid angle dm. 

 Again the area is the projected area of the surface on a plane perpendicular to the 

direction K. 

 Depending on the angular position of the collector, the radiation measured by the 

collector varies and the maximum amount of radiation is measured when the collector 

is normal to the emitter. 
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 The maximum intensity of radiation measured normal to the emitter surface at an angle 

0 is given by Lambert's cosine law. 
 

Fig 3: Spatial distribution of radiations emitted from a surface element. 

 
 

“Lambert's cosine law states that the intensity of radiation in a direction & from 

the normal to a black emitter is proportional to the cosine of angle &”. 

Thus mathematically we can write, 

Intensity of radiation along the normal 

Ibn a cos 0; where 0=0 

Intensity of radiation at an angle 0 from the normal, 

I 
bn 

I b

c o s 0 
; 

c os 
I b

 I bn  c os 

When the collector is oriented at an angle 8J from the normal to the emitter then the radiation 

by the collector is 

dEb   1   
 I b 1 .d 1 .dA  Ibn . cos1 .d 1 .dA 

Since the collector could be located at different angular positions, then for a solid angle dm2 

subtended by the collector at the surface of the emitter is given by, 

dEb   2
  Ib 2 .d 2 .dA  Ibn . cos 2 .d 2 .dA 

From equations it is clear that for any surface located at an angle 0 from the normal and 

subtending a solid angle dm at the emitter, 

dEb    Ibn . cos .d .dA 
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

 

2 

c 

c T  



2 0 


4 

4 

From above equation we can notice that the energy radiated out decreases with 

increase in angle 0 and becomes zero at 0 =90˚ . Also maximum energy is radiated out when 0 

=0 i.e., along the normal direction. Thus, for 0 = 0, Ib0 = Ibn 

I b   I b n   

STEFAN-BOLTZMAN LAW 

“Stefan-Boltzman law states that the amount of radiant energy emitted per unit 

time from unit area of black surface is proportional to the fourth power of its absolute 

temperature”. 
E b T    T 

4 

 

o = Stefan-Boltzman constant 

= 5.67×10-8 W/m2K4 

From Planck's law, monochromatic emissive power of a black body is 
 

E b  T  




Hence the radiation energy emitted by a black body at an absolute temperature T over all 

wavelengths per unit time per unit area can be determined by integrating the above equation 

from L =0 to L= œ. 

E b T    
  c

1 d 


  0  5  e x p 
 c 2 

  T 

  1 

c
2      x; = 

c
2 or d= 

 c
2  dx 

T xT  
x2T 



The limit changes as follows: At L =0; x = œ and at L = œ; x=o 

E T   c  
x

5
T 

5
c cT 

4
 

  2 dx    1  

x
3 exp  x   1

1  

dx 

b 1 
 0 c

5 exp  x   1 x2
T 

4 

Eb T  


    1  x 3 exp  x   exp  2 x   exp  3 x   ...... dx  
c 

2 0 

The above integral is of the form 
 

n ! 

 x n 

0 

e x p  a x d x 




a n  1 

 e x p 5 

c 

 
1 

 c 2 

  T  1 


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W 
m2 K 

 T 
5  exp   c 2  T     1 

T 
5 exp   c 2  T   1 

c T 3! 3! 

 

4 
cT  

4 

Substituting the values of c1 and c2 

E T    1     ...... 








4   1  6.48  5.67 108 T4 
4 

b 
c4    1 24

  c4 

2 2 

E T   5.67 
 T  

  T 4
 

b  
100 




A relation can be established between Eb (T) and Ib (T). We have already proved that 

Eb T   I b T 
Integrating the above equation for all wavelength from L=0 to L = œ, we can write 

E T     I T ; I T   
1 
 T 4

 
 

b b b 



BLACK BODY RADIATION FUNCTIONS 
 
 

 Normally a body radiating heat is simultaneously receiving heat in the form of radiation 

from other bodies. 

 If a surface maintained at temperature T1 is completely enclosed by another black 

surface at temperature T2, then the net radiant heat flux is given by, 

Q      T 4    T  4 
1 2 

 

 In numerous applications one is always interested in the amount of energy radiated 

from a blackbody in a certain specified wavelength range. 

 Say from L = 0 to L as a function of total emission from L = 0 to L = œ.This fraction of 

total energy radiated between 0 and L is given by, 

E b  T  
 

c1 
 

But, 
T 5 

 
Dividing above equation by T5 on both sides, 

E b  T  
 

c1 

T 5 

 

Thus the integrals in equation can be expressed in terms of a single variable LT using 

above equation. These results are tabulated by Dunkle. 

To determine the radiant energy emitted between wavelength L1 and L2 is required, then 
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b 

b 

 E b E b 
E T   E 


0   2      

0  1 


b 1   2 
b 0  


E E 

0   


b 0   

E   T 
4 
 Total radiation emitted over all wavelengths 

0




RADIATION PROPERTIES 

When radiant energy strikes a material surface, part of the radiation is reflected, part is 

absorbed, and part is transmitted as shown in Fig 4. 

 

Fig 4: Effects of incident radiation 

If Qi is the incident radiant energy, Qr is energy reflected, Qa is the energy absorbed and Qt is 

the energy transmitted, then 

Q i  Q r  Q a  Q t 

Dividing throughout by Qi, 

1     
Q r

 

Q i 

   
Q a 

Q i 

   
Q t 

Q i 

 

;1 



    

q = Reflectivity or fraction reflected 

a = Absorptivity or fraction absorbed 

T =Transmissivity or fraction transmitted 

 Most of the solid bodies do not transmit thermal radiation and hence their 

transmissivity may be taken as zero. Such bodies are known as opaque bodies. 

For opaque bodies T = 0;q + a = 1 
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 When a radiation strikes a surface, two type of reflection phenomenon are 

observed. Viz, specular reflection and diffuse reflection as shown in Fig 5. 

 
1. Specular reflection 

 
 

 When radiation is incident on a real surface, a fraction of total incident energy is 

reflected by the surface. 

 For a perfectly smooth surface where the roughness of the surface is much smaller 

than the wavelength of radiation, the incident and reflected rays lie symmetric with 

respect to the normal at the point of incidence. 

 This mirror like reflection wherein the angle of incidence is equal to the angle of 

ret1ection, the ret1ection is called as specular reflection. 

 
2. Diffuse reflection 

 
 

 When radiation is incident on a real surface which is rough, the incident radiation is 

scattered in all directions. 

 For such cases an ideal assumption is that the intensity of the reflected radiation is 

constant for all angles of reflection and independent of the direction of the incident 

radiation. 

 Thus, when the incident beam is distributed uniformly in all directions after reflection, 

the reflection is called diffuse reflection. 

Fig 5: (a) Specular reflection (81= 82) (b) Diffuse reflection 
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KIRCHOFF'S LAW 
 
 

 The absorptivity and emissivity of a body can be related by Kirchoff's law of radiation. 

 Consider a perfectly black enclosure which absorbs all the incident radiation falling 

upon it as shown in Fig. 6. 

 This enclosure will emit radiation according to the Stefan-Boltzman law. Let the radiant 

flux arriving at some area in the enclosure be qi W/m2. 

 Suppose if the body is placed inside the enclosure and allowed to reach the equilibrium 

temperature with it. For this to happen there should not be an energy flow into or out of 

the body which would otherwise increase or lower its temperature. 

 For equilibrium, the energy absorbed by the body must be equal to the energy emitted. 

E T  A  qi A 


Fig 6: Kirchoff's law 

When the body is replaced in an enclosure of a blackbody of the same size and shape, the 

enclosure will reach the equilibrium at the same temperature. 

Eb (T) A = qiA × 1; a=1 for a block body 

 E T    T ;  T    T    E T    T 
E b T  E b T 

“But, the ratio of the emissive power of a body to the emissive power of a blackbody is 

known as emissivity”. 

This is known as Kirchoff’s law of radiation. 

“Kirchoff's law states that spectral emissivity for the emission of radiation at 

temperature T is equal to the spectral absorptivity for radiation coming from a 

blackbody at the same temperature T”. 

  T     T 
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GRAY BODY 
 
 

 To simplify the analysis of radiative heat transfer, the radiative properties are assumed 

to be uniform over the entire wavelength spectrum. 

 Thus a gray body is defined as the body having monochromatic emissivity is 

independent of wavelength. 

 The monochromatic emissivity is defined as the ratio of the monochromatic emissive 

power of the body to the monochromatic emissive power of a blackbody at the same 

temperature and wavelength. 

Thus, 

 
 T  

E 

E b 

T 

T 

Now, total emissivity of a body is given by 

 

  E T     E b  d     E b  d 
   0 


    0  

E b T 
 E b  d 
0 

 T 4
 

For a gray body, sL= constant 



   E b  d 
         0 

 

 T 4
 

 

 
CONFIGURATION FACTOR (OR) SHAPE FACTOR (OR) VIEW FACTOR 

 Most of the engineering applications involve radiation exchange between two or more 

surfaces. The radiation exchange among the surfaces is unaffected by the medium 

when the surfaces are separated by a non participating medium like vacuum. 

 Air and other gases also closely approximate this condition. The orientation of the 

surfaces plays an important role in radiation heat exchange. 

 The effects of orientation in the analysis of radiation heat exchange among the 

surfaces are formalized by using the concept of view factor. It is also known as shape 

factor, angle factor, and configuration factor. 

 The view factor may be specular or diffuse view factor. Diffuse view factor is used for 

the surfaces which are diffuse reflectors and diffuse emitters. 
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 Specular view factor is used for the surfaces which are diffuse emitters and specular 

reflectors. 

 The physical significance of the view factor is that it represents the fraction of the 

radiative energy leaving one surface that strikes directly the other surface. 

 
VIEW FACTOR BETWEEN TWO ELEMENTAL SURFACES 

 
 

Consider two elemental surfaces dA1and dA2 as shown in figure 7. 

Let 

r = Distance between the two surfaces. 

01 = Polar angle between the normal N1 to the element dA1 and line r joining dA1 to dA2. 

02 = Polar angle between the normal N2 to the surface element dA2 and the line r. 

dv12 = Solid angle under which an observer at dA1 sees the surface element dA2. 

I1 = Intensity of radiation leaving the surface dA1in all directions in hemispherical space. 

The rate of radiative energy dQ1 leaving dA1 and ultimately striking dA2 is, 

dQ  dA I cos d  ; d  
dA2 cos 2 

 

1 1   1 1 12 12 
r 

2 

Hence equation [1] becomes 

d Q 

d A I cos d A2 cos  2 

 
d A1 dA2 cos  1 cos  2 

  

1 1   1 1 
r 2 r 2

 

 

 

Fig 7: View factor between two elemental surfaces 
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The rate of radiation energy Q1 .leaving the surface element dA1 in all directions over 

hemispherical space is, 


2  2 

Q1  d A1  
  0   01 

I1 co s  1 sin  1 d  1 d 

ĳ =Azimuthal angle. 

For a diffusively reflecting and diffusively emitting surface, the radiation intensity leaving the 

surface is independent of direction. 

Integrating the above equation: 

d A
1 
d F

dA  dA   d A2 d FdA  
 
 dA 

1 2 2 1 

 
 

RADIATION HEAT EXCHANGE BETWEEN TWO INFINITE PARALLEL PLANES 
 
 

Following assumptions are made for the analysis of radiant heat exchange between two 

parallel planes. 

