UNIT-1V APPLIED PHYSICS

QUANTUM MECHANICS

The physical concept of a particle is characterized by mass and velocity.
Experiments dealing with particles, usually interpreted in terms of mass and

Velocity by using Newton’s Laws of Motion. This classical approach is not
sufficient to describe some experiments. The results of some of the experiments
are contrary to Newton’s Laws

The experiments like Photo Electric Effect, Black Body Radiation and

Compton Effect confirmed the particle nature of Photons.

Interference, diffraction and Polarization of light confirmed that light is
having wave nature.

Louis De Broglie extended the idea of dual nature of radiation to matter.
According to De Broglie matter possesses wave as well as particle characteristics.
The concept of dual nature of radiation can be understood by knowing
relationship between particle as well as the wave and their characteristics.

Waves and Particles:

PARTICLES WAVES
1. A particle occupies space. 1. The transmission of disturbance
2. A particle will have a definite mass. from one point to other point in a
3. The particle will have position. material medium is known as
4. Due to change in position of the Wave.

particle, it will have velocity. A Wave will have amplitude.

5. Due to Mass and Velocity , the It will have time period.
particle posses momentum It will have frequency.
Momentum P=m X v It will have wave length.

6. A Particle will have Energy. It will have phase.

NS kR

It will have intensity 7 oc 4° .
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The particle and wave nature can be explained by using Planck’s Quantum
Theory. According to this theory emission of radiation is in the form of photons.
A photon will have velocity of light and mass which is in motion. i.e., it will have
both momentum and energy. Thus a photon behaves like a particle. The energy

of a photon is given by (According to MaxPlank)

E =nhv Wheren=1,2,3... i.e., the energy of the photon is quantized.
h= Planck’s constant, v = Frequency of radiation.

Therefore in addition to frequency, the other parameters attribute wave nature to a
photon. i.e., a photon will have dual nature.
The De Broglie Hypothesis:

The dual nature of light possessing both wave and particle properties was
explained by combining plank’s expression for the energy and Einstein’s Mass —
Energy relation.

The Energy of a photon according to Max Plank is given by

E=hv - (1)
Einstein’s Mass — Energy relation is given by
E=mC" oo (2)

Here h= Plank’s constant
v = Frequency of Radiation
m = Mass of Photon
¢ = Velocity of light

From equations (1) & (2)
ST —— 3)
Also the velocity of light is given by
c=vA
c
= 4
v=< )
* hC 2
" " From (3) & (4) we have 7 = mc
h
= A=
mc
h
A==
_______________________________ 5
» (5)

Where A - wave length of the Photon
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P =Momentum of Photon = mc

Using this concept, De Broglie proposed the concept of matter waves.
According to this the material particle of mass ‘m’ moving with a velocity

‘v’ should have an associated wave length 1.

This wave length A is called the De Broglie wave length.

Now A = ke
momentum
A=l _r (6)
my p

Where h = Plank’s constant, p=momentum

Equation (6) is known as De Broglie wave equation and A is called De Broglie
wave length.

If the particle is moving with a velocity comparable to the velocity of light
then the mass of the particle is always changes. The mass ‘m’ according to theory

of relativity is not an invariable entity as in Newtonian Physics. The relativistic

mass ‘m ‘ is given by Here m,= rest mass of the electron
m o= — 0 ¢ = Velocity of Light
From equation (6) it is found that if the particles are accelerated to various

velocities, we can produce waves of various wave lengths.
Higher the electron velocity, smaller the De Broglie wave length and vice versa.

RalationbetweenDeBroglie Wavelength A and KiniticEnergyEof the particle

Let us assume m is the mass of the particle. Now the particle is moving
with velocity ‘v’.

o ) 1, ) 1 5, (mV)2
E=—myv E=—mv =-—"2
Kinetic Energy of the particle , 5 since . .
2
P
E=—
- 2m
-~ p’=2mE
= p=N2ME (1)
h
But according to De Broglie hypothesis 4 = ; _______________________ )
F )& (2 p=—t 3
rom (1) & (2) e 3)
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Where h = Plank’s constant
m = Mass of the particle and E = Kinetic energy of the particle

Relation between de Broglie wave length and the applied potential
difference:
(De Broglie wave length of electrons)
Let m be the mass of the electron. This electron is applied with a potential
difference of V volt.
Here the work done (energy) on the electron is given by eV.
Here e = charge on the electron

V= applied potential difference in volts.
The work done is converted into Kinetic Energy of the electron.

2
ie. Emv =el
Here v = velocity acquired by the electron .

2

Now £—=eV
2m
p° =2meV

Momentum, p =+v2meV oo (1)

Now the De Broglie wave length associated with the electron is given by
S — )
p

&) 4 " 3

F =
rom (D& (@) 4= ©
Ignoring the relativistic considerations, m = rest mass of the electron
h
R —
2meV
1 6.625X107* ~12.26X107"
- - meter
V2X9.1X10° X1.602X10 °V NG
12.26 ,
A= \/? A" y= Applied Voltage in Volts.

Matter Waves:

According to Debroglie concept that a moving particle is associated with
wave nature. This can be explained by Bohr’s atomic model.
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According to Bhors concept the angular momentum (L) of a moving electron in
an Atomic orbit of radius ‘r’ is quantized.

e, L= (1)
2
n=1,2,3,4...............
Now Angular momentum L=mvr............ 2)

Here m=mass of an electron
v=linear Velocity of Electron

r=Radius of the orbit

form (1)&(2) ,now we have

ﬁ n=4 orbit
L=mvr= o 3)
nh
= 2mr =—
my
= 2mr = n_h n=56 orbit
p (4)

p = mv, momentum of electron.

Figure (1) Bohr’s orbit and deBroglie

Waves of an electron in the orbit

In the equation (4), 27 s the circumference
length of the orbit in which the electron is revolving.
This circumference is equal to the ‘n’ times the wave length of the associated

wave of a moving electron in the orbit.

ie 2m=nA......... (5), since A = h
p

This is shown diagrammatically for n=4 and n=6 in figure (1).

According to the deBroglie, a moving particle will have both particle and wave
nature. The waves associated with a moving material particle are called matter
waves or deBroglie waves. The deBroglie waves are associated with materialistic

particles such as electrons, protons, neutrons etc.

Properties of Matter Waves:

1. DeBroglie waves are not electromagnetic waves.
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They are called pilot waves.

The waves that guide the particles are called matter waves or pilot waves.
2. Matter waves consist of a group of waves or a wave packet associated with

a particle. The group has the velocity of particle.

3. Each wave of the group travel with a velocity known as phase velocity

given by Vp, =% where ® = Angular frequency, K = Wave vector.

or wave Number.
4. These waves cannot be observed.

5. The wave length of matter waves is given by

h
A= ? Where h = Planck’s constant, p = momentum of the particle

A=l
myv

Lighter the particle, greater will be the wave length associated with it.
Smaller the velocity of the particle, longer will be the wave length.

WhenV =0,A=0. Alsoif V=0,1=0

A R

Matter waves can be produced whenever the particles in motion are
charged or uncharged.
10.Matter waves travel faster than velocity of light.

11.The wave nature of the matter introduces uncertainty in the location of the
position of the particle.

HeisenBerg’s Uncertainty Principle:

Usually the moving particle must be regarded as a deBroglie wave group rather
than a localized particle.

This suggests that there is a fundamental limit to the accuracy with which
we can measure its particle properties.

According to classical Mechanics, a moving particle at any instant has a
fixed position in space and a definite momentum which can be determined
simultaneously with accuracy.

But we know that a moving particle is similar to a wave, we cannot

determine the position and momentum simultaneously, accurately.
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The measurement of position and moment of a moving particle is
impossible
Let AX denotes the error in the measurements of the position of the

particle along x-axis and Ap represents the error in the measurement of
momentum, then

(Ax)(Ap) = Zi Here h=Planks Constant.
T

If we locate the particle exactly (Ax — O) only at the expense of imparting to it
an infinite momentum (Ap —> OO)

The uncertainty principle can also be written as (A E )(At) = 2h—
T

Applications:
1. It explains the absence of electrons in the nucleus.

2. It gives proof for the existence of protons and neutrons inside the nucleus
3. Explains uncertainty in the frequency of highest emitted radiation by an
Atom

4. Energy of an electron in an Atom

Differences Between Matter waves and Electromagnetic Waves:

Matter Waves Electromagnetic waves

1. These waves are associated with the | 1.Oscillating charged particles gives
moving particles. electromagnetic radiation.
(electromagnetic waves)

2.wavelength depends upon mass of the | 2. Wavelength depends upon the energy

particle A= h_h of the photon.
P mv
E=hv,
E=E,'.'c=uﬂ,u=£
A A
na=le
E

. . 3. These waves travel with a velocity
3. Can travel with a velocity greater

than velocity of light. of light.
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C=3x10%m/s
4. These waves are not electromagnetic | 4. [n this wave electric and magnetic
waves. fields oscillate perpendicular to each
other.

Note on Simple Harmonic Motion :

If a particle executing simple Harmonic motion, then its motion is periodic,
acceleration is directed towards an equilibrium point and acceleration is
proportional to displacement. (a o« -x)

The general equation of motion for SHM is given by

Y=A SN (O =) ereeeee e, (1)

Here y = displacement of the particle executing simple harmonic motion
A = Amplitude of the particle executing simple harmonic motion

® = Angular frequency

® = Phase difference

Now Phase difference 227” X Path difference

From equations (1) & (2) we get

y = ASin(ot — 2 )
A
. 2z
y = ASin(2rvt — 7)6)

y = ASin2ru(t —i)
vA

Since we have to solve problems by Schrodinger’s time independent Wave
Equation, we choose wave equation involving no time.

y = ASin27v(——-)
vA
_ X
y = ASin2x(— Z)

X
=—ASin2x(—
y %)

Schrodinger’s Wave equation(Time independent)
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Let us consider a particle of mass m, moving with a velocity v along the positive
X-direction.

The wave function y for a particle moving freely in the positive
x-direction has the same form as the wave equation for simple harmonic motion
and simple harmonic waves in the positive x-direction.

X
W= —ASin2x(=
7 in ﬂ(ﬂ.) ......................... (1)

Here y is a function of x only.
Differentiating equation (1) with respect to X once and two times, we get
d 2 2
_l)” — _A_ﬂ-cos_m
dx A

Again differentiating, we get

d’ 4z . 2

lé/ =4 ”2 sin =2
dx A A

d’y _4r* 2
l’;/: 72 Asin 2%
dx A
But v =—Asin—
d’v  4r’
T T T TV 2)
dx A
DeBroglie wavelength associated with the particle is
PR
my
1_mv
A h
|
1 mH? 2M(5 mv°~)
; = hz = hz ...................... (3)

Let E be the total energy of the particle and V be the potential energy of the
particle and T be the kinetic energy.
Then total energy ,E=T+V

|
T,KE=E’7W2=E—V ..................................... (4)

Substituting the above value of K.E. in Equation (3), we get

1 2m(E-V)
2‘2 h2 ooooooooooooooooooooooooooooooooo
From equations (5) and (2), we get
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d’v  8mr’
dx’ :_h_z_(E_V)W
dy 8z
dx‘ﬁ’+ ’sz(E—V)y/=o
iy 2
dx"z’+ h’f (E-V)y=0
Ar?
2
‘;—"Z’Jr 2m BV =0
<Ly
2z
d’v 2m h
+—(E-V)y=0 (. -h=(—
o T ETTw =0 b= )

This is the Schrodinger’s time independent one dimensional wave equation.

Wave number:

10

In Spectroscopy

In wave mechanics

wave Number of an Electromagnetic
wave is given by

K=p=-1 ,But/lzﬁ
A p
:K:L:E
(y
P
= K = 2Z1Em'1

case of

. 2
electromagnetic wave, K = 77[ .