 The distance between the two surfaces is small and the surfaces have equal area such 

that all radiations emitted by one surface fall on the other. The configuration factor of 

both surfaces thus becomes unity. 

 The surfaces are diffuse and are maintained at uniform temperature. The reflective and 

emissive properties are constant over the entire surface. 

 The surfaces are separated by a non absorbing medium such as air. 

The amount of radiant energy leaving surface l/unit time is 

Q  E   1   E  1  
2 
E ......  E  1   E 1 Z  Z2   .. 

1 1  1 2 1 1 2 1  1 1 2 1 

w here Z= 1- 1 1- 2 

From the Stefan-Boltzman law for non-black surfaces, 

E    T 4  and E    T 4
 

1 1 1 2 2 2 

 T 4  T 4  1 

Q  
1 2 = f   T 4  T 4  f   Interchange factor 

 12 1 
 

1 
1 

1 2 

12 1 2 12 1 
 

1 
1 

1 2 
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1 



 

Fig 8: Radiant heat exchange between two non-black parallel surfaces 

 
 

RADIATION SHIELDING 

 Shielding between two surfaces reduces heat transfer significantly only if the shielding 

material is a low emissivity material. 

 Shielding material placed between the two surfaces increases thermal resistance to 

radiation, reducing heat transfer rate. 

 Thermal resistance increases if the emissivity of the material decreases. 

 
 

PARALLEL PLATES 
 
 

Consider two large opaque parallel plates at temperatures T1 and T2 and emissivities s1 

and s2 respectively as shown in Fig 9. The heat transfer due to radiation between the plates 

across an area is given by 

A T 
4 
 T 

4 
Q  

1 2 
 0 

 
1 
 1 

1 
 

2 
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1 2 1 2 





 
 

 

Fig.9: Radiation shielding with corresponding network 

Consider a radiation shield placed between the plates. Let s3, 1 and s3, 2 be the 

emissivities of the shield at the surfaces 1 and 2 respectively. Noting that F1, 3 = F3, 2 =1 for 

large parallel plates, the heat transfer across the system with one shield is given by, 

A T 
4 
 T 

4 Q 
 

; Q  A T 
4  
 T 

4 
1 

1 1   1   1 
1 

 1 1 
 

  

   1 1 


 
3,1 





 

3,2 





   1    11 3,1 3,2 2  1 


2   3,1 


3,2 

For parallel plates containing shields and equal emissivities 

A T 4  T 4 
QN 

1 2 
 

  2 

 N 1 1
 

CONCENTRIC SPHERES AND LONG CYLINDERS 

A  T  4      T  4 
Q  

1 1 1 
 

1 

1  A   1   A   1 1 

 
 

  1    
   




1 

 
   1 




 

1  A 
2      2     A 

3  
 

3 ,1  
3 ,2  
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RADIATION HEATEXCHANGE IN AN ENCLOSURE 

 Radiation heat exchange analysis in an enclosure becomes very much complicated 

especially when the surfaces are not black. 

 This is because radiation leaving a surface may be reflected back and forth several 

times, the absorption being only partial at each reflection. 

 The analysis can be done either by using network method or by using radiosity matrix 

method. 

 The former is used for determining the radiation exchange in simple enclosures, 

whereas the latter is used for determining the radiation exchange having more number 

of zones. 

 In this book only network method is used for the analysis. To make the analysis simple, 

the given enclosure is assumed to have several zones as shown in fig 10. 

The following conditions are assumed to hold good for the zones i =1, 2………N 

Fig 10: Radiation exchange in an enclosure 

Assumptions 

1. Surfaces are diffuse emitters and diffuse reflectors. 

2. Radiative properties w, s and a are uniform and independent of frequency and 

direction. 

3. Surfaces are opaque i.e., T = O. 

4. The radiative heat flux leaving the surface is uniform over the surface of each zone. 

5. The irradiation is uniform over the surface. 

6. The surface of each zone is either at uniform temperature or at uniform heat flux. 

7. The enclosure contains a nonparticipating medium. 

It may be noted that assumptions 4 and 5 are not correct but are useful in simplifying the 

problem. 

Before analysis of the problem it is necessary to develop the concept of surface 

resistance to radiation. The network method was introduced by Oppenheim. 
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ELECTRICAL NETWORK ANALOGY FOR THERMAL RADIATION SYSTEMS 

An electrical network analogy is an alternative approach for analyzing radiation heat 

exchange between gray or black surfaces. In this approach the two terms commonly used are 

irradiation and radiosity. 

 
Irradiation (G): 

It is defined as the total radiation incident upon a surface per unit time per unit area. It 

is expressed in W/m2 

 
Radiosity (J): 

This term is used to indicate the total radiation leaving a surface per unit time per unit 

area. It is also expressed in W/m2. 

The radiosity comprises the original emittance ĳ from the surface plus the reflected portion of 

any radiation incident upon it. 

 

J  E   G   Eb   G 

Eb =emissive power of a perfect black body at the same temperature. 

     1; (  0, the surface being oblique) 

    1;   1

J   Eb  1 G;  =  ; J = Eb  1 G 
 

Fig.11. Irradiation and radiosity. 
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J   E  1   G; G  J   Eb 
 

 

b 1   
The net energy leaving a surface is the difference between its radiosity and irradiation. Thus, 

Qnet 
 
 J  G  J 

 J  Eb
 

J 1    J  Eb  
  Eb  J 




A 1  1   1

Q  
A  Eb  J  


 Eb  J 

net  
 

1  





RADIATION FROM GASES, VAPOURS AND FLAMES 

 The phenomenon of radiation exchange between gases and heat transfer surfaces is 

complex one. 

 This is so because several gases such as H2, O2, N2 etc. present in flames of the 

furnaces are transparent to radiation at low temperatures, whereas other gases like 

CO, CO2, H2O etc., emit and absorb radiation to an appreciable extent. 

 
The radiation from gases differs from that from solids in the following ways: 

1. Gases emit or absorb radiation only between narrow ranges or bands of wavelength 

where as solids radiate at all wavelengths over the entire spectra. 

2. The intensity of radiation as it passes through an absorbing gas decreases with the 

length of passage through the gas volume whereas in case of solids the absorption of 

radiation takes place within a small distance from the surface. 

 

dI x  k .I x .dx 

lLx = Monochromatic intensity at a distance x, and 

kL = A proportionality constant or monochromatic absorption coefficient, depends on the 

state of gas (its temperature and pressure) and the wavelength. 

1  
A
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I e 

 

T T 

net f fw f w f w 

g g 
 

g b 

 

Fig. 12.Monochromatic radiation passing through an absorbing gas. 
 
 

x  L  
dI 

x  L 
I
 


x  0 

  x 
I  x 


x  0 

 k .dx; ln     L   k  .L ; 
I  o 

I L 
 k  . L 

 o 
where I  L  radiation intensity at x = L 

0 . 3 3    T 
 

3 .5  

F o r  C O 2 : E C  O 2
  3 .5  p L   

1 0 0 



 
 T  

3

 F o r H O  : E   3 .5 p  0 .8  L 0 .6    

2 H 2 O  
1 0 0 




Following formula is used to calculate the radiant heat exchange between a gas at a 

temperature Tg and a black surface of finite area A at temperature Tb 

Q   A  4 4 

The following formula is used to compute the net rate of heat transfer from the gas to the 

walls, when inside of the enclosure is not black: 

Q     A  w   T  4   T 4 
g g g b 

The net interchange of energy between a flame and its enclosure is given by: 

Q   A  F   T 4 
 T 4 


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ASSIGNMENT QUESTIONS 
 
 
 

THEORY QUESTIONS 
 

 

1. Define a geometrical or shape factor. 

2. Derive an expression for the shape factor in case of radiation exchange between two 

surfaces. 

3. Derive the following relation for the radiant heat exchange between two gray surfaces, 

using definition of irradiation and radiosity. 

A  T 4  T 4 
Q   1 1 2 

12 n et   1   1  1    A 

 
1     

 
2   

1  

1 F
1  2  2  A 

2 

4. What is a radiation shield? 

5. Write a short note on radiation from gases, vapors and flames. 

 

 

PROBLEMATIC QUESTIONS 
 
 

1. Assuming the sun to radiate as a black body, calculate its temperature from the data 

given below: 

Solar constant =1400Wm2; Radius of the sun = 6.97 x 108m; Distance between the 

sun and the earth=14.96 x 1010m. 

 
2. A small sphere (outside diameter =50 mm) with a surface temperature of 277°C is 

located at the geometric centre of a large sphere (inside diameter =250 mm) with an 

inner surface temperature of 7°C. Calculate how much of emission from the inner 

surface of the large sphere is incident upon the outer surface of the small sphere 

assume that both sides approach black body behavior. What is the net interchange of 

heat between the two spheres? 
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3. A 60 mm thick plate with a circular hole of 30 mm diameter along the thickness is 

maintained at uniform temperature of 277°C. Find the loss of energy to the 

surroundings at 20°C, assuming that the two ends of the hole to be as parallel discs 

and the metallic surfaces and surroundings have black body characteristics. 

 
4. Work out the shape factor of a hemispherical bowl of diameter D with respect to itself. 

Also calculate the radiative heat transfer from the cavity if inside temperature is 773 K 

and its emissivity is 0.6. The diameter of the cavity is 700 mm. 

 
5. A double walled flask may be considered equivalent to two infinite parallel planes. The 

ernissivities of the walls are 0.3 and 0.8 respectively. The space between the walls of 

the flask is evacuated. Find the heat transfer per m2 area when inner and outer surface 

temperatures are 300 K and 260 K. To reduce the heat flow, a shield of polished 

aluminum with s =0.05 is inserted between the walls. Find the reduction in heat 

transfer. 
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CONVECTIVE HEAT TRANSFER 

INTRODUCTION 

 Convection is the mode of heat transfer which involves the motion of the medium that is 

involved. 

 Convection heat transfer requires an energy balance along with the analysis of the fluid 

dynamics of the problems considered. 

 For basic understanding of convection heat transfer, some basic relations of fluid 

dynamics and boundary layer analysis are necessary. This chapter deals the concept of 

convection heat transfer in detail. 

 
FLOW OVER A BODY 

 The heat transfer by convection is strongly influenced by the velocity and temperature 

distribution of the immediate neighborhood of the surface of a body over which a fluid is 

flowing. 

 For simple analysis of heat transfer involving convection, the velocity and temperature 

distribution at the boundary surface can be known by introducing the boundary - layer 

concept. 

 Two different types of boundary layers are considered for this purpose viz., velocity 

boundary layer and thermal boundary layer. 

 
VELOCITY BOUNDARY LAYER 

 Consider a fluid flowing over a flat plate as shown in Figure 1. Let uœ be the velocity of 

the fluid parallel to the plate surface at the leading edge of the plate at x =0. 

 When there is no slip at the wall surface, the fluid moving, along the x direction that is in 

contact with the plate has no velocity. Thus the components of velocity u(x, y) ÷ u 

retards along the x direction. 

 Hence at the plate surface at y = 0 velocity u becomes zero. This retardation effect 

reduces considerably on the fluid moving at a sufficiently higher level (y - direction) and 

at one point the retardation effect is completely negligible. 

 The velocity of the fluid at distance y = ð(x) from the surface of the plate where the axial 

velocity component u is 99 percent of the free stream velocity uœ. 

 The locus of such points where u =0.99 uœ is known as velocity boundary layer ð(x). 

 The flow over the plate results in separation of flow field into two distinct regions. 
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Boundary layer region: 

In this region the velocity gradients and shear stress are large due to the rapid variation of the 

axial velocity component u(x, y) with the distance y from the plate. 

 
Potential flow region: 

In this region the velocity gradient and shear stress are negligible. This region is the region 

outside the boundary layer. 

 

Fig 1: Different boundary layer flow regions on a flat plate 

 
 

Behavior of flow in the boundary layer 

Consider the boundary layer at a distance x from the leading edge of the plate. The flow 

characteristic is governed by Reynolds's number. For a flat plate it is expressed as, 

R e x 
u  x 

 



u   F ree-stream velocity 

x = D istan ce from leadin g edge of plate, 

 = K in em atic viscosity o f flu id 

 Initially, the boundary layer development is laminar but at some critical distance from 

the leading edge of the plate, small disturbances in the flow begin to become amplified 

and a transition process takes place until the flow becomes turbulent. 

 However, this process depends on flow field and fluid properties. For flow along a flat 

plate, the critical Reynolds number at which the transition from laminar to turbulent flow 

takes place is generally taken as, 

R e x  
u 

 
x 




5  10 

5
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 This value is dependent on the surface roughness and the turbulence level of the free 

stream. In the turbulent boundary layer next to the wall, there is a very thin layer called 

viscous sub-layer in which the viscous flow character is retained by the flow. 

 The region adjacent to the viscous sub-layer is known as buffer layer. In this layer exists 

fine-grained turbulence and the mean axial velocity increases rapidly with the distance 

from the wall. The buffer layer is followed by turbulent layer with large scale turbulence. 

 The change in relative velocity with the distance from the wall is very little in this layer. 

Curved body Consider a curved body on the surface of which the fluid flows. 

 For a curved body the x co-ordinate is measured along the curved surface of the body 

starting from the stagnation point as shown in Fig. 2. The y co-ordinate is normal to the 

surface of the body. 

 

Fig.2: Flow along a curved body 

 In the above case, the free stream velocity is not constant but varies with distance along 

the curved surface. The thickness of boundary layer 0(x) increases with distance x 

along the surface. After some distance x, the velocity profile u(x, y) exhibits a point of 

inflection in which a y =0 at the wall surface. 

 This behavior is attributed purely to the curvature of the surface. Beyond this point flow 

reversal takes place and the boundary layer is detached from the surface. Beyond this 

point of flow reversal, boundary layer analysis is not applicable and flow patterns 

become very complicated. 

 
DRAG COEFFICIENT 

Consider a boundary layer having a velocity profile u(x, y). The viscous shear stress 1"x acting 

on the wall at any given position x is given by, 
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




 
 x   

 u x ,y 
 y 

 
 
 

y  0 

Where  = A constant known as viscosity of the fluid. 

However for engineering applications the definition of shear stress given by the above equation 

is not applicable. In practice, it is represented in terms of local drag coefficient, cx as follows. 

 u 2
 

 

 

q = Density of the fluid 

u = Free stream velocity 

 x  c    
x 

2
 

The drag force exerted by the flowing fluid over the flat plate is determined by equating 

equations [1] and [2] as follows, 

c x 
  2  




 u 2
 

 u  x , y 
 y 

y  0 

2 u  x, y 
2 

y 
y  0 

 

 
v = Kinematics viscosity of the fluid 

The mean value of drag coefficient between the range x =0 to x =L is defined as, 

1 
L 

c m  
x  0 

c x dx  

Hence the drag force acting on the plate between x =0 to x =L is given by, 

 u 2
 

 

 
THERMAL BOUNDARY LAYER 

F    w L cm  
   

 

2 

 Thermal boundary layer along the flat plate is associated with the temperature profile in 

the fluid. Consider a fluid at a uniform temperature Tflowing over a flat plate maintained 

at a constant temperature Tw was shown in Fig. 3. 

 Let x and y be the co-ordinate axes along and perpendicular to the plate surface 

respectively. Then, the dimensionless temperature, 

u 


L 
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  x, y  = T x,y   TW 
 

T    TW 

 Where T(x, y) is the local temperature in the fluid. At the wall surface, wall temperature 

and fluid temperature are equal. 0(x, y) = 0 at y = 0 . 

 The fluid temperature remains the same at a distance sufficiently from the wall. 

At (x,y) 1 at y   . Similar to velocity boundary layer, at each location x along 

the plate there exists a location y = t(x) in the fluid where temperature 0(x, y) = 0.99. 

 The locus of such point is known as thermal boundary layer t(x). 
 

 

Fig.3: Thermal boundary layer 

The thermal boundary layer thickness t(x) and the velocity boundary layer thickness (x) 

depend on the Prandtl number of the fluid. 

For fluids such as  gases havin g Prandt l num ber Pr = 1 ,  t  x     x 

Fo r flu ids such as liquid m etals having Prandt l num ber Pr  1, t  x     x 

Fo r flu ids having Prandtl num ber 

HEAT TRANSFER COEFFICIENT 

Pr  1 , t  x     x 

If the temperature distribution T(x, y) in the thermal boundary layer is known, then the 

heat flux from the fluid to the wall is given by, 

T x,y 
q  x  =  k 

 y
 

 

 
y  0 

Where, k = Thermal conductivity of the fluid. 

However for engineering applications the above definition of heat flux is not applicable. In 

practice it is represented by a local heat transfer coefficient h(x). 

q(x) = h(x) (T -Tw ) 
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h  x   k 

 
In terms of dimensionless temperature, 

 T 



T


 y     y  0 

 TW

h  x   k 
   x , y 

 y 

 
 
 

y  0 

The mean heat transfer coefficient hm over the distance x =0 to x =L along the plate surface is 

given as, 

1 
L 

h m   h  x 
0 

d x  

The heat transfer rate Q from the fluid to the wall from x =0 to x =L is given by, 

 
 

FLOW INSIDE A DUCT 

Q  w L h m T   T w 

The flow analysis inside a duct is done by considering the velocity boundary layer and thermal 

boundary layer separately. 

 
VELOCITY BOUNDARY LAYER 

 Consider the flow inside a circular tube as shown in Fig. 4. The velocity of the fluid 

inside the tube is Uo and as the fluid enters the tube, a velocity boundary layer starts to 

develop along the surface of the wall. 

 Due to retardation the velocity of fluid particles at the wall surface becomes zero and in 

order to maintain the continuity of flow, the velocity in the central portion of the tube 

increases. The thickness of the velocity boundary layer ð (z) grows continuously along 

the surface of the tube till it covers the entire tube. 

 The region from the tube inlet a little beyond the point where the boundary layer  

reaches the tube centre is called hydrodynamic entry region. The region beyond this is 

known as hydro dynamically developed region. 

 In the hydrodynamic entry region, the shape of the velocity profile changes in both axial 

and radial direction, whereas in the fully developed region the velocity profile is invariant 

along the length of the tube. Fully developed laminar flow exists in the developed 

region. 

L 
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 4  D 2 


4 

 If the boundary layer changes into turbulent before its thickness reaches the centre, 

then fully developed turbulent flow exists in the developed region. The velocity profile 

becomes flatter in case of a turbulent flow as shown in Fig. 4. 

For flow inside a circular tube, Reynolds number is given by, 

Re 
u m D 

 



The above equation is used as a criterion for change from laminar flow to turbulent flow. 

The turbulent flow is usually observed for Re > 2300. This value is dependent on the surface 

roughness, inlet conditions and the fluctuations in the flow. In general, transition occurs in the 

range 2000 < Re < 4000. 

 
 

Fig. 4: Velocity boundary layer at the inlet of a circular tube 

 
 

PRESSURE GRADIENT AND FRICTION FACTOR 

The pressure drop along a given length of tube is determined by integrating dp/dz over the 

length. Consider a differential volume element of length dz as shown in Fig. 5. Making force 

Pressure force = Shear force on the wall 

 pA    pA   P  z ; 
dp 

  
P 


 

Z Z   Z W 
dz A 

W
 

 
  D 

  w         
D 

w 

 

Where P and A are perimeter and cross-sectional area respectively. The shear stress acting at 

the wall, 
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 u 

 y 

 u 

 r 

m 

 u  u 

2 
w w 



 

Fig. 5: Force acting on a differential volume element 
 
 

      ; r  D 
 y ; 

dp 
  

4 


w 
dz D 

 

In the above equation we need to evaluate the velocity gradient at the wall which is not 

practical. However, pressure drop in engineering applications can be calculated using the 

relation, 

d  p    u  
2
 

  f   m 
 

d  z 2 D 

f = Friction factor 

um= Mean velocity of flow inside the tube 

q = Density of the fluid. 

 

f  
8 




 u 2
 

 

The pressure drop Ap = P1 - P2 over the length of the tube L = Z2 – Z1 is given by, 

p 2 

 dp 
p 

 

  f 
2 Z 2 

  m  

2 D 
Z

 

 

d Z ;  p 
L 

2
 

f   m  

D 2 
1 1 

 

The pumping power required pumping m kg/s of fluid through the pipe is given by 

P=m × Ap 

 u 

 r 

 u 

 r 

W 

W 
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 

THERMAL BOUNDARY LAYER 

Consider a laminar flow inside a circular tube subjected to uniform heat flux at the wall. If r and 

z are radial and axial coordinates respectively, then the dimensionless temperature is given by, 

  r , z   T  r , z   TW   z 




Tm  z   TW  z 

TW  z   T u be w a ll tem p erature 

Tm  z   Bulk m ean fluid tem perature 

T  r , z   L ocal f lu id tem p erature  

At the wall surface 0(r, z) is zero and has some finite value at the tube center. The thermal 

boundary layer thickness ðt (z) grows continuously and completely fills the entire tube. The 

region from the tube inlet to the point where the thermal boundary layer thickness reaches the 

tube centre is known as thermal entry region. In the thermal entry region the shape of the 

temperature profile 0(r, z) changes in both axial and radial direction. The region beyond the 

thermal entry length is known as thermally developed region. In this region the shape of the 

temperature profile remains the same with respect to the distance along the tube. 

For a fully developed thermal region, 

 r   
T r , z   TW 

Tm z  TW 

 z 

 z 

Mathematically it is proved that for sufficiently large values of z, the dimensionless parameter 

0(r) depends only on r, provided either temperature or constant heat flux is maintained at the 

wall. 

 
HEAT TRANSFER COEFFICIENT 

Consider a fluid flowing inside a circular tube of inside radius R. 