For the special

E:hu:h—c
:>/1=E
E
K=
hC
_E
ncC

an

Wave velocity:

Wave velocity is defined as the velocity with which a

particular crest or trough or a particular phase of a wave advances in a medium.
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The wave Velocity u of the matter waves can be obtained from the energy of
photon.
NOW E =KD i, (1)
E 1 2 2
E_Ogmv _p 1
h h 2m  h

Multiplying and dividing the numerator and the denominator by h, we get

Or frequency, U =

h p> h 1

X = X—
2m h 2 2m ﬂdz ................. (2)
There fore, the wave velocity,

u = frequency X wave length

iyl
2m A

Frequency, U =

u

The wave velocity of the electron

Physical Significance of Wave Function

The wave function is a Complex function. This does not have a direct
2
physical meaning. The square of its absolute magnitude “// ‘ can be taken as

definite meaning by considering the case of an electromagnetic wave.
The intensity of a light wave is proportional to the square of the amplitude.

(Tad”)

2
‘W‘ Is the probability density of the particle associated with the deBroglie wave
described by the wave functiony .

2
That is the probability of finding a particle is proportional to ‘W‘ at the point x,

and at any instant of time t.
The wave function is given by

w(x,t)=a+ib, l//* 1s its complex conjugate, l//* =a —ib
%
Now V' V' =(a+ib)(a-ib)=[da"-i’]
* *
WV =g+, W ¥ isdenoted by P

2
‘W‘ is called the probability density.
The probability of finding a particle is real.
PVRamanaMoorthy Unit-1V
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The probability of a particle being present in a volume dv=dx dy dz is

2
‘l//‘ dx dy dz.
The total probability of finding the particle some where is unity.
Since the probability of finding a particle some where in the space is certain.

”j |l//|2dxdydz =1

Or I” wy dxdydz =1

The triple integral extends over all possible values of x, y and z.
A wave function y satisfying the above relation is known as normalized wave

function.This Condition is called condion of Normalization.

Particle in a One-Dimensional Potential Box:

(OR Electron in a Potential Well):

Consider an electron of mass ‘m’ this is bound to move in a one dimensional
crystal of length L.

The electron is prevented from leaving the crystal by the presence of a large
potential energy barrier at its surface.

Though the barriers extend over a few atomic layers near the surface, these are
taken infinitely large for the sake of simplicity. The problem is similar to that of
an electron moving in a one-dimensional potential Box.

This is represented by a line and is bounded by infinite potential energy as shown
in figure (2).

Fig (2) Electron in a one dimensional
Potential well.

The potential energy within the crystal or box is assumed to be zero

Thus we have

V(x)=0 forO<x<L . (1)

V(x) = o for x <0andx > L

The wave function ¥, of the electron occupying the n™ state is given by
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dzl// 2m
n  E VY =0 2
dx’ h? (E, )V @)

Here also E,= Total energy of the electron in the n™ state.
V= Potential energy.

Inside the box, v=0

d’y, 2m
dxz +? En{//n = 0 __________________________ (3)
dZ
d)‘?ﬂ S —— 4)
Where &’ :E—T E =k = “2:: A — (5)

Equation (4) is a differential equation. The general solution of the equation (4) is
given by
v, (x) = ASinkx + BCoskx ... (6)

In equation (6), A and B are arbitrary constants,

These constants are to be determined from the boundary conditions.

Since the electron is constrained by infinitely high potential barriers at x=0 and
x=L, v > . We assume that v ,(0) =0andy (L)=0

The product V(x) ¥, (x) in equation (2) also approaches infinity.
Thus in order that the wave function ¥, (x) may be continuous, the kinetic
energy must also become infinite which is not feasible.

Hence ¥, (x) must vanish for x=0 and x=L.
For x=0 equation (6) gives B=0
¥, (0) =0=A SinK (0) +B CosK (0)
0=A (0) +B (1)
= B=0
Now equation (6) becomes

VW, (x)=A SinK(X) --==--===mmmmmmmmm oo (8)
Also since ¥, (L) =0, equation (8) becomes

A SinKL=¥, (L)=0
A+#0 But SinKL=0= KL =nx

Or K= 9
rK==" )

Where n=1, 2, 3...
Thus the expression for the allowed wave function becomes.
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¥, (X)=A Sin (% )X e (10)

Eigen Energy Values:
The allowed energy values can be obtained from equations (5) & (9) as

\2m E,

h
i =1/2mEn _nz
h L

K n’r’
""om I
h n’r’
" A7 2m  I* > (Sincelt =7)
n*h?
W= el e (11)

Here h= Planck’s constant
m= Mass of Electron.
L= Length of One dimensional crystal, are constants.
i.e E,a n’
Some Features:

1. The lowest energy of the particle is given putting n=1

hZ
' 8ml*
2
E =n'E,

This known as zero point energy.
2. For n=1, 2, 3...We get discrete energy values of the particle in the one

dimensional box.

hZ
n = _
: bo8mi?
,
n,=kF, =2 " =4E,
, W
n,=FE, =3 - =9F,

PVRamanaMoorthy Unit-1V
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3. It is apparent from equations (10) and (11) that the allowed wave functions

¥, (x) and the allowed energy values £, exist only for integral values of n.

The number n is called principal quantum number.

4. The spacing between the nth energy level and next highest energy level

[n+1] th level is given by
_(n+1)’h’?

L =(n+ 1)2E1

n+l
n’h’
" ml?
En+1 B En = (}’l + 1)2El - n2E1
E,,—E, =(n’+1+2n) E -n’E,
E..—E =2n+1) E,
5. The energy spectrum consists of discrete energy levels. The spacing between
the levels is determined by the values of n and L.
The Spacing decreases with increase in L.
If L is of the order of a few centimeters, the energy level form almost a
continuum.
But if L has atomic dimensions, the spacing between the levels becomes

appreciable.
The energy levels corresponding to n=1, 2, 3 and 4 are shown in fig (3).

2
=n"E,

n+l

E,=16E, ——1

E3=9 E 1 n=3

E2 =4 E] n=2
El n=1
EO n=0

Fig (3) First four energy levels of an electron in a one dimensional Box.

Determination of constant A in ¥, (x)=A Sin ( % )x (Normalization of the

wave function):

The constant A in ¥, (x) =A Sin (% )x is determined by using the condition

that the probability of finding an electron some where on the line is unity

L
e[y (x) p,(x) dx=1
0

L
[lw, () Pax =1
0
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2 2
¢ 2nrw
Now ICS(—jxd =0
0 L
2 L 2 2
.A—[ dx =1 = A—[x]g=AL=1
2 4 2 2
A2:£3 A4 = 2
L L

. nrw
Now from the equation ¥ (x) =4 Sin (zj

v (x) = (\/%J Sin (%)x ............... a

This is the normalized wave function. The first four wave functions and the wave functions of the

electron in a one dimensional Box are shown in the figure (4)

-

b
0 L 0 I
X x
(a) (b)
Fig (4) First three wave functions Fig.(5) the probability density of
of an electron in a one an electron in a one dimensional

dimensional box

The probability density of the particle in the one dimensional Box.
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The probability of ﬁndingzthe particle in a small length dx along x is given
byPn(x)dx = Ay, |7 dx an(x)dx :% Sinz(%jx "

2 .
Also Probability Density P, (x)= f Sin T X

. . nr T 3n Srx
This is maximum when ——x= -, = = - - -
L 22 2
L 3L 5L
or xX= —,—,— - - -
2n 2n 2n

For n=1, the most probable positions of the particle is at X=§

For n=2, the most probable positions are at x=§ and %
The probability density of the particle in the one dimensional Box is shown for
various values of ‘n’ in the figure (5).

Fermi-Dirac Distribution:

According to free electron theory, Electrons in a solid move in all possible
directions like gas molecules in a container. These free electrons contribute for
electrical conduction.

The free electron model of a metal has survived to the actual situation in
metals, particularly the monovalent atoms such as Alkali metals.

Quantum mechanics requires that all valence or free electrons should be

specified by the three quantum numbers ny , ny , n, together with the spin.
The spin can have either +% or —%
The Pauli Exclusion Principle does not permit more than one electron to
have same four quantum numbers.
Many of the occupied states in a metal containing 10> free electrons
must be described with fairly large quantum numbers.
Now it is most convenient to discuss the metallic state with statistical
mechanics.
The probability that a particular quantum state having an energy E is
occupied is given by Fermi-Dirac function.
1
S(E) =
E - Ef
K,T

1+exp(

Here f (E) is called probability of occupying a state

EF is the energy of the Fermi level.

E is the energy of the state in which the electron is occupied at T°K .
K, is the Boltzmann constant.
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Properties:

1.

(98]

Ph(E):

The Fermi-Dirac function also valid for semiconductors. In a
semiconductor, the probability of occupancy of states by electrons is given
by the F-D distribution function.

1
P,(E)= f(E) E_ &
K,T
The distribution function is valid only in equilibrium.
The Fermi level is absolutely valid in equilibrium only.
Fermi-Dirac distribution function is valid for all the particles obeying
Pauli’s exclusion principle. This is equally applicable regardless of the
type of the solid, doping of the semiconductor, etc.
Any particle obeying F-D distribution function is called Fermions.
The Fermi-Dirac distribution function considers statistically the entire
collection of fermions in the volume.
Thus it considers all electrons in the semi conducting solid and not merely
electrons in a Band.

1+exp(

. An empty electron state is called a HOLE. The Fermi-Dirac distribution

function for holes in the solid would correspond to the statistical
distribution of vacant sites.
The hole distribution function is denoted as

Py, (E) =1-Prp (E)
1

E, - E
1+ exp KT
B

6. ATE=E;

11
P(E)=P(E)=—=—
(E)=PAE) ==~

1.e. the probability of occupancy of the electron or hole is %

This also gives a definition for the Fermi level.

7. Fermi level is the energy level where the probability of occupation is %

8.At0°  K,Pe(E)=lforE<E;

And Pe (E)=0forE>E ¢
This implies that at 0° K all states up to the Fermi level are completely
occupied by the electrons. All the states above the Fermi level are empty.

9. The distribution function is a strong function of temperature only at energies
close to Ex.
Plots of P, (E) and E at different temperatures are shown in figure (6).
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/ Tl
P(E) /
\T2
1/2
X >
O ———PE Ef

Fig (6). P. (E) versus E for various T values. At all temperatures, the

curves passes through the point {Efﬂ

Note on Fermi-Dirac Distribution function: The Fermi-Dirac distribution for
Electrons is given by

1
1+exp(EK_§F]
B

Now at the Absolute zero (T = 0°K ), there are two situations

P(E)= f(E) =

(i) ForE<Eg,

P.(E) = ——
1+exp| ——£
K,T
1
Pe(E): X
l+e 0@
1
P,(E) = —
l+e
" 1
P(E)=— But € ZOO:;:O
1+ —

e
P.(E)=1, for E<Epat T=0"

(1) For E > Eg

-
1+exp[EK_lT?FJ
B
1
P.(E) =

+ X
1+exp(K (O)J

P (E) =

PVRamanaMoorthy Unit-1V
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1

P,(E) = P
l+e
F(E) = l+loo
1
Pe(E)Zg
P(E)=0

This means that no electrons have energy greater than Ey at 0° K.
i.e the Fermi energy Er is the maximum energy that a free electron in the
metal can have at absolute zero.

Schrodinger’s Wave equation(Time independent)
Let us consider a particle of mass m, moving with a velocity v along the positive
X-direction.

The wave function y for a particle moving freely in the positive

x-direction is given by a complex function

P (:I?, t) — Aef-l[#r-u:—ui) .

Here  is a function of x and t only.

A= amplitude.

k= Wave vector.

X= position.

w=Angular frequency.

t=time

Differentiating equation (1) with respect to x once and two times, we get

d_W — iK A D
dx
Again differentiating, we get
d’y

A 212 g ot ke

dx
d’y
dx?

= izkzy/ . ,Here i=+/-1, Alsok :277[, k= wave number

But > =-1

DeBroglie wavelength associated with the particle is
h

=——,p =momentum
my

1 =

IS |=

1_mv

A h
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1 2.2 2"”(1 mvz
_mv _ 2
= S O (3)

A2 " n’
Let E be the total energy of the particle and V be the potential energy of the
particle and T be the kinetic energy.

Then total energy ,E=T+V

1
T,KEZEWVZZE—V ................... (4)

Substituting the above value of K.E. in Equation (3), we get

1 2m(E-V)
A2 n’
From equations (5) and (2), we get
d’y 8m 1’
=———(E-V

w g T
d? 87°m
dxl/zl i n’

(E-V)y =0

dzt,// 2m
2 + 2
dx ( h
47
2
d_l/zl N 2m
*ody
27

(E-V)y =0

)

(E-V)y=0

d’v  2m B ol = (=
E R E-Tw =0 (- ( ”)) ...................... (6)
This is the Schrodinger’s time independent one dimensional wave equation.

Schrodinger Wave Equation Derivation (Time-Dependent)

Considering a complex plane wave for particle

y(x,t)= Ae"* " . (1)
Here y is a function of x and t only.
A= amplitude.

k= Wave vector.

X= position.

o=Angular frequency.

t=time.

Now the Total energy of a system is
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E=T+V, [ (K.E)+(P.E)]

Where ‘V’ is the potential energy and ‘T’ is the kinetic energy.

And V= A function of x only. (v=mgx or v= mgh)

As we already know that E is the total energy, we can rewrite the equation as:
2

E=L v
2m
Differentiating equation (1) with repect to t ,we get
d : (o :
W iwAe ™ = —ioy (x,t)
dt
dy _

o —i(2ro)y (x,t)

‘ii_w = —i(2nv)y, yisafunctionofx,t
t

But according to MaxPlanck, E=hv, = o =%

C;—gt”:—i(%w)w
g i( P W
dy . E
2
dy __iE
dt h
h dy
s A — 2
v=—— (2)

Also the time independent wave equation is given by

d’v 2m

+ N E-VWw =0
o T ETTY
d’v  2m 2m

FEEETRG G
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From equations (2) and(3) we get

d’* 2 2m h d
Ly =t
dx h h® 1 dt

This is time dependent Shroedingers wave equation.

Schrodinger’s Wave equation
Let us consider a particle of mass m, moving with a velocity v along the positive
X-direction.

The wave function y for a particle moving freely in the positive x-
direction has the same form as the wave equation for simple harmonic motion and
simple harmonic waves in the positive x-direction.

P (:I?, t) — Aef-l[#r-u:—ui) .

Here y i1s a function of x only.
Differentiating equation (1) with respect to X once and two times, we get

d_l// — iK Ao e
dx
Again differentiating, we ge
d2‘/’ _ 22 gt

=

dx
2
But i =-1
d’y  An’
R —— 2)

DeBroglie wavelength associated with the particle is

4= h
my
1 o mv
2 h
1 m>? 2m(l/2mv?)
iz = hZ = hz ...................... (3)

PVRamanaMoorthy Unit-1V



24

Let E be the total energy of the particle and V be the potential energy of the
particle and T be the kinetic energy.
Then total energy ,E=T+V
1
T,KE=§mV2=E—V ..................................... (4)

Substituting the above value of K.E. in Equation (3), we get

1 2m(E-V)

A n’

From equations (5) and (2), we get
d’v  Smn’

o T
"y

d 87°m
+h—2(E_V)!// =0

dx?

d’v 2m
+
ax*
4r’
2
d 1/2/+ 2m
"oy
2
d’ 2m h
Y E-Vy =0 (A=) o (6)

J’__
> B
This is the Schrodinger’s time independent one dimensional wave equation.
Schrodinger Wave Equation Derivation (Time-Dependent)

(E-V)Ww=0

(E-V)y=0

Considering a complex plane wave:
U(z,t) = Aeilka—et),
Now the Hamiltonian of a system is

H=T+V

Where ‘V’ is the potential energy and ‘T is the kinetic energy. As we already know that ‘H’ is
the total energy, we can rewrite the equation as:

B=2_ | V(x).

2m
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Now taking the derivatives,

ov 1
T jwAeilkruwt) —iw‘l’(m,t)
82\];' 9 : y
. i(kz—wt) _ 1.2
Pl k* Ae = —k"U(z,t)
We know that,

_ 2th — 27
p=*=randk =5

where ‘A’ is the wavelength and ‘k’ is the wave number.

We have
p
k=<
h
Therefore,
* v 2
— = — 2 U(z,t).
33:2 hz

Now multiplying ¥ (x, t) to the Hamiltonian we get,

EU(z,t) — ;an T(z,t) + V(z)T(z,t).

The above expression can be written as:

—R* 8’V
2m Oz

EY(z,t) = + V(x)¥(x,t).

We already know that the energy wave of a matter wave is written as

FE = hw,

So we can say that
PVRamanaMoorthy
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E¥(z,t) = 2 W(z,1).

—iw

Now combining the right parts, we can get the Schrodinger Wave Equation.

L0V —R OV
ih 5% = om 922 + V(z)¥(z,t).

This is the derivation of Schrodinger Wave Equation (time-dependent).
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FREE ELECTRON THEORY & BAND THEORY OF SOLIDS
FREE ELECTRON THEORY

Introduction:

In solids, electrons in outer most orbits of atoms determine its electrical
properties. Electron theory is applicable to all solids, both metals and non
metals. In addition, it explains the electrical, thermal and magnetic properties of
solids. The structure and properties of solids are explained employing their
electronic structure by the electron theory of solids. It has been developed in
three main stages.

1. Classical free electron theory.

2. Quantum Free Electron Theory.

3. Zone Theory.

1. Classical free electron theory: The first theory was developed by Drude and
Lorentz in 1900. According to this theory, metal contains free electrons which
are responsible forthe electrical conductivity. Also electrons obey the laws of
classical mechanics.

2. Quantum Free Electron Theory: In 1928 Sommerfeld developed the quantum
free electron theory. According to Sommerfeld, the free electrons move with a
constant potential. This theory obeys quantum laws.

3. Zone Theory: Bloch introduced the band theory in 1928. According to this
theory, free electrons move in a periodic potential provided by the lattice. This
theory is also called “Band Theory of Solids”. It gives complete information
regarding electrons.

Classical free electron theory of metals (Drude — Lorentz theory of metals):

Drude and Lorentz proposed this theory in 1900. According to this theory, the
metals containing the free electrons obey the laws of classical mechanics.

Assumptions (or) Salient features in classical free electron theory

1. In metals there are a large number of free electrons moving freely in all
possibledirections.

2. These free electrons behave like gas molecules in a container obeying the
laws of kinetic theory of gases.

3. In the absence of field the energy associated with each electron at a temperature T

given by %k’T It is related to kinetic energy as ng= émvth—’. Where vy, is the therm
velocity and k is Boltzmann constant.

4. In metals, the positive ion cores are at fixed positions and the free electrons
move randomly and collide either with positive ion cores or with other free
electrons or with boundaries. Hence these collisions are elastic. Therefore the
electric conduction is dueto free electrons only.
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5. Electron velocities in a metal obey Maxwell-Boltzmann distribution of
velocities.
6. The free electrons move in a constant potential field. Hence the potential energy

of the electrons is constant.

Electric Field E _

7.  When an electric field is applied to a metal, free electrons are accelerated in
the direction opposite to the direction of applied electric field with a velocity called
drift velocity represented as V.

Advantages or Merits classical free electron theory
1) It verifies ohm’s law.
2) It explains electrical and thermal conductivities of metals.
3) It derives Widemann-Franz law.
4) It explains optical properties of metals.

Drawbacks or Demerits classical free electron theory

1) Failed to explain the electrical conductivity of semiconductors and insulators.

2) Failed to explain the  temperature variation of electrical conductivity at low
temperatures.

3) Failed to explain the concept of specific heat of metals.

4) Failed to explain the mean free path of the electrons.

5) The phenomenon like photo electric effect, Compton effect and black body
radiationcould not be explained by classical free electron theory.

6) Failed to explain temperature dependence of paramagnetic susceptibility
and ferromagnetism.

Quantum Free Electron Theory:

Quantum free electron theory was proposed by Sommerfeld in 1928. It

overcomes many of the drawbacks of classical theory. Sommerfeld explained

them by choosing Fermi- Dirac statistics instead of Maxwell-Boltzmann

statistics. He developed this theory by applying the principles of quantum

mechanics.

Assumptions of Quantum Free Electron Theory

1) Valence electrons move freely in a constant potential within the boundaries
PVRamanaMoorthy Unit-1V
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of metal and is prevented from escaping the metal at the boundaries (high

potential). Hence the electron is trapped in a potential well.

2) The distribution of electrons in various allowed energy levels occurs as per

Pauli Exclusion Principle.

3) The attraction between the free electrons and lattice ions and the repulsion

betweenelectrons themselves are ignored.

4) The distribution of energy among the free electrons is according to Fermi-
Dirac

5)

statistics.
The energy values of free electrons are quantized.

6.)To find the possible energy values of electron Schrodinger time independent
wave equation is applied. The problem is similar to that of particle present in
a potential box.

Energy of the electron is given by E =

271.2
nh

8ml*

Merits of quantum free electron theory

1.

NOoUA WD

Successfully explained the electrical and thermal conductivities of metals.
Explained the phenomenon of Thermionic emission.

It explains temperature dependence of conductivity of metals.

It can explain the specific heat of metals.

Explained magnetic susceptibility of metals.

Explained photo electric effect, Compton Effect and black body radiation etc.

It gives the correct mathematical expression for the thermal conductivity and
electrical conductivity of metals.

Demerits of quantum free electron theory

1.

2.

o

It is unable to explain the metallic properties exhibited by only certain
crystals.

It is unable to explain why the atomic arrays in metallic crystals should
prefer certainstructures only.

. This theory fails to distinguish between metals, semiconductors and

Insulators.

. It also fails to explain the positive value of Hall Co-efficient.

According to this theory, only two electrons are present in the Fermi
level and theyare responsible for conduction which is not true.

Fermi-Dirac Distribution:

According to free electron theory, Electrons in a solid move in all possible directions like

gas molecules in a container. These free electrons contribute for electrical conduction.

The free electron model of a metal has survived to the actual situation in metals,

particularly the mono valent atoms such as Alkali metals.
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Quantum mechanics requires that all valence or free electrons should be specified by
the three quantum numbers ny , ny , n, together with the spin.

The spin can have either +% or — 1

2

The Pauli Exclusion Principle does not permit more than one electron to have same four
quantum numbers.

Many of the occupied states in a metal containing 10> free electrons must be
described with fairly large quantum numbers.

Now it is most convenient to discuss the metallic state with statistical mechanics.

The probability that a particular quantum state having an energy E is occupied is given
by Fermi-Dirac function.

F(E) = !

E—ﬂj

K ,T

1+ exp (
B

Here f (E) is called probability of occupying a state.

Er is the energy of the Fermi level.

E is the energy of the state in which the electron is occupied at T°K .

K, is the Boltzmann constant.

Properties:
6. The Fermi-Dirac function also valid for semiconductors. In a semiconductor, the

probability of occupancy of states by electrons is given by the F-D distribution
function.
1
P(E) = f(E) =
E - Ef
l+exp| ———
K,T

7. The distribution function is valid only in equilibrium.

The Fermi level is absolutely valid in equilibrium only.

9. Fermi-Dirac distribution function is valid for all the particles obeying Pauli’s exclusion
principle. This is equally applicable regardless of the type of the solid, doping of the
semiconductor, etc.

Any particle obeying F-D distribution function is called Fermion.

The Fermi-Dirac distribution function considers statistically the entire collection of
fermions in the volume.

Thus it considers all electrons in the semi conducting solid and not merely electrons in a
Band.

10. An empty electron state is called a HOLE. The Fermi-Dirac distribution function for
holes in the solid would correspond to the statistical distribution of vacant sites.

>

The hole distribution function is denoted as

Ph (E) :1‘PFD (E)
P, (E) = 1

E, - E
brexp| =7
B
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11
P(E)=P(E)=—=—
5 (E) =P (E) 12

i.e. the probability of occupancy of the electron or hole is 5
This also gives a definition for the Fermi level.