Let, r & z = Radial and axial coordinates respectively 

k = Thermal conductivity of fluid 

T(r, z) = Temperature distribution in the fluid 

q (z) = Heat flux from the fluid to the tube wall 

Then, Heat flux, 

q  z    k 
T r , z 

r 

 
 

 
wall 

In engineering applications the above equation is of little interest. A practical approach which 

uses local heat transfer coefficient h (z) is adopted. Hence heat flux is given by, 
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     

m 

q  z   h  z  Tm   z   Tw   z 

Where Tm (z) = Bulk mean temperature 

Tw (z) = Tube wall temperature 

Relation between heat transfer coefficient and T(r, z) can be determined by 

  k T r, z h  z 

Tm  z   TW  z  r  
r  R at wall 

For a circular tube of radius R, the bulk mean temperature Tm (z) and the wall temperature 

Tw (z) are given by, 

R R 

 u r T r, z  2 rdr  u r T r, z  2 rdr 
T   z   0  0 ;T  z   T r, z 

m R 

 u r  2 rdr 
0 

u  R
2 W

 
r  R at wall 

Writing above equation in terms of dimensionless temperature 

 r , z 
h  z    k 

r
 
 

 
r  R at wall 

For a fully developed thermal region, 0(r) is independent of z and hence, 

h  z    k  r  ; r  T r , z   TW  z 


r  R at wall 
Tm  z   TW  z 

For a thermally developed region for constant temperature or heat flux at the wall, the heat 

transfer region doesn't vary with distance along the tube. 

 
DIMENSIONLESS PARAMETERS 

1. Reynolds number 

“Reynolds number is defined as the ratio of inertia force to viscous force. When 

the Reynolds number is small the viscous forces are dominant, whereas when Reynolds 

number is large, the inertia forces are more dominant”. 

u L u 2 

 L Inertia force 
 Re   

  u L2
 Viscous force 

Reynolds number is used to determine the change from laminar to turbulent flow as higher 

Inertia forces result in small disturbances which amplify causing transition. 

r 
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2. Prandtl number 

“Prandtl number is defined as the ratio of molecular diffusivity of momentum to 

the molecular diffusivity of heat. It represents the momentum and energy transport by 

the diffusion process”. 

p  
cp   

      
 
 

 Molecular diffusivity of momentum 

 
 

r 
k k   cp   Molecular diffusivity of heat 

p r  1 

p r  1 

p r  1 

for gases 

for o ils 

fo r liquid m etals 

The development of velocity and thermal boundary layers for flow along a flat plate and their 

magnitudes depend on the magnitude of Prandtl number. 

 
3. Nusselt Number 

“Nusselt number is defined as the ratio of heat transfer by convection to 

conduction across the fluid layer of thickness L”. 

A larger value of Nusselt number means heat transfer by convection is more. 

Nu 
hL 




k 
hT 

 k T   
Convection  heat transfer 

 Conduction heat transfer 
 

L 


 

If Nu ÷ 1 then heat is transferred purely by conduction. 

 
 

4. Stanton Number 

“Stanton number is defined as the ratio of heat flux to the fluid to the heat 

transfer capacity of the fluid flow”. 

St 
h 

 cpum 

 
hT 

 cpum T 
 

Heat flux to the fluid 

Heat transfer capacity of the fluid 
 
 

5. Graetz Number 

“Graetz number is defined as the ratio of the heat capacity of the fluid flowing 

through the pipe per unit length of the pipe to the conductivity of the pipe”. 

It is significant only in heat flow to the fluid flowing through circular pipes. If D and L are 

diameter and length of the pipe respective] then 
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mc p 

 
D 

2 
 u 

c 
p
 

 
  

Gr    L  
L 

k 

 4 L     
 D 

k 4 L 
R e .Pr  

 
 

6. Grashoff Number 

“Grashoff number is defined as the ratio of product of inertia force and buoyance 

force to the square of viscous force”. 

Inertia force  Buoyance force  2  g TL3
 

Gr 
Viscous force 

2

 

 
 

2
 

Where V is the velocity of the fluid caused by buoyancy force (þgAT) 

 
 

BUCKINGHAM w- THEOREM 

Buckingham w -theorem states that “If there are n variables in a dimensionally 

homogeneous equation and if these variables contain m primary dimensions, then the 

variables can be group into (n-m) non dimensional parameters". The non-dimensional 

groups are called w –terms. 

Let, x1, x2,x3…….xn be the physical variables in which x1 is the dependent variable and the rest 

are independent variables on which x1 depends, Expressing mathematically, 

x1  f  x2 , x3 ....... xn  rearranging the equation : f1  x2 , x3 ............ n   0 

The above equation is dimensionally homogeneous and it can be represented in terms of 

dimensionless w-term containing w- variables and m fundamental dimensions. 

f1  1 , 2 , 3 ...... n  m   0 

In the above equation, 

 Each w-term is dimensionless and is independent of the system. 

 N-term will not change even by dividing or multiplying it by a constant, 

 Each w-term contains m+ 1 variables and m fundamental dimensions known as 

repeating variables. 

Let x1, x2, x3 be the repeating variables with m =3. Then we can represent each w-term as 

  x a1 . x b1 . x c1 . x 
1 1 2 3 4 

   x 
a 2  . x 

b 2  . x 
c 2  . x 

2 1 2 3 5 

  x a n  m . x bn  m . x 
c n  m . x 

n  m 1 2 3 n 
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Each one of the above equations is solved by the principle of dimensional homogeneity. The 

values of a1, b1, c1 etc. thus obtained are substituted in the equation. All the w-values thus 

obtained are substituted in above equation. Finally anyone of the w-term is expressed as a 

function of others. 

 1     2 , 3 ...... n  m 

 2     1 , 3 ...... n  m 

FORCED CONVECTION 

If the heat transfer by convection is assisted by some external means it is known as 

force convection. The dimensional analysis for forced convection is correlated by 

N u   R e , P r 

The different variables specifying the system behavior is shown in Fig 6, which represents 

forced convection of fluid flow over a flat plate. 

 
Fig 6: Dimensional analysis variables for forced convection 

 

As we know Nu 
hL 

; Re 
k 

 LV 





; Pr 
 cp  

 

 

k 

Heat transfer coefficient h can be represented as 

h  f  , L,V , , cp , k  or f h, , L,V , , cp , k   0 

In the above equation 

Number of variables= n = 7 



15  

1 

2 

Fundamental dimension=m=4 

Number of w– terms = n – m = 7 – 4 = 3 

  f   1 ,  2 ,  3    0 

Considering equation [1], one can notice that µ, k, L and V form non dimensional groups all four 

fundamental dimensions M,L,T and 0 are present. 

 
First w–term 

   
a1   k 

b1    L 
c1   V 

d1    



 M 0 L0T 0 0

 

i.e., M L1T 1 
a1   M LT 3 1 

b1   

 L 
c1   LT  1 

d1

 

Comparing the powers of M, L, T and e we have, 

M L3  M 0 L0T 0 0
 

M : 

L :  a 1 


b1 

a 1  

c1  

b1  1  0 

d 1  3  0 

T : 

 : 

a 1  3 b1  d 1  0 

 b1  0 

Solving the above equations, 

a1 = -1; b1 = 0, c1 = 1, d1 = 1 

Substituting in above equation, 

 

 1 






 1 .k 0 .L1 .V 1 . 





 LV  
 

 



Second w-term 

   
a2   k 

b2    L 
c2   V 

d2   c  M 0 L0T 0 0
 

i.e., ML1T 1 
a2   MLT 3 1 

b2   

 L 
c2   LT 1 

d 2

 

Comparing the powers of M, L, T and 0 on both sides, 
 

M : a 
2 
 b

2 
 0 

L :  a 2  b 2  c 2  d 2  2  0 

T :  a 2  3 b2  d 2  2  0 

 :  b
2 
 1  0 

Solving the above equations, 

a2=+1; b2= -1, C2=0, d2=0 

L2T 2 1  M 0 L0T 0 0 

p 
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p 

3 

Substituting in above equation 

 

 2 


 1 .k  1 .L0 .V 

 

0 .c 


 c p 

 
 

k 
 
 

Third w-term: 

   
a3   k 

b3    L 
c3   V 

d 3
 h  M 

0 
L

0
T 

0
 

0
 

i.e., ML 1T 1 
a2   MLT 3 1 

b2   

 L 
c2   LT 1 

d 2
 

Comparing the powers of M, L, T and e on both sides, 

MT 3 1  M 0 L0T 0 0
 

 

M : a 3  b3  1  0 

L :  a 3 

T :  a 3 

 b 3 

 3 b 3 

 c 3  d 3  0 

 d 3  3  0 

 :  b 3  1  0 
 

 

Fig. 7: Dimensional analysis variables in free convection 

Using Buckingham w-theorem, 

h  f  ,  , k , c p ,  g  T , L , h  = 0 
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According to Buckingham 1t theorem, 

  
hL 

 
 

  g T  2 L3
 .cp 


3 f  1 , 2 ; k 
  f  

 
2

 , 
k 

 ; Nu 
f Gr , Pr    Gr , Pr 

 

In practice the above equation is represented as, 

Nu C onstant G r 
a
 P r 

b
 

 

 

VARIOUS CORRELATIONS USED IN FORCED CONVECTION HEAT TRANSFER 

For forced convection heat transfer the following dimensionless numbers are extensively used. 

 
N u s s e l t N u m b e r N  u  

h L
 

k 

R   e  y  n  o ld  s N   u  m   b e r R  e 


P  r a  n  d  t l   N   u  m   b e r P  r 

 L V 
 

 



 c p 
 

 

k 
 

S  t a  n  t o n N   u  m   b e r S t = 
h 

 

 

 c p V 

In order to determine the value of convection heat transfer coefficient h, generalized basic 

relations are used. 

Nu  f Re. Pr  constant Rem . Prn  ; St  Re. Pr   constant Re
a  

Pr 
b

 

 

 

FLOW OVER A FLAT PLATE 

Flow over flat plate remains laminar until the Reynolds number reaches the critical 

value. After this the transition begins. The correlations for the drag coefficient in the laminar  

and turbulent flow regimes are different. 

 
LAMINAR BOUNDARY LAYER 

Consider a two dimensional steady flow of an incompressible, constant property fluid 

along flat plate as shown in Fig 8. Let u (x, y) and v (x, y) be the velocity components in x and y 

direction. Let ð(x) is the thickness of the velocity boundary layer having a free stream velocity 

uœ. 
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Rex 
2

 

1 

Re x 
2

 

1 



x 



 

Fig 8: Forced laminar flow along a flat plate 

The continuity & momentum equation for the given boundary layer is written as; 

Continuity : 
u

 
x 

 
v 

 0; Momentum : u 
u

 
y x 

 
v 
v 

y 

 2 u 
v 
y 2

 

Subject to the boundary conditions: 

At  y  = 0 ; u  = 0 ; v = 0 

A t y = 

The local drag coefficient is given by, 

x ; u  u 








1. Drag coefficient 

 

c x 
2 v  u  x , y 

2  y 

 



y  0 

0.646  

Re  

The exact value of the local drag coefficient is given by, 

c  
0.664 

exact 


for Re  5 105
 

 

The average drag coefficient cm, over the length x = 0 to x = L is given by, 

cm 
1 

 
 

L 
x  0 

c x dx 
1 .328  

exact 



2. Boundary layer thickness 

The exact solution of velocity boundary layer thickness is given by 

  x  
4.96 x 

exact 


for Re  5 10
5
 

1 
2 

x 

Re L 
2

 

1 

u 



L 
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1 

1 1 

 c 

The turbulent boundary layer, thickness is given by, 

 t  x  
4 .53 x 

 

3. Drag Force 

The drag force acting on the plate over the length x =0 to x =L and width w is given by, 

  u 2 

F    w L c m   
   

 

2 

4. Local Heat transfer coefficient 

The local heat transfer coefficient for flow over a flat plate with constant wall 

temperature is given by (Liquid Metal Fluid) 

Nu  
 hL 




 0.564 Pe 2 exact  for Pr  1; where Pe  Local Peclet number 
x   

k  
 x 

 x  

Pe    Re  Pr  
u x 

.2; for Pr  1 
 

x x 





For flow over a flat plate for an ordinary fluid with constant wall temperature, 
1 1 

Nux  0.332 Pr 3 Re x 
2 exact 

Nux  0.339 Pr 3 Re x 
2 exact 



for Rex  5 105 , Pr  1 
 
 

FLOW ACROSS A SINGLE CIRCULAR CYLINDER 

 Because of the complexity of the flow patterns around the cylinder, determination of 

drag and heat transfer coefficients is a very complicated matter. Consider a fluid flowing 

around a circular cylinder of diameter D with a free stream velocity. 