7. Fermi level is the energy level where the probability of occupation is %

8. At 0°K, Pe (E) =1 forE<E ¢
And Pe (E)=0forE>E ¢
This implies that at 0° K all states up to the Fermi level are completely occupied by the
electrons. All the states above the Fermi level are empty.
9. The distribution function is a strong function of temperature only at energies
close to Er.
Plots of P, (E) and E at different temperatures are shown in figure (6).

Y T
A T,>T>T in 0 K
P(E) 1
)
1/2
X »
0] __, E E ~_
Fig (6). P. (E) versus E for various T values. At all temperatures, the curves passes

through the point [E f,%} .

Note on Fermi-Dirac Distribution function: The Fermi-Dirac distribution for
Electrons is given by

1

1+exp(EK_§F]
B

Now at the Absolute zero (T = 0°K ), there are two situations

P(E) = f(E) =

(i1) For E <Ep,

P.(E) = 1
E-E,
l+exp| —F
K,T
1
Pe(E): X
l4e 0O
P(E)=—
1+e

PVRamanaMoorthy Unit-1V



32

PE(E)= 1 Bute ZOOZ>—=O

1+ —
e
P.(E)=1, for E<Epat T=0°
(i1) For E > Ep

1

P
1+exp[ FJ
K,T

P,(E) = %
1+exp( * ]
K, (o)
1
P(E) = =
l1+e
P(E)=—
1+ o
P(E)= L~
0
P(E)=0

P.(E)=0, for E>Egat T =0"

This means that no electrons have energy greater than Er at 0° K.
i.e the Fermi energy Erp is the maximum energy that a free electron in the metal can
have at absolute zero.

g
e ——
M
o,
g, —— Yo
T — 0L
Py g ETGS . ——
4 g
- "o
- *e
"o —
T Pt
e
::_.": "o
(a) T=0 (b) T>0

1The effect of temperature on the occupation of energy levels of electrons in a crystal.

Fermi Energy Level (Ey):
PVRamanaMoorthy Unit-1V



Fermi Energy level is the top most occupied energy level.
The level above which all the energy levels are empty and below which all the energy levels
are occupied.

Fermi Energy:

The Fermi energy is only defined at absolute zero, while the Fermi level is defined for any
temperature.

Fermi Energy is the energy of highest occupied level. That is kinetic energy of highest
occupied state.

What is Fermi Energy and Fermi Velocity?

lonizatin energy e Fermi energy is the KE of the
E; 3 ;;?e: highest occupied state.
57e olti i
i oy It is the energy particles

(electrons) have solely because

Al =¥ 5086V quantum mechanic motion.
p [Qm] dave *The velocity particles have
Cu 1.72 x10:§ Cu =39nm due to fermi energy.
Ag 1.47x10" Ag=56.4nm 2
Au 2.44x10° Au=56.0nm h2 3 3
Al 275x10% Al=183nm Ef = Ne
2me \8T

2 e
Ve\Ef, E-=(n)3, O=p =W

000 &

Farmi-Dirsc distributan for several temperatures

Prepared By

P.V.Ramana Moorthy
Associate Professor,
SITAMS, Chittoor
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Classification of crystalline solids:
Based on the width of forbidden band, solids are classified into insulators,
Semiconductors and conductors.

4 Enargy of electrons

Conducton Band.

Largs anargy
pa TET
valance a

conduction bands. .Conduction Band- v

a. Ingulator b. Semiconductor ¢. Conductor

Conductors: The valence band and conduction bands are overlapped with each other
and the energy gap E; is zero. At room temperatures, free electrons already exist in huge
number at conduction band. Hence these solids are good electrical conductors as well as
good thermal conductors. The electrical resistivity increases at high temperature by
collisions among the free electrons.

Ex: Al, Cu, Ag, Au etc.,

Semiconductors: The valence band and conduction bands are separated with a small
energy band gap Eg= 1 eV. At low temperatures (0 K), free electrons are not available in
conduction band. Hence they behave like insulators at low temperatures. The electrical
conductivity increases at high temperatures by the transition of free electrons from
valence band to conduction band. Thus these solids behave like electrical conductors at
high temperatures.

Ex: Silicon Eg = 1.1 ev, Germanium Ey = 0.7ev

Insulators: The valance band and conduction bands are separated by a very large
energy gap E; = 3 eV. At room temperatures conduction band is empty and valance band
is full of electrons. Hence they these solids are electrical insulators. Even at high
temperatures valence electrons are unable to jump in to conduction band.
Ex: Glass, Mica, Ebonite, Rubber etc.,

Semiconductors exhibit negative temperature coefficient of Resistance.



SEMICONDUCTORS

Semiconductors are classified basing on their conductivities and resistivity’s.

Electrical resistivity of semi conductors lies in between those of conductors and
insulators.

In semiconductors, there are two types of carriers namely electrons
and holes.

Hence semiconductors are bipolar materials.
The current in semiconductors is due to two types of carriers namely electros and holes.

Pure semi conductors are known as intrinsic semiconductors.

Example : Silicon and Germanium.
The electrical conductivity can be enhanced by a process called doping. i.e. the
number of carriers can be increased by a process called doping. Doping is the
process of adding an impurity to a pure semi conductor. By adding a suitable
impurity to an intrinsic semi conductor, it will become an extrinsic semi conductor.
The transportation of charge carriers (movement) takes place due to drift and diffusion.

The extrinsic semi conductors are widely used in solid state electronic devices and
semi conductor electronic devices.

To study electronic devices, it is important to study the fundamental electronic
transportation properties in semi conductors.
Intrinsic semiconductors

Usually pure semiconductors are known as intrinsic semiconductors. Examples
are Silicon (Si) and Germanium (Ge) .Silicon (Si) and Germanium belongs to IV group
of periodic table.

Atomic Number of Silicon is 14.

Electronic configuration 1s® 2s* 2p° 3s* 3p?

Atomic number of Germanium is 32.
.Electronic configuration is
15 287 2p° 3s* 3p° 3d'° 4s” 4p*

In Silicon and Germanium, there are four valence electrons. Bonding in these
semiconductors is covalent bonding.
Each silicon Atom forms four covalent bonds with the surrounding electrons from
neighboring Silicon atoms in the silicon Semiconductor crystal.
Here no electrons are available freely for conduction and the semi conductor acts
like an insulator.

The conduction process can be understood with the help of energy band diagram.
In the energy band diagram, we have conduction band and valence band.
The conduction band and valence band are separated by a forbidden energy gap Eg.,
known as energy band gap. The covalent bond representation and the energy band
structure is shown in figure (1) at O°K.

At 0K, all valence electrons are tightly bound to their atoms and are taking part
in covalent bond formation.
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Fig. (1)a: Intrinsic silicon at O’k
— Two dimensional i o 0

Representation. Semiconductor Silicon at O’k.

For  Silicon Eg =1.12 ev.
Germanium Eg = 0.69 ev.

In the figure (1) b
band.

Fig (1)b: Energy band structure of Intrinsic

Conduction band

Valence band

(filled)

E.= Energy level corresponding to Bottom of the conduction

E, = Energy of the energy level corresponding to the top of the

Valence band.
E;= Fermi energy level.
At OOK, the semiconductors behave like insulators.

At O"K, the valence band is completely filled and the conduction band is empty.
Above O’K (i.e. At Room temperature), the valence electrons acquire sufficient amount
of thermal energy. Due to this they break the covalent bonds and make themselves
available as free electrons. Against to creation one free electron, a vacancy is created in
its initial position in the crystal structure. This vacancy is known as a hole.

The hole is a virtual positive charge, having the magnitude of charge of the
electron.

The free electrons after acquiring sufficient thermal energy, and crosses the
energy gap.

These electrons will enter into the conduction band from valence band and occupy
energy levels in the conduction band.

The electrons leaving the valence band create holes in its original place.

Now the valence band will have holes and the conduction band contains electrons.



\ The crystal structu¥e\and energy band structure above O’K is shown in figure (2).
[ / N\
l ‘ Conduction
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Figure (2) b: Intrinsic Silicon — Energy band

\ J structure above O’K.
Figure (2) a: Two dimensional crystal

structure of intrinsic semi conductor silicon
0
above O°K

In an intrinsic semi conductor,

Number of holes = No. of electrons = n;; n=p=n;
n = Number of electrons per unit volume (or) electron concentration (or)
electron density.
p = Number of holes per unit volume (or) hole concentration (or) hole
density.
n; = Intrinsic concentration.
Now np = n; (Law of mass action)

Intrinsic carrier concentration

Above O’K, in an intrinsic semi conductor, each broken bond leads to generation of two
carriers. They are electron and hole.

At any temperature T, the number of electrons generated will be therefore equal to the
number of generated Holes.

Let 1 = Number of electrons per unit volume or electron concentration in the
Conduction band.

P = Number of holes per unit volume or Hole concentration in the valence band.
For an intrinsic semiconductor;

n=p=n; - (1)
Where nj; = intrinsic carrier concentration.
Now the electron concentration in the conduction band is given by

—~(E,—Ey)/KzT
nche( F)/Ks

n=N e(EF—EC)/KBT - (2)

The Hole concentration in the valence band is given by



P=N e—(EF—E,/)/KBT

p=N o B ~Er VK5l

~(3)

Here N, N, are known as pseudo constants, depends on temperature.

K, =Boltzmann constant
T = Temperature in ’K of the intrinsic semiconductor.

2
Now 1, =hp

2 Ep—E¢)/KyT Ey—Eg)/KyT
nl :Nce( F C) B NVe( vV F) B

(Er—Ec+Ey—Er)
n’=N_Ne KT

(-E.+E,)
2 _ KT
n,”=N_N,e
_(EC_EV)
2 _ KT
n,”=N_N,e
-E

g

2 _ KT
n,”=N_N,e

Where E.—E =Eg, Energy Gap.
5]
no=(NN,) et @
From equation (4), It is clear that

i) Intrinsic carrier concentration is independent of Fermi level.
ii) Intrinsic carrier concentration 7, is a function of temperature T.

iii) Intrinsic carrier concentration 7, is a function of Energy gap E,.



Fermi level expression

The Fermi level is the top most occupied energy level. The Fermi level indicates the
probability of occupation of energy levels of the electrons in conduction and valence
bands.

In intrinsic semiconductors, electron and hole concentrations are equal.

i.e. it indicates that the probability of occupation of energy levels in conduction band and
valence band are equal.

Usually in an intrinsic semiconductor, the Fermi level lies in the middle of the energy
gap Eg.

For an intrinsic semiconductors, n=p.

n=N e—(Ec—Ef)/KBT
c

Now

n=N e

(E;-E)Kgr T (1)
(E,~E,)/K,T
Hole concentration, p = N e (/=) K

(By—E,)/KyT

p=Ne 77 )

Equations (1) and (2) represent electron and hole concentrations for intrinsic
semiconductors.

Since n=P.

Nce(Ef ~E,)/KyT (E,~E; )/ KyT

=N,e

ErEe
NV _ e KpT
= E,-E,
NC ( X T )
e B
k) (E,~E,)
k,r _EE
N, e ™ KT
e e
N
(555,08,
— Y _ K,T
NC
N, [2E,~(E,+E,)[/K4T
Vv _ f c v B
> —=¢ (3)
NC

Taking Naparian Logarithm on both sides.



=2E, —(EC+EV)=KBT10ge(%j

C
NV
=2E,=E.+E,+K,Tlog,| —
NC
by (B BT g (1
2 2 N,

* *

For an intrinsic semiconductor 77, = M,

Hence N, =N, Electric field E
E.+E K,T

-'-EFZ( C2 VJJF ; log, (1) “«o <«o <«

.-.EF=E0+EV O— O0—>0O0—

2

Therefore Fermi level lies exactly midway

between conduction band and valence band.

I\
+|I_
v

Expression for intrinsic conductivity
Let us consider intrinsic semiconductors. This Fig. 3 Conduction in an intrinsic
is applied with a potential difference of V semiconductor

volts.