 The flow patterns at various Reynolds numbers are as shown in Fig 9. 

 For Reynolds number lesser than 4, the flow remains unseperated and for Reynolds 

number more than 4, the vortices developing in the wake region make the velocity and 

temperature distribution analysis more complicated. 

1. Drag coefficient 

If F is the drag force acting on cylinder of diameter D and length L, then the drag coefficient 

CD is given by, 

F   u 2
 

   

L D 
D 

2 

R e x 
2 Pr  

1 1 
3 
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1 
2 

2 
3 

5 
8 



 

Fig. 9: Flow around a circular cylinder for different Reynolds numbers 

 
 

2. Heat transfer coefficient 

The average heat transfer coefficient hm for the flow of gases or liquids across a single cylinder 

is given by, 

Num  
hm D 

k 
 0 .4 R e 0 .5   0 .0 6 R e 

   

  
W 

 
0 .25 




In the above equation all physical properties are evaluated at the free-stream temperature 

except for µW which is determined at wall temperature. This equation agrees with the 

experimental data within ± 25% in the range. 

40  R e  10 5 ; 0 .6 7  P r  300 ; 0 .25   
 




 W 

 5 .2 

A more elaborate but general correlation given by Churchill et. al. for the average heat transfer 

coefficient for flow across a single cylinder is given by, 

 
Nu  0 .3  0 .6 2 Re P r 1  


 Re  




m 1  
  0 .4   4 


  282 , 000  




1   Pr 
 



   

2 
3 

1 
3 

4 
5 

P r 0 .4
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FLOW ACROSS TUBE BUNDLES 

 The design of heat exchanger and other industrial heat transfer equipments need the 

idea of heat transfer and pressure drop characteristics of tube bundles. 

 The tube bundles used may be either in-line or staggered as shown in Fig 10. The 

geometry of the tube bundles comprises of defining transverse pitch PT and longitudinal 

pitch PL between the two centers. 

 For staggered arrangement a diagonal pitch PD represents the centers of tubes in the 

diagonal row. The Reynolds number for tube bundles is based on the flow velocity 

corresponding to minimum free flow area available for flow. 

 This minimum flow area may occur in a transverse row or in a diagonal row. 

If G max   u max  Mass flow rate per unit area 

u 
max 

 Maximum flow velocity 

D  Outside diameter of the tube 

Reynolds number is given by, 

Re  
DG

max 



In the above equation umax is measured based on the minimum free flow area available for fluid 

flow. 

 

Fig 10: (a) In-line arrangement 
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 p T D   1 

 p T D 

 

Fig 10: (b) Flow across tube bundles. 

 
 

 
In-line Arrangement 

For in-line arrangement, if uœ is the flow velocity in the heat exchanger before the fluid enters 

the tube banks, 

u m ax   u 
p T 

p T  D 
 u 

Where, (PT- D) =Minimum free flow area between the adjacent tubes in a transverse row per 

unit length of tube. 

 
Staggered Arrangement 

For, staggered arrangement, 

 
u 

ma x  

 
 u 

pT 

2  p D  D 

1 

2 
u 

 pT D 

 p D D   1 

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1 

A 

Where (PD - D) =Minimum free flow area that may occur between the adjacent tubes either in a 

transverse row or in a diagonal row per unit length of tube. 

The flow patterns through tube bundles are very complicated and hence experimental 

analysis is the only approach to predict the heat transfer and pressure drop. Some of the 

correlations are given below. 

 
Heat transfer coefficient 

 
 

1. For flow across tube bundles having 10 or more transverse rows in direction of flow, 
hm D 

 n 3 
 

k 
1.13co Re  Pr ; 

for 2000  Re  40, 000; Pr  0.7, N  10 
 

Re  DG m ax  
D   M 



 

2. Pressure Drop 

 
 m in   

Pressure drop for flow of gases over a bank of tubes may be calculated, by the following 

expression. 

2 f 1G 2 N   
0.14 

p    max T 

 W 



   
b 

FLOW THROUGH CIRCULAR TUBES 

A) LAMINAR FLOW 

Most of the engineering equations involve steady state heat transfer and pressure drop in 

laminar forced convection inside circular tube regions away from the tube inlet where velocity 

and temperature profiles are fully developed. Hence the knowledge of friction factor and the 

heat transfer coefficient are essential to know the distributions of velocity and temperature. 

 
1. a) Friction factor 

The friction factor f for laminar flow inside a circular tube in the hydro dynamically developed 

region is given by, 

f  
64 

 u m D 
 

64  

R e  

um = Mean flow velocity = ½ velocity at tube axis (uo) 

D = Inside radius of the tube 
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FREE CONVECTION 
 
 

 When a hot plate is placed in a body of a fluid at rest and maintained at a uniform 

temperature lower than that of the plate, heat transfer takes place first by conduction, 

establishing a temperature gradient. 

 The variation in temperature results in varied density which in a gravitational field will 

give rise to convective motion as a result of buoyancy forces. Fig 11 shows the 

development of boundary layer field in front of a hot vertical plate and cold vertical plate. 

 In both the cases, the velocity boundary layer is developed. The peak velocity occurs 

somewhere within the boundary layer and the velocity is zero at both the plate surface 

and the edge of the boundary layer. In the region near the leading edge of the plate, the 

boundary layer development is laminar but becomes turbulent at a certain distance from 

the leading edge of the plate. 

 Consider a fluid flowing between two parallel plates as shown in Fig 11. If the lower 

plate is better than the upper plate, a temperature gradient in the vertical direction is 

established. Due to the higher density of the fluid at the cold wall surface, the top layer 

is heavy. 

 When the difference in temperature is increased beyond a certain critical value, the 

buoyancy forces override the viscous forces giving rise to convective motion. 

 However, if the top plate is hotter, no natural convection currents are setup as the fluid 

is stable due to lighter top layer. 

 The problem of energy transfer by natural convection arises in many engineering 

applications such as a hot steam radiator for heating a room, refrigeration coils, electric 

transformers, transmission lines etc. 
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Fig. 4-15: Free convection on a Vertical plate 

 
 

FREE CONVECTION CORRELATIONS 

In this section different correlations used in determining free convection heat transfer are 

 
 

VERTICAL PLATE 

1. Uniform Wall Temperature 

For constant wall temperature McAdams correlated the average Nusselt number with following 

expression. 

Nu  c Gr  . Pr 
n   
 cRa n ; 

m L L 

where L=The vertical height of the plate; Gr 

 

 Grashoff number 

 
Gr = 

 gL3 T 

 2 

 T 

N u m  N usselt num ber 
hm L 

k 
; R a L  G rL 

 

.Pr  

W 
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x x x 

2 

2. Uniform Wall Heat Flux 

The following correlations are proposed for the local Nusselt number under uniform wall heat 

flux. 

For laminar flow 

N u   0 .60 G r * . Pr 
1

5    for  10 5    G r *  Pr  1011
 

x x x 

 

For turbulent flow 

Nu  0.568 Gr *. Pr 
0.22

 for 2  1013
  Gr * Pr  1016

 

 g T  T  x3 
q  x  gq x

4
 

Gr*  Modified Grashof number = Gr Nu  W  W W  

x x x 
 TW   T  k

2 

 

 

VERTICAL CYLINDER 

If the thickness of the thermal boundary layer is much smaller than the cylinder radius, then the 

average Nusselt number for free convection on a vertical cylinder is same as that of a vertical 

plate. 

Hence McAdams correlation holds well here also i.e. 

N u   c G r Pr 
n   
  c R a 

n
 

m L L 

For fluids having Prandtl number equal to 0.7 and greater than 0.7, the vertical cylinder may be 

treated as a vertical flat plate when 

 0.025 where D is the cylinder diameter 
 

 
When the vertical cylinder is subjected to uniform wall heat flux, the local Nusselt numbers are 

given by the same empirical relations used for a vertical plate. 

 
HORIZONTAL CYLINDER 

For an isothermal horizontal cylinder, Churchill and Chu have proposed the following relation, 
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BOILING AND CONDENSATION 

 
INTRODUCTION 

 Boilers and condensers which are used as heat exchangers posses unique 

characteristics of heat transfer mechanism on the condensing and boiling side. 

 When a vapour strikes a surface maintained at a temperature below the 

corresponding saturation temperature the vapour will immediately condense into 

the liquid phase. 

 The process of condensation may take place into two different types. 

 
 

1. Film wise condensation 

If the condensation takes place continuously over the surface and the surface is 

kept cooled by some means the condensed liquid is removed from motion resulting from 

gravity, then the condensing surface is covered by means of a thin layer of liquid. This 

process is known as film wise condensation. 

 
2. Drop wise condensation 

 If the traces of oil are present during the condensation of steam on a highly 

polished surface, the film of condensate formed is broken into droplets. This 

process is known as drop wise condensation. 

 The rate of heat transfer in case of drop wise condensation is more as it offers 

much less resistance to heat flow on the vapour side than the film wise 

condensation. If the vapour contains some non condensable gas, this gas will 

collect on the condensing side and acts as resistance to heat flow on the 

condensing side. 

 When a liquid is in contact with a surface that is maintained at a temperature above 

the saturation temperature of the liquid, boiling will occur. 

 The boiling phenomenon is very complicated as it involves a large number of 

variables and complex hydrodynamic developments. 

 
NUSSELT THEORY OF FILM CONDENSATION ON VERTICAL SURFACES 

 

 
 Vapour condensation is the most commonly observed phenomenon in many 

engineering applications like steam condensation in condensers etc. 

 When a liquid wets a surface, condensation occurs in the form of a smooth film, 

which flows down the surface by gravitational force. The liquid film thus formed 

offers resistance to heat flow reducing rate of heat transfer. 
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 Numerous experimental and theoretical investigations have been conducted to 

determine the heat transfer coefficients during film wise condensation of pure 

vapour over surfaces. 
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 Consider the condensation of a vapour on a vertical plane surface as shown in Fig. 

1 Let x is the axial coordinate which is measured in the downward direction along 

the plate and y is the coordinate normal to the condensing surface. 

Fig.1: Film wise condensation on a vertical plane surface 
 

Considering the force acting on a volume element we can equate the force acting upward 

to the buoyancy force acting downward. 