Due to the applied voltage an electric field
E will be established as shown in the figure.
Now the charge carriers drift as indicated in figure (3).This constitutes an electric current
L.
The drift velocity acquired by the charge carriers is given by.
V,=uE e (1)

Where 1= Mobility of charge carriers. E= Electric field



Also the current density due to drift of electrons is given by
J, =nev, (2)

Where n= electron concentration
e = charge on the electron.
v, = drift velocity of the electrons.

From Equations (1) &(2), we get,
J =neu E
o (3)

Where u, = Mobility of electrons.

Current I

Area A
Also the holes will drift in a direction opposite to electrons, the hole current density is
given by
1, = peu,E )
Where p = Hole concentration.
e = charge on the hole.
4, = Mobility of holes.

Current density J=

Now the total current density is given by
J=J,+J,

J =neu,E+ Pey E -—- (5)

J = (n,un +Pu, )eE
But according the classical theory, ohms law is given by
J=0FE --- (6)
Where o = Electrical conductivity
.. From equations (5) and (6), we have

oE :(n,un +P,up)eE

o= (n,un +Pyp)e

But according to law of mass Action, for an intrinsic semiconductors 7= p =1,
;a:@y4+@gJe
o= n,.e(,un + ,up) ---- (7)

Where #; = Intrinsic concentration.

But n, = (NN, )~ e /2Kl (8)
Substituting (8) in (7), we get
o= (NCNV )1/2 e(ﬂn + /,[p )eng/ZKBT

Electrical conductivity for intrinsic semi conductors is given by
~Eg/2KgT
g B (9)

o = Ae



Where 4 = (NCNV )1/2 e(;un + ILlp)

A = a constant
*In pure Semiconductors electrical conductivity is due to both electrons and holes.*

Determination of Energy Gap (Eg) for intrinsic semiconductors
The energy gap between the conduction Band and the valence band is represented as
band gap Eg. For intrinsic semi conductors, the energy gap is given by

—-Eg/2KzT
o=Ade " , 6 = Electrical conductivity. ------- (1)

Where A = a constant
Eg= Energy band Gap.
Kg= Boltzmann constant.
T = Absolute scale of temperature.

Let P = Electrical Resistivity.

1
pP=—
o

1

P = Ao KT

leEg/ZKBT
A

_p Egl2K,T 1
P = Be H— (2) , Where B = > anew constant.

p:

Taking Neparian logarithm on both sides,

log, p=log, (BeEg/ZKBT)

Eg
)
2KgT
log, p=log, B+log,e "™* Y
Inp=InB+ Eg
B
E
1np=2KgT+lnB @) Imp |
B
A
(3) is slope intercept form equation. /I\ """" DA | Y
Where m = slope of the straight line X
From figure (1) mIEIQ / : :
’ O
2K, Ax T —>

Fig 4: Plot of 1/T and In p



Ay
L Eg=| = 2K, -
g ( ij B 4)

If a graph is plotted between % on X-axis

and Inp on y-axis, a straight line graph is
obtained. The straight line graph is shown
in figure (4).
Extrinsic Semiconductors
Extrinsic semi conductors are impure semiconductors. With the addition of
impurities, a pure semi conductors becomes an extrinsic semiconductors.
An extrinsic semi conductor shows good conducting properties due to the
presence of impurities.
Depending on the type of impurity present in the intrinsic semi conductors,
extrinsic semi conductors are classified into two types.

1) N — type extrinsic semi conductors. 2) P - type extrinsic semi

conductors.

N-Type semi conductors
For silicon if a small amount of pentavalent impurity such as
phosphorous, arsenic or antimony or Bismuth is added, we get N-type
semiconductors.
Four valence electrons of phosphorous form covalent bonds with the
adjacent four silicon atoms. The fifth electron is left free. It cannot form
bond with any other electron in the lattice structure. This is shown in figure
(1).a.
At 0%, this fifth electron is bou
nd to phosphorous with 0.045 ev.
The corresponding energy Band diagram and lattice structure are shown in
figure (1) at O’%k. At O%, the valence Band and the conduction band are
separated by an Energy Gap Eg.
Pure Silicon+ Pentavalent impurity =N-type Semiconductor.
*Pentavalent Impurities EX: Arsenic ,Antimony,Bismuth, Phosphorous.*
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Figure (1)a: N-type silicon at O’k

The donor energy level Ed lies below the bottom of conduction band. This donor energy
level contains phosphorous atoms. Which denotes electrons at T>0%k The donor energy
level in shown in the figure (1) b. Above 0%, when temperature is increased. The 5t
bond electron becomes a free electron. This free electron enters into the conduction band.
Due to this the Donor Atoms will get ionized, by denoting an electron to the conduction
band. When temperature is further increased, the covalent bonds will break down. Here
electron hole pairs will be generated.

Electrons will move from valence bond to conduction bond, leaving holes in the valence
bond. At higher temperatures, the energy band diagram of N-type silicon is shown in
figure (2)

The Fermi level varies as shown in fig (2) b at 300°k.

Conduction Band
onduction ban Conduction Band

)K L ) ° ° ° ) ° [ ] L ° )
N N A\ A\ e ° ° ° °
B R ___I__ | __’I‘__I Ef EC )K /!\ 4\ /!\
O B O © @ ©_ . R = s s
___________________ ~A ® @ G D +ve
Donor E, —— == \D
ions Jonor
E, 10ns
Valence band O O OV IO % (()1 O
alence ban

Figure (2)a: Energy band diagram of N-type Figure (2)b: Energy band diagram of N-type silicon at

semiconductor at T>0%k T=300°K and above
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Now the concentration of electrons increases in the conduction band when
compared to holes. Hence the electrons become the majority charge carriers and
holes the minority charge carriers.

The variation of Fermi level is also shown in figure 2( b).

P-type semi conductors

For silicon if a small amount of trivalent impurity such as indium, Gallium,
Thallium or Aluminum or Boron is added, we get a P- Type semi conductors.Three
valence electrons of Boron form covalent bonds with the adjacent three silicon Atoms.
There is not fourth electron to form a covalent bond with the neighboring silicon atom.
This is like a missing bond. This is represented as a missing electron or vacant site.

This is shown in figure (1)

\
// \ /A ,/ \\
. Fo I
S N A
:\_ . e o _:_—. °
T = s Conduction band
(I Vacant site
\ | | fole LT E empty
. \ * C
~_— T T —_—— b — — — : —_— T
- . ° . . * =
T —"' "®——” Be T TTTTTTTTTTTOT Ei
[ ) [ )
Lo { .l ! & Ep, o——¢———¢6——— 0o »  Acceptor level
|‘ " o I 1™ Vacant sit. Ef
. L V) oole) Ey
- T . . Vi = —— Acceptor level
————— - —_ - Valence band contains acceptor
(I . atoms
o e L filled
Vo v
\J \\ /’ \ J
Fig. (1)a: P-type silicon at O’K fig.(1)b: Energy band structure of P-type

silicon at 0"k
This missing electron is called Hole. The energy Band structure of P-type semi
conductors is shown in figure (1) b.

At 0%, the conduction Band is empty and the valence B and contains
electrons.

The acceptor energy level E, is just above the top of the valence Band.
Acceptor energy level E, contains the acceptor atoms.

Here E, = Bottom of the conduction band.

E,= Top of the valence band.

E. = Intrinsic energy level.
The Energy band structure of P-type silicon is shown in figure (2) a above
0’k
When the temperature is above O°k, the covalent bonds with the silicon are
broken down.

11



E4 level contains acceptor negative ions.

Conduction band

71( Er= Fermi energy level

Valence band

Fig.(2)a: Energy band structure

Here same electrons are released and the acceptor atoms accept three electrons and there
by they become negatively charged ions. There are called negative acceptor ions. Here

of P-type silicon above O’k

the Fermi energy level lies just above the top of the valence bond and below the acceptor

level.

The energy band diagram of P-type semi conductors is shown in the figure (2) b. at T =
300°%.At and above 30001(, the bonds in silicon with further breakdown and the electrons

will move from valence band to conduction band. Therefore electrons are available in the
conduction band. At 300%k the Fermi level varies as shown in the figure.

Conduction band

4; Er= Fermi energy level

Valence band

O O O O O ée/HoleS

Fig.(2)b: Energy band diagram of P-type silicon at 300°K & above

Pure Silicon+ Trivalent impurity =P-type Semiconductor.
*Trivalent impurities EX: Indium, Gallium,Thallium, Aluminium,Boron.*
Doping: It is the process of adding an impurity to a pure Semiconductor.
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Law of Mass Action
The electron concentration in intrinsic semi conductors is given by

n=N.e (&) /KT
n=Ne" 5k T e (1)

Similarly in an intrinsic semiconductors, the hole concentration is given by

P=N"" kT

P=N ")k, T —Q
Where N, and N, are pseudo constants.

K, is the Boltzmann constant.

T is temperature in °K.

Eris the energy of Fermi level.

Ec is the bottom of the conduction band.

E, is the top of the valence band.
In an intrinsic semiconductors n=p=n;

E.-E.)/ KyT E,—E; )/ KzT
Sonp = Nce( L) Ke .Nve( /)
. E;—E,)/K,T E,~E,;)/KyT
np = ni’ :Nce( yE) s .Nve( )k
_(E;~E.)/ KT

np=ni’ =N_,N,e

_Eg/K,T

np=ni’=N_N,e

—n = (NCNV )1/2 o F8I2KsT )

The above relation shows that for any arbitrary value of E, the product of n and p is a
constant.
This is known as Law of Mass Action
For an extrinsic semiconductors, the electrons and hole concentrations are given by
expressions similar to Equations (1) and (2)
For an N-type semiconductor

(E;—E.)/ KT

WhereE, - E, = E,

N =NeEEST “
(E,~E; )/ KyT
e v = B
P =N BVt 5
Where n, = Electron concentration. And P, = Hole concentration.
NOW Nr‘an :NCNVe(E/Eg)/KBT.Nve(E‘,—Ef)/KBT

/KT

n,P, = N.Nye ")

n-n
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nP,=N.Nye ™™ (6)
Where E, - F, =FE,
n P =ni’ - (7)

The above expression (7) is known as Law of Mass action for N-type semi conductors.
For P-type semi conductors, the law of mass action is given by

ppnp = niz ----- (8)

Equations (7) and (8) imply that the product of majority and minority carrier
concentrations in extrinsic semi conductors at a given temperature is equal to the square
of Intrinsic carrier concentration at that temperature.

The law of mass action is very important in conjunction with charge neutrality condition..
This enables us to calculate minority carrier concentration. This law states that the
addition of impurities to intrinsic semi conductors increases the concentration of one type
of carrier, which consequently becomes majority carrier and simultaneously decreases the
concentration of the other carriers, which is known as the minority carrier.

The minority carriers decrease in number below the intrinsic value.

This is because there is an increase of majority charge carriers Recombination rate.
According to the law of Mass action, the product of majority and minority carriers
remains constant in an extrinsic semi conductors and it is independent of the amount of
donor and acceptor impurity concentrations. When the doping concentration levels are
high, the minority carrier concentration will be law and the majority carrier concentration
will be high when the doping concentration levels are low, the majority carrier
concentration is low and the minority carrier concentration is high.

Charge neutrality
Let us consider extrinsic semi conductors with both donor and Acceptor impurities.
At usual ambient temperatures, we may assume that impurity atoms are ionized and no
charge carriers are created due to breaking of covalent bonds.
Now concentration of electrons n = concentration of positively ionized donor impurity
atoms, Nj.
Concentrations of holes P = concentration of negatively ionized acceptor impurity atoms
Na.
Now the total charge neutrality of the material can be written as
P+N,=n+N, - (1)
According to law of Mass action, in any semiconductor, under thermal equilibrium

condition, the product of the number of electrons and number of holes is a constant.
np=ni> (2)
Where ni = intrinsic carrier concentration.
) .2

Also n="1" and pzﬂ

p n
Now from equation (1), we have
p=n+N,—N,

14



But n=—

2
p :£+(Na _Nd)
p
= p>=ni’ +P(N,—-N,)
= p’~P(N,-N,)—ni*=0
This is a quadratic equation of the type
ax’ +bx+c=0

_N,-N, +\/(Na—Nd)2 +4ni’

P
2 2
N N 2 1/2
p Moo | NamNa) - (3)
2 4
Similarly we can show that
1/2
- N,-N,)
n:N"’zN"i{( 2 J ) +ni2] ----- (4)

Equations (3) and (4) represent the equations for charge densities.
Case I: For intrinsic semi conductors.