 

Where  ÷  (x) is the thickness of the condensate at x 

µ ÷ Viscosity and subscripts l and v refer to liquid and vapour phases. 

 
 

At the wall surface liquid velocity is zero. u = 0 and y = 0 

Integrating the equation subject to boundary condition 
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The mass flow rate / unit width of plate at any point x, is 

Differentiating equation w.r.to , 

 

The heat rate dQ during condensation of dm is 
 

kl = Thermal conductivity of liquid 

Tv = Vapour saturation temperature 

Tw =Wall surface temperature. 

Substituting equations 
 

 

 

Integrating equation [0] with condition ð=0 for x =0, thickness of the condensate layer as a 

function of position x is given by 

If hx is the local heat transfer coefficient, then we can equate heat convected to heat 

conducted. 
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Local Nusselt's number, 

As the local heat transfer coefficient hx varies with the distance x, the average heat transfer 

coefficient is given by, 

 
 

 

Where the physical properties are evaluated at the film temperature,  
 

Condensation on Inclined surfaces 

For an inclined surface having an inclination 0 with the horizontal, the local heat 

transfer coefficient is given by, 

 
 

Fig. 2: Condensation on inclined surfaces 
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Condensation on a Horizontal tube 

According to Nusselt's analysis for laminar film wise condensation on a horizontal 

tube surface, average heat transfer coefficient is given by, 

 
 

Where L and D are length of vertical surface and diameter of horizontal tube respectively.  

 
 

Condensation on Horizontal Tube Banks 

In the horizontal tube banks arranged in vertical tiers as shown in Fig 3, the condensate 

from one tube drains onto the tube just below it. Assuming smooth flow of drainage from 

one tube to the there, for a vertical tier of N tubes each of diameter D, the average heat 

transfer coefficient is given by 

 
 

Fig. 3: Condensation on horizontal tube banks 
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REYNOLDS NUMBER FOR CONDENSATE FLOW 

 Even though the chances of transition from laminar to turbulent flow in case of a 

single horizontal tube are very less, turbulence may start at the lower portions of a 

vertical tube. 

 Due to turbulence, the average heat transfer coefficient increases. Hence the 

Reynolds number for condensate flow for transition from laminar to turbulent flow is 

to be defined. 

If um = Average velocity of condensate film 

Dh = Hydraulic diameter for condensate flow, 
 

 

If m is the mass flow rate of the condensate, then Reynolds number at the lowest part of 

the condensing surface is expressed as 

 
 

Experimentally it is shown that the transition occurs at Re of about 1800. 

 
 

CORRELATIONS USED IN FILM WISE CONDENSATION 

LAMINAR FLOW 

Vertical surface 

McAdams equation for determining the average heat transfer coefficient is as follows.  
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On rearranging the above equation, 

For Re < 1800 
 

 
Horizontal Tube 

For a single horizontal tube, average heat transfer coefficient is given by,  

TURBULENT FLOW 

Kirk bride proposed the following empirical correlation for film condensation on a vertical 

plate after the start of turbulence 

 

All the physical properties are evaluated at film temperature in all the above equations.  

 
 

FILM CONDENSATION INSIDE HORIZONTAL TUBES 

It is practically noticed that the vapour condensing inside horizontal tubes of 

condensers of refrigeration and air conditioning system have significant velocity. Chato has 

recommended the following correlation at low vapour velocities inside horizontal tubes 

 
 

This equation holds good for inlet conditions and inside diameter D of the tube.  

 

Akers, Dean's et.al. have recommended the following correlation at higher flow rates. 

For Rev> 20,000 Rei > 5000 

ml and mv are the mass flow rate of liquid and vapour respectively. 
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DIFFERENT REGIMES OF BOILING MECHANISM 
 

 
 When a liquid is in contact with a surface maintained at a temperature above the 

saturation temperature of the liquid, boiling occurs. 

 The mechanism of heat transfer in boiling systems is better understood by 

considering pool boiling. Fig 4 shows the characteristics of pool boiling for water at 

atmospheric pressure. The boiling curve illustrates the variation of heat transfer 

coefficient as a function of temperature difference between wire and water 

saturation temperatures. 

 Three different regimes can be explained from the curve by immersing an electric 

resistance wire into a body of saturated water and initiating boiling on the surface of 

the wire by passing current through it. 

 
1. Free convection regime 

 In this regime, the energy transfer from the heater surface to the saturated liquid 

takes place by free convection. 

 Even though the surface is only a few degrees above the liquid saturation 

temperature, free convection currents produced in the liquid are sufficient enough to 

remove heat from the surface. 

 As heat transfer takes place by free convection we can use all the correlations for 

free Convection in the form. 

 

Hence heat flux in this regime 

 
 

2. Nucleate boiling regime 

 In this regime bubbles are formed on the surface of the heater. This regime can be 

separated into two distinct regions. 

 In the region II, bubbles start to form on heater surfaces at specific point and as 

soon as they detach from the surface they are dissipated in the liquid. 

 In the region III, the rate of generation of bubbles at numerous nucleation sites 

result in the Formation of continuous columns of vapour and high heat fluxes. 

 Due to large heat fluxes obtainable with small temperature differences, the nucleate 

boiling regime is most desirable. 
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Fig 4: Pool boiling regimes 

In the nucleate boiling regime heat flux increases rapidly until a peak value. This location is 

known as burnout point or departure from nucleate boiling (DNB), or the critical heat flux 

(CHF). Beyond this point a large temperature difference is needed to realize the resulting 

heat flux. This high temperature difference may burn or melt the heating element. The 

following empirical relation is used to correlate the heat flux in the entire nucleate as Boiling 

regime. 
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Zuber and Tribus have given the following empirical relation used to determine the 

maximum or peak or critical heat flux. 

 

3. Film boiling regime 

 From the figure 4 it is evident that after reaching the critical value the heat flux 

reduces. This is due to the formation of mm of vapour which covers the heating 

element. The film boiling regime can be separated into three more regions. 

 The region IV is unstable film boiling region, where the unstable vapour film 

collapses and reforms due to convective currents & surface tension. 

 As the average wetted area of the heater surface decreases the heat flux 

decreases due to increased surface temperature. The region V is stable film boiling 

region in which heat flux drops to a minimum due to continuous formation of vapour 

film on the heater surface. 

 In the region VI the high surface temperature of the heater gives way to thermal 

radiation effect and hence the heat flux begins to increase. 

The average heat transfer coefficient ho for stable film boiling on the outside of a horizontal 

tube or cylinder in the absence of radiation is given by, 
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In the presence of radiation, the average heat transfer coefficient is given by, 

 

Where ho = Heat transfer coefficient without the radiation effects. 

hr =Radiation heat transfer coefficient. 
 
 

Where 

a =Absorptivity of liquid 

s =Emissivity of hot tube 

o =Stefan - Boltzman constant 

 

HEAT EXCHANGERS 
 
 

INTRODUCTION 

 The devices that are used to facilitate heat transfer between two or more fluids at 

different temperatures are known as heat exchangers. 

 Different types and sizes of heat exchangers are used in steam power plants, 

chemical processing units, building heating and air conditioning, house hold 

refrigerators, car radiators, radiators for space vehicles etc. 

 This chapter deals with classification of heat exchangers, the overall heat transfer 

coefficient, LMTD, NTU method and Effectiveness of heat exchangers. 

CLASSIFICATION OF HEAT EXCHANGERS 

Heat exchangers are broadly classified based on the following considerations.  

1. Classification based on Transfer Process 

Based on heat transfer process heat exchangers are classified as direct contact and 

indirect contact 
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a) Direct contact 

In direct contact heat exchangers, heat transfer takes place between two immiscible fluids 

like a gas and a liquid coming into direct contact. 

e.g.: Cooling towers, jet condensers for water vapour, and other vapors utilizing water 

spray. 

 
b) Indirect contact 

In indirect - contact type of heat exchangers the hot and cold fluids are separated by an 

impervious surface. There is no mixing of the two fluids and these heat exchangers are 

also known as surface heat exchangers. 

e.g: Automobile radiators. 

 
 

2. Classification based on Compactness 

The ratio of the heat transfer surface area on one side of the heat exchanger to the volume 

is used as a measure of compactness. The heat exchanger having a surface area density 

on anyone side greater than about 700 m2/m3 is known as a compact heat exchanger. 

e.g.: Automobile radiators (1100 m2/m3),Gas turbine engines (6600 m2/m3), 

Human lungs (20,000 m2/m3) 

 

3. Classification based on type of construction 

Based on the type of construction heat exchangers are classif ied as follows. 

 
 

a) Tubular heat exchangers 

 Tubular heat exchangers are available in many sizes, flow arrangements and types. 

They can withstand a wide range of operating pressures and temperatures. 

 A commonly used design is shell-and-tube heat exchanger which consists of round 

tubes mounted on cylindrical shells with their axes parallel to that of the shell. 

 The combination of fluids may be liquid-to-liquid, liquid-to -gas or gas-to-gas. 

 
 

b) Plate heat exchangers 

 In these types thin plates are used to affect heat transfer. The plates may be either 

smooth or corrugated. 

 These heat exchangers are suitable only for moderate temperature or pressure as 

the plate geometry restricts the use of high pressure and temperature differentials. 

 The compactness factor for plate exchangers ranges from 120 to 230 m2/m3. 
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c) Plate fin heat exchangers 

 These heat exchangers use louvered or corrugated fins separated by flat plates. 

Fins can be arranged on each side of the plate to get cross-flow, counter-flow or 

parallel-flow arrangements. 

 These heat exchangers are used for gas-to-gas applications at low pressures (10 

atm.) and temperatures not exceeding 800°C. 

 They also find use in cryogenic applications. The compactness factor for these heat 

exchangers is upto 6000 m2/m3. 

 
d) Tube-fin heat exchangers 

 Such heat exchanges are used when a high operating pressure or an extended 

surface is needed on one side. The tubes may be either round or flat. 

 Tube-fin heat exchangers are used in gas- 252 Heat and Mass Transfer turbine, 

nuclear, fuel cell, automobile, airplane, heat pump, refrigeration, Cryogenics etc. 

 The operating pressure is about 30 atm. and the operating temperature ranges from 

low cryogenic temperatures to about 870 Dc. 

 The maximum compactness ratio is about 330 m2/m3 

 

e) Regenerative heat exchangers 

 Regenerative heat exchangers may be either static type or dynamic type. 

 The static type has no moving parts and consists of a porous mass like balls, 

pebbles, powders etc. through which hot and cold fluids pass alternatively. 

e.g.: air preheaters used in coke manufacturing and glass melting plants. 

 In dynamic type regenerators, the matrix is arranged in the form of a drum which 

rotates about an axis in such a manner that a given portion of the matrix passes 

periodically through the hot stream and then through the cold stream. 

 The heat absorbed by the matrix from the hot stream is transferred to the cold 

stream during its run. 

 
4. Classification based on flow Arrangement 

Based on flow arrangement heat exchangers are classified into the following 

principal types. 

 
a) Parallel-flow 

In this heat exchanger, the hot and the cold fluids enter at the same end of the heat 

exchanger and flow through in the same direction and leave together at the other end as 

shown in Fig 5(a). 
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b) Counter flow 

In this heat exchanger hot and cold fluids enter in the opposite ends of the heat 

exchanger and flow in opposite directions as shown in Fig 5(b). 

 
c) Cross flow 

 In this heat exchanger, the two fluids flow at right angles to each other as shown in 

Fig 5 (c). 