N,=0
Hence we get n= p =ni -—--(5)
Case II: N — type semiconductors

) 1/2
Now p=_Ndi{(_Nd) +m’2}

2 4

—N—di (—Na’2 + 4111'2)1/2

P=" 2
~Nd +(~Nd* + 4m'2)”2
p= 2
4ni® 1
—Nd £ Nd*| 1+ ——
Nd
p:

2
Since p cannot be negative

4ni? i
—Nd + Nd(l + J
N

dZ

p=- 5

Expanding using power series and neglecting higher power terms



.2

P — _N_d + N_d 1 + 2I’ll

2 2 Nd?

N Nd  Nd? 2ni?
P=- + + 5

2 2 2 Nd

.2
p ni - (6)

" Nd
Similarly electron concentration

Nd (Ndz + 4ni ]”2
n :—+ -

2 4

Nd Nd(. 4nit)”
n=——+—1/1+

2 2 Nd*

Expanding using power series and neglecting higher power terms

Nd Nd| 1(4;11‘2} }
n=—-~+—-/\1++— Fooeereann,

2 2 2N’
Nd  Nd 2ni’
n=—+—\1+—;
2 2 Nd
.2
n=Ng,+ﬂ
N,

d
At low temperatures ni [l 0

Hence nUN, - (7)
Case III : P-type semi conductor
In this case N, =0

r 2 1/2
n= —&i (_]Za) + niz}

Now

—4 2 1/2
Na a _
n=—-—= —+n12}

Na+ Na* + 4ni? o
2 4
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1/2

Na £ (Na2 + 4ni2)

2
4ni* i
—NaiNa(1+ J
a
n=
2

Since n cannot be negative

4ni? i
—Na + Na[l + ]
Na

n=

2
Expanding using power series and neglecting higher power terms

Na Na 1( 4ni?
n=———+—/\l+—| —5 |+......
2 2 2\ Na

Na Na( 2mJ
=—— I+

2

% }VZ Na 2ni’
n=

2 Na*

o ~(8)

Na
Similarly Hole concentration

Na Na’ "
P :—{ +ni2}

P_
4
a J_r(Na2 + 4111'2)1/2
P=
2
4ni? i
NaiNa(l—i— N 2]
P- a
2
2 1/2
P—& Na 1+4mz
2 2 Na

Expanding using power series and neglecting higher power terms.

_ ,
poNa Naf| Lfan)
2 2 i 2\ Na
Na Na 4ni2j

P=—+—1+—
2 2 Na
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Na Na Na 2ni’
P=—+—+——;
2 2 2 Na
.2
P=Na+t
Na
At low temperature ni [l 0

Hence pll Na -—--(9)

Equation of Continuity
This equation governs the behavior of charge carriers in a semi conductor.

This equation gives a condition of dynamic equilibrium for the density of charge carriers
in any elementary volume of semiconductors.

This is based on the fact that charge can neither be created nor be destroyed.

When an N-type semiconductor is exposed to
light, excess carriers are generated at the exposed
surface.

The generated carriers are in the form of electron
— hole pairs. Since the given semiconductors are
N-type, here the excess carriers are holes.

These charge carriers diffuse throughout the
material. Hence the carrier concentration in the —»-»
semiconductor is a function of both time and I
distance.

Consider the infinitesimal volume element of are j/ EpR - - ———
A and length dx as shown in figure (1). ;

P holes /m* Area A

I+dl

X x+dx

Figure (1) Conservation of charge

Let P be the average hole concentration within this volume. carriers
Let 7, = Mean life of holes.
Now the holes lost per unit volume by recombination is £
"
s . . P
The rate of loss of charge within the volume under consideration = e4dx — -------- (1)

Ty

Recombination : Electrons combining with holes is called recombination
Let g = Thermal rate of generation of electron hole pairs per unit volume.

Now rate of increase of charge within the volume under consideration = eAdxg -—--(2)

Let I = The current entering the volume at x.

I +d I = The current leaving the volume at x-+dx.

It is found that the current leaving the sample has increased by an amount dI.

This means that these is a decrease of hole concentration. Now the decrease of holes (in
coulombs) per second from the volume under consideration = dI.

Due to above stated three effects, the hole density changes with time.

Now increase in the number of holes per second

18



Within the given volume = echl—pdx 3)
t

According to conservation of charges, charge can neither be created nor be destroyed.
. Increase of Holes = generation of Holes — loss of Holes.

eAd dxd—p =eAdxg — eAdxﬁ —dl — 4)
dt Tp

Now total current due to excess carries (holes) in given by
Total current = Diffusion current + drift current

I:—AerZ—p+Ape,upE 4
X

Where E = Intensity of the electric field with in the given volume when there is no
external field applied, then E = 0 under thermal equilibrium conditions the hole density
attains a constant value Py

Under these conditions dI=0 and j—p =0
t
Now equation (4) becomes

O =eddxg — eAdxi

Ty

=Sg="t (6)

Here g = generation rate.
This equation (6) indicated that, the rate of generation of holes is equal to the rate of loss
due to recombination under equilibrium conditions.

Also (5) = I =-4eD, Z’—p + ApeupE
X

2
Now % =—AeD, CZZT? + Aeup (%}E ----------------------- (7)

From equations (4), (6) and (7), we get

P
eADxi]—p — eAdx 2 —eddx L

t T, T,

2
—| —AeDp dp Py Ae,up(dijdx
dx’ dx

P

_ 2
:sd—p:—(P P()]+Dpdp—yp(d—ij -------------- ®)

A ZA%[P P}MD PP gl AL

dt T dx? dx

P
This equation (8), is called equation of continuity, since hole concentration P is a function
of tome t and distance x, we have to use only partial derivatives.
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— &> orly, [Tt ==

op P-F, o’p (8[)]
L __ +D, Ly | P 9
dt ( T ] P dx? Hr dx ©)

p
For holes in an n-type semiconductor

op, __(E-F,), &P op
St =224 D L— u E— 10
Ot T, e T (10)
For elections in a p-type semi conductor
on (n —n ) o’n on
L=t 22D —F+ puEl—2- 11
ot T, o T (1)

This sign difference between the above two equations in due to the different directions of
drift of holes and electrons in an applied electric field.
Hall Effect:
Some times it is necessary to determine whether a material is n-type or p-type. Measured
conductivity of a specimen will not give this information since it cannot distinguish
between positive hole and electron conduction.
The Hall Effect can be utilized to distinguish between the two types of carriers, and it is
also useful in the determination of density of charge carriers.
Hall Effect definition
“If a piece of conductor or Specimen (metal or semiconductor) carrying current is
subjected to a transverse magnetic field, an electric field is generated inside the
specimen in a direction normal to both the current and the magnetic field”

This phenomenon is known as Hall Effect. The generated voltage is known as
Hall voltage. The corresponding electric field is known as Hall Electric field.

Let us consider a sample having thickness t and width b. the sample is a rectangle
sample, as shown in the figure(1).

y
+ 444 fFace (2)

t
X Bev
__\ -

Electrons
¥s Face (1)  F experience a /
z force F in the

down ward
direction due to Fig (2) Motion of electrons in an n-type

B semiconductors

Figure (1) Hatt effect

Assuming that the material is an n-type semiconductor, the current flow consists

of almost due to electrons, moving from right to left.
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This corresponds to the direction of conventional current from left to right as
shown in figure (1).

Current I is in the positive X-direction and the magnetic field B is applied in the
positive Z direction. According to Flemings, left hand Rule, The electrons experience a
force, called Lorentz force. This Lorentz force acts in the negative Y-direction.

Now Lorentz force F;, = Bxev ( cross product)

F, =Bevsin@ - (1)

Where v = velocity of electrons.

Since the velocity of electrons and B are perpendicular .6=90°

Fi=Bev -------mmmmm- (1)a

Electrons experience a force downwards in the negative Y-direction and the
positive charges drift upwards in the positive Y-direction. As a consequence, the lower
surface collects negative charge and upper surface becomes positively charged. Due to
this an electric field called Hall electric field will be established between upper and lower
surface of the specimen.

This hall electric field Ey establishes a potential called the Hall Voltage Vy.
The hall field Ey exerts an upward force Fy on the electrons as shown in figure (2).

Y Oy — )
But total force on the electrons, is given by
Bev+eE, =0 3)
The above equation is called Lorentz equation. Under equilibrium conditions.
~E,=-Bv - 4)
Now the current density in the X-direction is given by
J, =nev - (5)
']x
Now (5) = V= - (6)
ne

Here n = electron density (electron concentration)
e = charge on the electrons.

Now from (4) and (6),
BJ.

E, =- (7)
ne

Now the Hall coefficient Ry can be described as follows.
For a given semiconductor electron concentration n is constant and charge on the electron
e is constant.

S EyaBJ,
Ey =RyBJ, - (8)
Where R,, is a constant of proportionality.
1
SRy, =—— - 9)
ne
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Here E,,B and J_ are measurable. Hence Hall coefficient R, and carrier density ‘n’

can be found.

Determination of Hall coefficient
Let t be the thickness of the rectangular slab.
b be the width of the sample.

Now the Relation between E,, and V,, is given by

Vi =Eyt - (10)
Also 8)= E, =R,BJ, = oo (8)
Now from (8) and (10), we get
VH = RHBth - 9)

But J_ = current density

1 current

Jx =_X =
A area
]X
J, = E (Since A = Area of cross section
A=Dbt)
.. Equation (9) becomes
1
V,=R,BX-=/
H H b /
1B
Vi =Ry )[;
V.b
j— R = H 10
=75 (10)

V,, b,I_ and B all are measurable and substituting them in equation (10), we can

obtain the value of Hall coefficient R, .
Note that the polarity of V,, will be opposite for n and p type semiconductors.

Carrier concentration and mobility

Hall coefficient R, = —L
ne

1 .
R,, =— (Magnitude)
ne

: 1 )
Electron concentration n = —— can be determined.
R,e
Now electrical conductivity o =neu .
Where = mobility

Mobility u = 9 , U=R, 0
ne
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For a P-type material Hall coefficient is positive.

RH

1 . S
=—, Where p= hole concentration. e= Charge on hole Which is +ve.
pe

Application of the Hall Effect:

1.
2.

[98)

Useful in determining whether the given semiconductor is n-type or p-type.
Hall Effect can be used to find the carrier concentration and mobility of
carriers.

Hall Effect is used to measure the magnetic field.

Hall Effect semi conducting devices are used as sensors to sense the magnetic
fields.

The Hall Effect is used in magnetically activated electronic switches. They are
used as non contacting key boards and panel switches.
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PN Junction
When a P type material is suitably joined with an N type material, a PN junction is
formed. When an intrinsic semi conductors is simultaneously doped with P-type
and n-type impurities, a PN junction is formed.

The PN junction may be formed by crystal growth or alloying or diffusion
method.

The plane dividing the two zones is called PN Junction.

The PN junction is shown in figure (1) a

P ~E n
. | ® — +veionized Donors
Otete 9198 & &. © — - veionized Acceptor
I
O+ 0+0 1010 ® @ @. + — Hole
+ R - — Electron
© 6 © 0lol o &
+ + I
|
v : Fig (1) a: a Pn junction
Electrons A '
[ oles '
=
2
g
2 10 Electrons Fig (1) b: Diffraction of electrons and holes
o
O
' > X
| < IZ\ BI
Space 1 X Space charge region
charge AN .
density p A/ ', X
Il |
: : : Fig (1) c: Space charge region for an alloy or
abrupt junction
A [ [
[ [
.
Electric NS *X F ig (1) d: Electric field due to space charge
field E T -
: ! : region
[ [
A I vyl |
X x
X1 | : X2 Vg Fig (1) e: Barrier potential (or)
Voltage N/ | \L contact potential
Vv | [ N
=71 Vi
(I |
x=0
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In the p side ‘+’ represents holes. In the n side ‘-’ represents electrons.

In the n-side there is a high concentration of electrons.

In the P- region there is a high concentration of holes.

Therefore, at the junction there is a tendency for the electrons to diffuse from n-
region to p-region and holes from p-region to n-region. This process is called diffusion.

When the free electrons move across the junction from n-side to p-side. The demotions
become positively charged. Hence a not positive charge is built on the n-side of the
junction.

The free electrons that cross the junction uncover the negative acceptor ions by
combining with the holes.

Therefore a not negative charge is established on the p-side of the junction.

This not negative charge n the p-side prevents further diffusion of electrons from
n-side to p-side.

Similarly the net positive charge on the n side prevents further diffusion of holes
from p side to n side.

Due to this a barrier is set up near the junction.
This barrier prevents further movement of charge carriers i.e. electrons and holes. This
barrier is called potential barrier.
It should be noted that outside this barrier an each side of the junction. The material is
still neutral.

Only inside the barrier, there is positive charge on n side and negative charge on
p-side.

This region is called depletion layer. This is so because mobile charge carriers are
depleted in this region.

It is clear that a potential barrier Vg or Vp is set up.

As a consequence of this an electric field is established across the depletion layer.

The Barrier potential is about 0.3v for Germanium and 0.72V for silicon.
The depletion layer and the Barrier potential are shown in the fig (1)a and Fig (1)e.
The width of the depletion region is less than 1 um (~0.5 wm). Since the depletion

region has immobile ions which are electrically charged it is known as space charge
region. The space charge region is shown in figure (1) c. the established electric field is
shown in figure (1) d.

Hence across the junction no current flows and the system is in equilibrium.

To the left of this depletion layer (in the P side), the carrier concentration is P ~ NA.

To the right of the depletion layer (in the n side), the carrier concentration is n~ Np.
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Width of depletion layer
For a PN junction, the potential barrier is shown in the figure below.

Figure (1) Potential Barrier in a Pn junction

This figure shows the space charge region in the two sides of the junction and the
consequent potential variation.
Let X, = width of the space charge region in the P side.

X, = Width of the space charge region in the N side.
The area of the depletion layer in each region depends on the concentration of the
impurities in the regions.
The effective areas of the depletion layer can be calculated using Poisson’s equation.
According to Poisson’s equation, the second derivative of the potential with respect to
distance is proportional to the charge density.
In one dimension, the voltage varies only in the X-direction only. The length of the
crystal.
Now the Poisson’s equation may be written as

dv
dx? “-p
v —p
=— - (1
dx? IS M

Here V = voltage
P = volume charge density
E = Permittivity of the medium.
In the position of the depletion layers situated in the P-region near the junction the charge
density may be given by
P=-eN, —--(2)
Where N, = Density of Acceptors Atoms.
e = charge on the electron.
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Negative sign is used, since acceptors atoms are negatively ionized.

To find X, in the P-region, we use Poisson’s equation.

i.e. from equations (1) and (2), we have
d’v _—-p _€Na

o’ e e

On integrating the above equation, we get
i ( ﬂ j _eNa
dx\ dx IS

= d(ﬂj = ﬂdx
dx IS

:jd(%):j%dxm

S

:ﬂ:[%}x+A ----- 4)
dx IS

Again (4) (4)=>dv= %xdx + Adx
€
Integrating the above equation, again

J-dvzj %xdx+_" Adx+ B

2
V:@X—+Ax+3 -—--(5)
e 2

Where A and B are the arbitrary constants. A and B can be determined by applying
boundary conditions.
We assume that V = O Where X=0, so that all voltages are measured with respect to the
potential at the boundary between P-type and N-type materials.
Using this boundary condition, we get

0=0+0+B=B=0
In the p-type semi conducting material, the potential is constant at the end of the
depletion layer or depletion region.

Thus the depletion region may be assumed to end at a point x =—X, where % =0
X

At this point the field strength is zero.
Using the condition in equation (4), we get

0= (ﬂj(—xlﬁ A

€
A= eNa I (6)
€
Now substituting the values of the constants A and B in equation (5), we get
1 2
- _(eNax j+ eNa <x 7
2 € €

AtV =x,,wehave V =V,
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. from (7), we have V =V

1( NaxlzJ [ Naxlzj
~Vi=—|e —le
2 IS IS

_eNax 1’

€

eNax1?
2e

In the same manner the Poisson’s equation may be applied for the position of the
depletion layer situated in the n-region near the junction. Now the charge density in the n-
region, of depletion layer is due to positively ionized donor atoms,
The charge density is given by

-V =

==

p=eN, 9)
Now the Poisson’s equation is given by

d -p

—_— = e 10

a’ e, (10)
In equation (9), Nd = Density of Donor Atoms.

e = Charge on the electron.
From equations (9) and (10), we get

d’v  eN,
—_—=——s e 11
dx’ € (b
dx \ dx €
N d(ﬂj __eNd
dx €
On integrating the above equation
J- d(ﬂ]:—j —eNddx+c
dx €
D _Noyie - (12)
dx €
By integrating the equation (12), we get
dv=— eN xdx + cdx
€
J- dv :—I eNdxderI cdx + D
€
2
_ LN i - (13)
2 €

Where C and D are arbitrary constants. C and D are determined by applying the boundary
conditions.

Where x=0, v=0

.. from (13), We get D =0.

In the n-region, the potential in constant at X =X, .
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AL X =X2,ﬂ= 0
dx

.. from equation (12), we get ¢ = Ny (14)
€
1 2
Thus V __LeNgx +ﬁxX2 ..... (15)
2 € €

At x=X,,V =V,, now we get
1 2

v, :__[eNdxxzj_'_(eNdezz
2 € €

2
_eNd xx,
€

v,

This V, is the potential at x=X,. At x= X, the depletion layer in the n-region will

ends.
Now the potential barrier at the junction is given by

Va=V,=(V)
Ve=V,+1
- eN, X; l+ eN,X; 1
€ 2 € 2
Vy =——(NaX} + NdX?) - (17)
2¢e
The equation of charge neutrality is given by
eN X, =eN,X,
X
x, =N - (18)
Nd
Now substituting the value of X, in equation (17)
B 2y2
V,= £ Mazl_,_ NaX12
2e| M
VB:i a’ 12+NaX2:|
2e , !
L d
X, = 2€V,
eN,| 1+—*
Nd
1/2
X, = _2€Vy —--(19)
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From equation (18) and (19), we get
1/2

2€Vl,
eN, 1+N"
Nd
2€V;

N,
e—"N, 1+N”
N, N,

r 1/2

2€V,

eNd(1+N“]
Nd

X,

- (20)

Now the total width of the depletion layer is given by

X=X +X,

1/2 r

2eV,

eN,| 1+ N,
N, )|

r 1/2

2eV,

X =
eNd[1+

a d

d

L e(N,+N,) (N Nd)”2
[2ev,(N,+N,)]"
eN,N,

a

N,
N

2eV, N7 (N,
N v N
eN”(N +N) a d

1/2

—(21)



Diode Current Equations
The diode current pertaining to VI characteristics is given by

I= I{e[';r) —1]

Where I = Diode current
1,= Diode reverse saturation current at room temperature.

V = External voltage applied to the diode.
1 = A constant

n=1 for Germanium
n =2 for Silicon
V.= Volt equivalent temperature or thermal voltage.
K,T
q
K, = Boltzmann constant
K, =1.3806 x 10°JK'
q = Charge on the electron
q=1.602x10"" coulomb

T = Temperature of the junction in °K .
When the diode is reverse biased, the current equation is given by

Vv, =

I=1, e[77j -1

Light Emitting Diode (LED)

Light Emitting diode (LED) is a PNjunction diode that emits light when forward biased.
The light is emitted by the forward biased junction by a phenomenon called
Electroluminescence.

The materials that are used for fabricating LED are Galliumphosphide (GaP), Gallium
Arsenide Phosphide (GaAsP) and Gallum Arsenide.

Usually direct B and Gap semiconductors are used for the fabrication of LEDs.

When an LED is forward biased, carrier recombination takes place i.e. electrons from the
n-side cross the junction and recombine with the holes on the p-side.

In silicon and Germanium semiconducting P, junctions greater percentage of energy is
given out in the form of heat and the emitted light is not visible.

A forward biased LED and its symbol are shown in the figure (1)

P n

IIW I

+1 .
Fig (1) a: Forward biased Fig (1) b: Symbol of LED
LED
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When an LED is forward biased, the electrons and holes move towards the junction and
recombination takes place. As a result of recombination, the electrons present in the
conduction band side of n-region fall into the holes present in the valence band side of
P-region. When recombination takes place, energy emitted out in the form of light.

The emitted light will have energy equal to the energy difference between conduction
band and the valence band. For every recombination light energy is emitted.

The excess energy in the process of recombination is given to the emitted photons.

The light emitted is directly proportional to the forward bias current in the LED.

The energy band diagram for the LED is shown in the figure (2)

Conduction band; P-Region

CISKS)

Light <— l

N-Region;
conduction band

DDDDDD
Valence band \ SASASISES)
DDD

Figure( 2) Energy Band diagram of an LED
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The basic structure of a LED is shown in the figure (3). Here an n-type layer is grown on
a substrate and a p-type is deposited on it by diffusion.

Since carrier recombination takes place in the p-region, it is kept uppermost.

Metal contacts are made on the p-layer act like anodes.

Current is allowed through these anodes. A thin metal (gold) film at the bottom will act
as a cathode. This also provides the reflection of light by the thin metal layer back into
the medium.

LEDs are usually encased to protect their delicate metal contact wire.

The emission of light and its efficiency can be increased by increasing the junction
current (injected current) LEDs are used to radiate different colors of light. The
wavelength of light emitted depends on the energy gap of material.

The following table shows the colors emitted by different materials.

Material Colors Wavelength
GaAS IR 9000
Gap Green 5600
GaAsp Yellow 5900

Usually a protective resistor of 1 k a or 1.5 ka is connected in series with the LED in a
circuit. LEDs operate as a forward bias voltage of 1.5 volt to 3.3 V. Usually the current is
in mill amperes.

The power requirement is 10 mw — 150 mw.

The switching time is around 1ms.

The wavelength of emmited light is given by

e
Eg
Emitted light Metal tact (+
. mitted lig +/ etal contact (+)
e — Electron
L T T T T T T Q- O — Holes
p
O O O O O O
T T T T T T ~—Junction
, l l l l l l Metal contact (-)

\/

Figure (3) Structure and Recombination of electrons and holes in a LED.

Applications of LED
LEDs are used in
1. Intercoms
2. Digital clocks
3. Digital display systems
4. Instrument display systems

33



Power on/off indicating
Optical switching applications
Optical communication for energy coupling circuits
Opto isolation circuits
9. Solid state video-display system
10. used in computers
11. Calculators
12. Electronic panels
Photo diode
A Silicon photodiode is a light Sensitive Device. A photo diode is also known as photo
detectors.
A photo diode converts light signals (optical signals) into electrical signals.
A photo diode must be always reverse biased. The reversed biased photodiode and its
symbol are shown in figure (1)

o =N

Convex
4~ lens Light
P n \1 \1
— >}
2R " | :
|
O
+
v
Figure (1) a: Photo diode and Figure (1)b: photo diode symbol

reverse bias

The photodiode is made of semiconductor PN junction kept in a sealed plastic or glass
casing.

The casing is designed in such a manner that the light rays are allowed to fall on one
surface across the junction.

The remaining sides of the casing are painted to restrict the penetration of light rays.

A convex lens permits the light rays to fall on the junction. When light falls on the
reverse biased PN junction photodiode, electron — hole pairs are generated.

The movement of these electron hole pairs in a properly reverse biased circuit results in a
current.