 In this arrangement the flow may be mixed or unmixed. 

In general, in a cross flow exchanger, three idealized flow arrangements are possible 

1. The fluids are unmixed 

2. One fluid is mixed, and the other is unmixed 

3. Both fluids are mixed. 
 

 
d) Multipass flow 

 

 
 Since multi passing increases the overall effectiveness over 

individual effectiveness they are frequently used in heat exchanger 

design. 

 Different multipass flow arrangements are "One shell pass, two tube 

pass" known as "one - two" heat exchanger, "two shell pass, two 

tube pass", etc. as shown in Fig 6. 

 
 

 

Fig. 5: Classification by flow arrangement 
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Fig. 6: Multi pass flow arrangement 

 
 

5. Classification based on heat transfer mechanism 

Heat exchangers are classified based on the following modes of heat transfer.  

1. Single phase forced or free convection. 

2. Phase change due to boiling and condensation. 

3. Radiation or combined convection and radiation. 

 
 

FOULING FACTOR 

 In heat exchanger applications, the heat transfer surface is fouled with the 

accumulation of deposits. 

 Due to this accumulation thermal resistance in the path of heat flow 

increases reducing heat transfer rate. 

 The factor which is introduced to include the effect of fouling is known as 

fouling factor, F. It is expressed in m2. C / W. 
 

 
III effects 

 

 
1. Due to fouling, the size of the heat exchanger considerably increases 

resulting in higher capital cost. 

2. Due to fouling thermal efficiency of the heat exchanger reduces which 

results in energy loss. 

3. Fouling necessitates periodic cleaning of heat exchangers which increases 

the maintenance cost. 

4. For periodic cleaning the heat exchangers are shut down which means loss 

of production during this period. 
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Types of Fouling 

1. Scaling or precipitation fouling 

It occurs mainly due to crystallization from solution of dissolved substance on to the 

heat transfer surface. 

2. Particulate fouling 

It occurs due to accumulation of finely divided solids suspended in the process fluid 

on to the heat transfer surface. 

3. Chemical reaction fouling 

It occurs due to the formation of deposits on the heat transfer surface by chemical 

reaction. 

4. Corrosion fouling 

It occurs due to the accumulation of corrosion products on the heat transfer surface.  

5. Biological fouling 

It occurs due to the attachment of microorganisms onto the heat transfer surface.  

6. Solidification fouling 

It occurs due to the crystallization of a pure liquid or one component from the liquid 

phase on a sub cooled heat transfer surface. 

 
MECHANISM OF FOULING 

 

 
 Mechanism of fouling is very much complicated and its prediction is also very 

difficult. 

 When a new heat exchanger is put into service its efficiency decreases 

progressively due to the build up of fouling resistance. 

 The rate at which fouling occurs is mainly dependent of fluid velocity and 

temperature. 

 Higher velocity decreases both the rate of deposit and the amount, whereas higher 

temperature increases both the rate of deposit and the amount. 

 The fouling factors in heat transfer calculations are prepared by the Tubular 

Equipment Manufacturers Association (TEMA) and are available in the heat transfer 

tables. 

 
OVER ALL HEAT TRANSFER COEFFICIENT 

 

 
 For the analysis of heat exchangers it is necessary to combine the various thermal 

resistances in the path of heat flow from the hot to the cold fluid. 

 These combined resistances are expressed in terms of overall heat transfer 

coefficient, U. 
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The total thermal resistance R to the heat flow across a tube, between the inside and the 

Outside flow is given by, 

R = Thermal resistance of (Inside flow + Tube material + Outside flow) 

Where Ao, Ai = Surface areas of tube outside and inside surfaces respectively, m2 

 

hi, ho = Inside and outside heat transfer coefficients respectively.  

k = Thermal conductivity of tube material W/mo.C 

t = Thickness of tube material, m 

The thermal resistance R in the above equation can be expressed either based on 

inside or the outside surface area of the tube. 

 
Based on outside surface area of the tube 

Overall heat transfer coefficient 
 

 
 

Based on inside surface area of the tube 

Overall heat transfer coefficient 
 

 

Where Di and Do are the inside and outside diameters of the tubes, respectively. When the 

thermal conductivity of the tube is high but its thickness is small, equation [5] reduces to 
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If Fi and Fo are the fouling factors on the inside and outside surfaces of the tube, then the 

thermal resistance R in the heat flow path is given by, 

 

Since in heat exchanger applications, the overall heat transfer coefficient is expressed 

based on the outer tube surface, equation is expressed as 
 

 

LMTD METHOD FOR PARALLEL AND COUNTER FLOW HEAT EXCHANGERS 

Consider a single flow arrangement of heat exchangers as shown in Figure 5.3 

Let A = Heat transfer area measured at inlet, m2. 

mc = Mass flow rate of cold fluid, kg/h 

mh = Mass flow rate of hot fluid 

U = Local overall heat transfer coefficient between two fluids, W/m2°C. 

Fig 7: LMTD method for analysis of heat exchangers 

The rate of heat transfer dQ from the hot fluid to the cold fluid through an elemental strip of 

area dA about location A is given by, 
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The rate of heat transfer dQ is equal to the amount of heat lost by the hot fluid or the 

amount of heat gained by the cold fluid. Hence, 

  
 

s- NTU METHOD FOR PARALLEL AND COUNTER FLOW HEAT EXCHANGERS 
 

 
 For the analysis of the heat exchangers two problems that are mainly encountered 

are rating and sizing of heat exchangers. 

 The rating problem deals with the determination of the heat transfer rate, the fluid 

outlet temperatures, and the pressure drops either for the existing or already sized 

heat exchanger. 

 The sizing problem deals with the determination of matrix dimensions to meet the 

specified heat transfer and pressure drop requirements. 

 If the inlet and outlet temperatures of the hot fluid and the cold fluid and overall heat 

transfer coefficient are known then LMTD method is used to solve both rating and 

sizing problems. 

 However, if heat transfer coefficient is not known (with known inlet temperatures of 

cold and hot fluids) determination of LMTD is very difficult due to tedious iterations 

equations. 

 This difficulty is overcome by using E-NTU method or effectiveness method. 

 
 

“Heat exchanger effectiveness s is defined as the ratio of actual heat transfer rate 

to maximum possible heat transfer rate”. 

 

 The maximum possible value Qmax is obtained by counter flow arrangement if the 

temperature change of the fluid having minimum m.cp = Thi – Tci 

 Minimum value of m.cp is because the heat lost by hot fluid must be equal to the 

heat gained by the cold fluid. 
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 If maximum value of m.cp is considered, then the other fluid should undergo a 

temperature change greater than the maximum available temperature difference. 

i.e., OT for other fluid > Thi – Tci . Which is not possible 
 

 

Parallel Flow Heat Exchanger 

Consider a parallel flow heat exchanger as shown in fig 8 (a) 
 
 

Fig 8: LMTD method for analysis of heat exchangers 
 
 

 

Physical Significance of NTU 

We know that 
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MASS TRANSFER 

INTRODUCTION 

 In a system consisting of one or more components whose concentrations vary 

from point to point, there is a natural tendency for the transport of different 

species from the region of high to those of low concentration. 

 This process of transfer of mass as a result of the species concentration 

difference in a system / mixture is called mass transfer. So long as there is 

concentration difference mass transfer will occur. 

Some examples of mass transfer are: 

 
 

A. Examples of Industrial importance 

1. Refrigeration by the evaporation of liquid ammonia in the atmosphere of H2 is 

Electrolux refrigerator. 

2. Humidification of air in cooling tower. 

3. Evaporation of petrol in the carburetor of an I.C. engine. 

4. Neutron diffusion within nuclear reactors. 

5. Estimation of depth to which carbon will penetrate in a mild steel specimen during 

the act of carburizing. 

B. Examples of day-to-day life 

1. Dissolution of sugar added to a cup of coffee. 

2. The separation of the components of a mixture by or absorption. 

3. The transfer of water vapour into dry air, drying and evaporation. 

4. Diffusion of smoke through tall chimneys into the environment. 

 
 

MODES OF MASS TRANSFER 

The mechanism of mass transfer depends greatly on the dynamics of the system 

in which it occurs. Like those of heat transfer, there are different modes of mass transfer, 

which are: 

1. Mass transfer by diffusion; 

2. Mass transfer by convection; 

3. Mass transfer by change of phase. 

 
 

1. Mass transfer by diffusion (molecular or eddy diffusion) 

 The transport of water on a microscopic level as a result of diffusion from a region 

of high concentration to a region of low concentration in a system/mixture of 

liquids or gases is called molecular diffusion. 

 It occurs when a substance diffuses through a layer of stagnant fluid and may be 

due to concentration, temperature or pressure gradients. In a gaseous mixture, 

molecular 
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2. Mass transfer by convection 

 Mass transfer by convection involves transfer between a moving fluid and a 

surface, or between two relatively immiscible moving fluids. 

 The convective mass transfer depends on the transport properties and on the 

dynamic (laminar or turbulent) characteristics of the flowing fluid. 

Example: The evaporation of ether. 

 
 

3. Mass transfer by change of phase 

 Mass transfer occurs whenever a change from one phase to another takes place. 

 The mass transfer in such a case occurs due to simultaneous action of 

convection and diffusion. 

Some examples are: 

1. Hot gases escaping from the chimney rise by convection and then diffuse into the 

air above the chimney. 

2. Mixing of water vapour with air during evaporation of water from the lake surface 

(partly by convection and partly by diffusion). 

3. Boiling of water in open air - there is first transfer of mass from liquid to vapour 

state and then vapour mass from the liquid interface is transferred to the open air 

by convection as well as by diffusion. 

 
CONCENTRATIONS, VELOCITIES AND FLUXES 

Concentrations 
 

 
Mass concentration (or mass density): 

The mass concentration or mass density A of species A in a multi-component mixture is 

defined as the mass of A per unit volume of the mixture. It is expressed in kg/m3 units. 

 
Molar concentration (or molar density): 

The molar concentration CA of species A is defined as the number of moles of species A 

per unit volume of the mixture. It is expressed in\kg mole/m3 units. 

The mass concentration and molar, concentration are related by the expression,  

Where, MA =molecular weight of component A. 
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Mass fraction: 

The mass fraction, mA is defined as the ratio of mass concentration of species A to the 

total mass density, of the mixture. 

 

Mole fraction: 

The mole fraction, XA in terms of total mole concentration of the mixture, C is defined as 
 

In a binary mixture of A and B, by definition, the following summation rules hold good. 
 

 

 

 

Where G =universal gas constant =MR = 8314 J/kg mole K. 

 
 

Velocities: 

The bulk velocity of a mixture, in which different components may have different 

mobility’s, is computed either on mass-average or molar-average basis. 

In a fluid mixture of two components A and B, if uA and uB is the mean velocities (of the 

components, respectively), then: The mass-average velocity ("mass) is defined by 
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The molar-average velocity ("molar) is defined by 

Fluxes 

Flux of mass transfer is caused by the existence of different velocities and 

concentrations. 

For species A of the multi-component mixture: 

Absolute flux = A uA 
 

 
 

 In order to understand the mass diffusion (a transport process originating from 

molecular activity), consider a chamber in which two different gas species A and 

B at the same temperature and pressure are initially separated by a partition. 

 The left compartment has a high concentration (i.e., more molecules per unit 

volume) of gas A (open circles) whereas the right compartment is rich in gas B 

(dark circles). 

 When the partition wall is removed a driving potential comes into existence which 

tends to equalize the concentration difference. 

 Mass transfer by diffusion will be in the direction of decreasing concentration and 

subsequently there will be a net transport of species A to the right and of species 

B to the left. 

 After a sufficiently long period, equilibrium conditions prevail i.e., uniform 

concentrations of species A and B are achieved and then the mass diffusion 

ceases. 
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Fig. 1. Mass transfer by diffusion in a binary gas mixture. 
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Fig. 2. Concentration profile. 

 
 

In above Equation - ve sign indicates that diffusion takes place in the direction opposite 

to that of increasing concentration. The diffusion rate for species B is given by 

 

It may be noted that diffusion coefficient D (i.e., DAB or DBA in this case) is dependent 

upon the temperature, pressure and nature of the components of the system. 

 

 By comparison of the above equations, we find that the Fourier equation 

describes the transport of heat energy due to temperature gradient, the shear 

equation describes. 

 The transport of momentum due to velocity gradient while the Fick's law 

describes the mass transport due to concentration gradient. 

 

Thus units of mass diffusion coefficient are identical to those of thermal diffusivity 

() and kinematic viscosity (). Thus, diffusion coefficient is a transport property of the 

fluid. 
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Further, by using perfect gas equation the Fick's law may be expressed in terms of 

partial pressures of species as follows: 

Substituting the value of PA is Equation we get 

 
 

Similarly, for species B: 

 These are valid only when diffusion occurs due to concentration gradient and fail 

when diffusion occurs due to a temperature gradient, pressure gradient or an 

external force. 

 The mass or molar fluxes are measured relative to co-ordinates which move with 

some average velocity of the mixture. These equations become invalid if the flux 

(mass or molar) is expressed relative to a fixed set of coordinates. 

 
Some important aspects of Pick's law of diffusion: 

1. Pick's law is based on experimental evidence and cannot be derived from first 

principles. 

2. Pick's law is valid for all matter irrespective of its state (e.g., solid, liquid or gas). 

3. The mass diffusion, besides consultation gradient, may occur due to a 

temperature gradient, a pressure gradient or an external force; however, while 

applying Pick's law it is assumed that these additional effects are either absent 

or negligibly small. 

4. The movement of a diffusion substance is in .the direction of decreasing 

concentration. In a diffusion process, the concentration difference is similar to 

temperature difference in a heat transfer process. 

5. Diffusion coefficient (D), in general, is dependent upon temperature, pressure 

and nature of the system component; however, for ideal gases and dilute 

liquids it can be assumed to remain practically constant for a given range of 

temperature and pressure. 
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Mass diffusion coefficient 

By using kinetic theory of gases it is possible to predict the mass diffusion 

coefficient DAB for the binary mixture of two gases, A and B; it is of the form given below: 

 

P =total pressure in atmosphere =PA + PB 

T =absolute temperature of the binary gas mixture, K, 
 

DAB-for liquids is wholly available from experiments. 

 Liquid mass diffusivities are considerably smaller than those for the gases. This is 

due to high molecular density in me liquid phase. 

 However, increase in DAB with increase in temperature has been observed. 

Diffusion in solids is even slower than in liquids, only very little information in the 

experimental form is available. 

An effective diffusivity in case of steady state diffusion through a non-diffusing, in multi 

component mixture of constant composition is given by: 

 
 

For gas pairs of non-polar, non-reacting molecules, the diffusion coefficient is given by: 

 

DAB =mass diffusivity of gas species B diffusing through another gas species A, cm2/s; 

T =absolute temperature, K; 

P =total pressure in atmospheres =PA + PB; 

AB =collision diameter in A (Angstroms); 

 =collision integral, a dimensionless function of the temperature and the intermolecular 

potential field for one molecule of A and one molecule of B; 

MA, MB =molecular weights of gas species A and B respectively. 
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In case of a binary system, composed of non-polar molecule pairs, we have: 
 

The diffusion coefficient for dilute liquids is calculated from the following empirical 

relation: 

 

DAB =diffusivity of solute A through a solvent B, m2/s; 

T =absolute temperature, K; 

Fig. 3. Control volume for species conservation equation. 

 Consider a homogeneous medium consisting of binary mixture of species A and 

B. Let the medium be stationary (i.e., the mass average or molar average velocity 

of the mixture is zero) and mass transfer may occur only by diffusion. 

 Now, consider a differential control volume dx dy dz as shown in Fig. 3. The y 

mass balance of species A diffusing through the control volume in the stationary 

medium B is given by: 
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Along X-direction 

Accumulations of mass of species A in the control volume due to its mass diffusion in the 

X-direction is given by the difference between the mass influx and mass efflux. 

:. Mass of species accumulated/stored, due to diffusion, within the control volume 

Similarly the mass accumulation of species A along Y and Z directions in given by: 

 

As a result of volumetric chemical reactions occurring throughout the medium, 

there may be a generation of species A within the control volume, which may be 

expressed as 

 

NA,g =rate of increase of the mass of species A due to chemical reactions per unit volume 

of the mixture, kg/s.m3. 

 The total mass of species A accumulated in the control volume due to mass 

diffusion along the coordinate axes and the mass generated within the control 

volume serves to increase the mass concentration of species A. 

 This increase is reflected by the time rate of change in mass concentration of 

species A in the control volume and is 

 

Now, from mass-balance considerations, we have 
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Dividing both sides by dx dy dz. we get 

For a stationary medium, using Fick's law, the above Eqn. reduces to 

 

If DAB and C are constant the above equation becomes 

The above equation is analogous to the heat conduction equation. A few typical 

boundary conditions are: 

 

Upon integration, we have 

Using the boundary conditions, we have 

 

Substituting these values in equation we get 
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The mass transfer rate is given by 
 

 
 

(L/D) is known as diffusional resistance. 

The above expression can be used for solving the problems on composite membranes. 

The diffusion rate in the radial direction of a cylindrical system of inner and outer radii of 

r1and r2 respectively and length L is 

 
 

 

STEADY STATE EQUIMOLAR COUNTER DIFFUSION 

Equimolar counter diffusion between species A and B of a binary gas mixture is defined 

as an isothermal diffusion process in which each molecule of component A is replaced 

by each 

 

P A, PB = partial pressures, and 

NA, NB = molar diffusion rates of the gases/species A and B respectively. 
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Fig. 5. Equimolar counter diffusion. 

 
 

It is evident from Fig. 5 that species A and B are Chamber diffusing in the direction of A 

their decreasing concentration gradient (i.e., opposite direction). 

As per Dalton's law of partial pressures, the total pressure (P) is equal to the sum of the 

partial pressures of the constituents (PA, PB) i.e., P = PA + PB Differentiating with respect 

to x, we obtain 

 

Since the total pressure of the system remains constant under steady conditions, 

therefore, 

Further, under steady state conditions, the total molar flux, relative to stationary 

coordinates must be zero. Thus, 
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A practical example of this process is obtained in the distillation of two constituents 

whose molar latent heats of vaporization are essentially equal. 

 
ISOTHERMAL EVAPORATION OF WATER INTO Am FROM A SURFACE 

Let us consider isothermal evaporation of water from a surface and its subsequent 

diffusion through the stagnant layer of air over it as shown in Fig.6. For the analysis of 

this type of mass diffusion following assumptions are made: 

1. The system is under steady state and isothermal conditions. 

2. The total pressure within the system remains constant. 

3. Air as well as water vapour behaves as an ideal gas. 

4. There is a slight air movement over the top of the tank to remove the water 

vapour which diffuses to that point; however, this movement does not disturb the 

concentration profile of air in the tank. 

5. The water concentration at the surface of water is much more compared to that at 

the top of the tank 

 

Fig.6. Diffusion of water vapour through air. 
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Under steady state conditions the upward movement of water must be balanced by a 

downward diffusion of air so that concentration at any distance from the water surface 

remains constant. 

Mass diffusion of air in the downward direction is given, by 
 

 
 

MASS TRANSFER COEFFICIENT 

Mass transfer coefficient hmc similar to convective heat transfer coefficient, h may 

also be defined of species A as follows: 

 

hmc= diffusion mass transfer coefficient of species A based on concentration difference, 

A =area of cross-section. m2 

CA1,CA2= fluid concentrations at the two faces. 

The mass transfer coefficient can also be expressed in terms of partial pressure 

differences for species A. 

Above equation gives relationship between hmp and hme 
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For diffusion of water vapour through a layer of stagnant air, we have 
 

Therefore, the mass transfer coefficient based on pressure differences, hmp works out to 

be 

 

The corresponding expression for mass transfer coefficient based upon concentration 

difference is given by 

 
 

CONVECTIVE MASS TRANSFER 
 

 
 Whereas molecular diffusion mass transfer is analogous to conduction heat 

transfer (during molecular diffusion, the bulk velocities are, insignificant and only 

diffusion velocities are considered), the convective mass transfer is analogous to 

convective heat transfer (this is particularly true for low concentrations of mass in 

the fluid and low mass transfer rates). 

 Mass transfer by convection takes place in cases where the bulk velocity is 

appreciable or when both the species, in a binary mixture, are moving with 

significant velocities. 

 Mass convection, like heat convection, may occur under free or forced conditions. 

The buoyancy force causing circulation in free convection mass transfer results 

from the differences in density of the vapour-air mixtures of varying compositions. 

 The evaporation of alcohol is an example of free convention mass transfer, 

whereas the evaporation of water from an ocean when air blows over it is a case 

of forced convection mass transfer. 

 The fluid flow may be laminar or turbulent. If the fluid flow is laminar then all of the 

transport between the surface and moving fluid will be by molecular means. 

 On the other hand, if the fluid flow is turbulent, there will be physical movement of 

the material across streamlines, transported by eddies present in the turbulent 

flow. As in the case of heat transfer, higher mass transfer rates are associated 

with turbulent conditions. 
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 Therefore, in any convective situation, the distribution between laminar or 

turbulent flow will be an important consideration. 

 Mass transfer by convection involves the transporation of material between a 

boundary surface and a moving fluid or between two immiscible moving fluids. It 

is expressed as 

CORRELATIONS FOR CONVECTIVE MASS TRANSFER 

The equations for conservation of momentum and energy for the boundary layer 

development on a flat plate are: 

Similarly, the concentration equation may be written as 

 

C= concentration of the component which is diffusing through the boundary layer 

D =diffusion coefficient. 

In the correlations the following parameters are used: 

 
 

1. Prandtl number (Pr): 

Prandtl number, Pr = v/. It forms the connecting link between velocity and 

temperature profiles; these profiles become identical when Pr =1. 

 
2. Schmidt number (Sc): 

Schmidt number, (Sc) = v/D. It forms the connecting link between velocity and 

concentration profiles; these profiles show the identical behavior when Sc =1. 

 
3. Lewis number (Le) 

Lewis number, Le = / D. It forms a connecting link between the temperature and 

concentration profiles; these profiles become identical when Le =1. 
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