The energy band diagram of a photodiode is shown in figure (2)
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P-Region

<~ 9 Ev

Depletion region

Figure (2) Energy band diagram of a photodiode

When reverse bias is applied, the depletion layer is widened, the junction capacitance
reduced. Here in this situation the junction will not conduct current. However the reverse
biased junction can conduct current when free carriers are generated in the junction by
radiation of sufficient energy.

The magnitude of the photo current depends on the number of charge carriers
generated and also on the illumination and the diode.

The photocurrent also depends upon the frequency of light falling on the
photodiode.

The magnitude of the current with large reverse bias is given by

1—15+10£1e’7”J

Where I, = Reverse saturation current

I = Short circuit current which is proportional to the intensity of light.
V = Voltage across the diode.
V.= volt equivalent of temperature.
1 = A constant
For  Ge, n=1
Si, n=2
The volt ampere characteristics of a photodiode are shown in the figure (3).
The reverse current increases with increase in illumination. Even if there is no light is
falling on the photodiode, there is a minimum leakage current called dark current,
flowing through the device.

Germanium has a higher dark current than silicon, but it also has a higher level of
reverse current.
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Fig(3) V-I Characteristics of Photodiode
Y

Applications of photodiode
1. Photodiodes are used as light detectors, demodulators and encoders.
They are used in optical Communication systems.
They are used in high speed counting circuits.
They are used in high speed switching circuits.
They are used in high operated switches.
They are used in computer card punching and tapes.
They are used in electronic control circuits.
They are used in retrieving of sound from sound track film.

S A o

Liquid Crystal Display (LCD)
Liquid crystal displays came under passive types of display since no light generation is
required.
There are two types of LCD’s namely.

1) Reflective type, requiring illumination on the front side.

il) Transmittive type requires illumination on the rear side.
The liquid crystal state is a phase of matter exhibited by a large number of organic
molecules of organic material over a restricted temperature range.
The material becomes a crystalline solid at the lower temperature range while it changes
into a liquid at the upper temperature range.
In the liquid state, molecules will have the shape of rod. In any small volume of liquid
crystal state the orientation of the molecules is described in terms of a unit vector called
Directors.
They are basically two liquid crystal materials commonly used as LCD’s.
They are Nematic and Cholestric
The arrangement of molecules is shown in the figure (1) and figure (2) for Nematic and
Cholesteric type of LCD’s.
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The properly used liquid crystal structure (NLC). In Nematic type the molecules are
aligned parallel to each other as shown in figure (1). But these molecules are free to move
relative to each other. Hence they represent a liquid phase. Here the molecules will have

complete translational motion.
Helix Axis

OOOO =

00 0 N T vy
=
00,00 <=
OOOOO e
O O O U 0:7 U U U Pitch
Molecules 0 0 D TO 0 !
Unit vector e e
director 00 o o0
Figure (1) : Arrangement of |
Molecules in a Nematic :
liquid crystal P N N
) N L 4
o > /0

Figure (2) /frrangement of molecules in a
cholesteric liquid crystal

The liquid is completely transparent. When the liquid is subjected to a strong electric
field, the well ordered liquid crystal structure is disturbed.

This makes the liquid to polarize and turns opaque. When the electric field is removed,
the liquid crystal regains its original structure and form.

Here the material becomes transparent.

In the cholesteric phrase the molecules are arranged in a large number of planes.

In each plane all the molecules are arranged in the direction of director as shown in figure
(2).

The director directions thus display a helical twist through the material.

The distance between planes having the same director’s direction is called the Pitch P.
Depending on the construction LCDs are classified into two types.

Dynamic scattering type

The dynamic scattering type liquid crystal cell is shown in the figure (3).

This consists of two thin glass plates, each coated with tin oxide on the inner side. This is
transparent and act as electrodes.

These two glass plates are separated by a liquid crystal layer of 5-50 um thick.

The front glass sheet is etched to produce a single or multi segment pattern of characters.
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When a week electric field is applied to a liquid crystal, the molecules align in the
direction of the field.

When the voltage exceeds a certain threshold value, the liquid crystal structure entirely
distributed and the appearance changes.

As the voltage further increases, the flow becomes turbulent and the material turns
optically inhomogeneous.

In this disordered state, the liquid crystal scatters light.

Thus when there is not external electric field applied, the liquid crystal is transparent.
When electric field is applied, the disturbance causes scattering of incident light in all
directions. Here the cell appears bright.

Field effect type

The field effect type of liquid crystal is similar to Dynamic type. This is also known as
twisted nematic field effect display.

Its construction is same as dynamic type. But it is sand witched between two pieces of
polarized.

The polarized directions of the two polaroids are perpendicular to each other.

1* polarized is called polarizes and the 2" one is called Analyses.

The 1% polarizes is infront of the LCD cell and the 2™ one is at its back. Both of these are
arranged perpendicular to each other. Beyond Polaroid 2 a reflector is placed in reflective
mode.

When a beam of polarized light passes through the polarizes, plane polarized light rotates
though 90° as transverses the cell.

When no electric field is applied, it passes through the analyses and then reflects back at
the mirrors and light retraces the path.

Thus when no field is applied the device reflects light and appears bright.

When a field is applied, the direction of polarization of light traversing the cell is not
rotated. Hence it is stopped by the second polarizes (Analyses).
No, light is reflected from the device and hence it appears dark. This means that in the
absence of the field he incident light is reflected while it is blocked when the field is
applied.

Advantages

1. Liquid crystals consume small amount of energy.

2. Hence the voltages required are loss.

3. Because low power consumption, a Seven segment display requires about 140w

(20w per segment), whereas LEDs require 40mw per numerical.

4. They are economical and cheap.

In a seven segment display, the current drawn in 25pA for dynamic scattering cells
and 300puA for field effect type cells.

LCDs require AC voltage supply.
They are economical and cheap.
They are used as temperature, measuring sensor.
. Since thin layers are used, they are must suitable for display devices.
isadvantages
Angle of viewing is limited.

External light must be used.

e

D — 5000 o
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3. LCDs are slow devices. The ON and OFF times are quite large. ON time is a few
ms. and off time is 10 ms.

4. When used with DC, there life time is less. Hence they are used with AC supply
only.

Inner side coated with tin

oxide
Glass plates Liquid crystal w_|— Spacer to adjust the length
of the crystal

Innerside coated with tin oxide
(Act as electrodes)
Figure (3) Construction of dynamic scattering LCD.
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Drift current:

In a perfect crystal the periodic electric field enables electrons and holes to
move freely as if in vacuum.

When there is no electric field, there is no net current. This is because
charge movement in any direction is balanced by charge movement in the
other direction. In the presence of the electric field field, the carriers
experience directed movement. This is called drift.

Definition Of drift: Forcible movement of Charge carriers under the
influence of an Electric field is called drift.

With the field carriers drift and this results in current flow through the
semiconductor.

Movement of charge carries under the influence of an applied electric field
is called drift.

Electric field

® E|Ettiﬂ_ﬂ ﬂo‘w .

= CO—e —e

Hole flow

Fig. 1. Drift in semiconductor

The current density is given by

J=neV, . (1)
Here V, = drift velocity.
Also V,aE =V, = uE ------------- Q)

Where p is called the mobility of the carriers. E= Electric field.
From equations (1) and (2),

Now current density J=nev, (3)

J =neuk

In semi conductors, the current flow is due to electrons and holes.
Electron current density is given by

J, (drift)=ney,E  -—-rmrmeev (5)
Hole current density is given by
J, (drift) = pept B —-enenneee (©)

The two charge carriers move in the opposite direction.
Now the total drift current density is given by
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J(drift)=J,(drift)+J ,(drift)
J(a’rift) =neu,E+ peu E
J(drift) = E(neun + peu, ) -------- (7)
For intrinsic semiconductors 77 = P = 1,
J(drift) = En, (e,un +eu, )

J(drift) = niEe(yn + ,up)
Equation(8) gives current density equation.

Diffusion current :

Usually directed movement of charge carriers will give rise to
electric current.

The movement of charge carriers may be due to either drift or
diffusion.

Usually non-uniform concentration of carriers gives rise to
diffusion.

Definition: Movement of charge carriers from high
concentration region to low Concentration region in a
semiconductor is known as diffusion.

Let us suppose that the concentration of electrons varies with
distance x in the semi conductors. Here the concentration

gradient is given byg—n :
X

Ficks law states that the rate at which carriers diffuse is
proportional to the density gradient and the movement is in the
direction of negative gradient.

Mathematically, the rate of flow of electrons can be written as

e (1) Here f, = rate of flow of electrons

across unit area.

The rate of flow of electrons is given by
fi==D, 2 e @
X

Here D, = Diffusion coefficient for electrons.

Partial derivatives are used because n is a function of
temperature and distance.
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This flow of electrons constitutes an electron diffusion current
density. Since conventional current is the rate of negative
charge, we have

J, (diffusion) = —(e)(Rate of flow of electrons across unit area )

J, (diﬁ”usion) = (—e) (=D, Z—Z)

J, (a’iﬁ’usion) =eD, % ----------- 3)
X
If an excess hole concentration is created in the same region,
hole diffusion takes place in the same direction at a rate per unit
area.
The rate of flow of holes per unit area is given by
0
__p X

P p ax
This results in a hole diffusion current density .
Now J, (diffusion) = +e(rate of flow of holes across unit area)

J, (diﬁ%sion) =—eD, Z_l; ————— ®)

Here D, =Hole diffusion coefficient for holes.

Einstein Relations or Einstein Equations

At equilibrium with no field, the free electron distribution is
uniform and there is no net current flow. Any tendency to
disturb the state of equilibrium which would lead to diffusion
current creates an internal electric field.

This internal electric field creates a drift current balancing the
diffusion current component.

Under equilibrium conditions, we have therefore the drift and
diffusion currents.

These currents are due to an excess density of electrons.

Now J, (drift) = npeE

G ) S A—— )

ox

Under equilibrium conditions, J, (drift) = J,(diff’)



sonuek =eD, on_____ 3)
ox

The force F on excess carriers restoring equilibrium is given by

the product of excess charge and Electric field.
F= (ne) E
on
G=mn=—0 (5)
E

Now from (4) and (5),we get
D, E on
u, E ox
eD on
i 7 (6)

This force F depends on the thermal energy of the excess
carriers.

By making an analogy between the excess carriers in a
semiconductors and gas molecules in a low pressure gas, the
force F corresponds to pressure gradient.

on

Pressure gradient = KT a

LF=e

F =

eD
B U SN i (L
ox p, Ox )7
D,=*k,T
e
D, = Kol U, - (7
e
K,
Similarly for holesl)p :T,Up ................ (8)
7 = D, A 9)
8 D, &,

Equations (7), (8) and (9) are called Einstein’s Relations.
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Direct Bad Gap and Indirect Band Gap Semiconductor.

Direct Band Gap Semiconductors IndirectBandGapSemiconductors
1.Emperical formula GaAs, (P 1.Emperical formula GaAs, (P
Where x is molar concentration. Where x is molar concentration..
If x< 0.45, then semiconductor is called If x> 0.45,then semiconductor is called Indirect
Direct Band Gap Semiconductor. Band Gap Semiconductor.
2. Transition of electrons from 2. Transition of electrons from
conduction band to valence band takes conduction band to valence band
place directly. takes place indirectly.
3. Intra band Transition occurs with 3. Intra band Transition occurs with
high probability. low probability.
4. Radiative recombination mechanism 4. Recombination centers are
is dominant. present in the form of impurities to
5. Momentum of Charge carries is enhance radiative process.
conserved. 5. Momentum of Charge carries is
6. Life time of emitted photons is large. not conserved.
7. Life time Charge carriers is less. 6. Life time of emitted photons is less.
8. Natural or Artificially occurring. 7. Life time Charge carriers is large.
materials. Like InP, Ga, GaAs, CdS. 8. Artificially or naturally occurring materials.
9. Used in LEDs and Semiconductor Like Gap, PbS, PbTe, Si, Ge.
Laser diodes. 9.Used in LEDs
E
.E &
Conduction Ban\/
- i GEEL
k 2 L =
7 A
f \ ."'f \
{ | Valence Band | lI
i | |

Direct Bandgap . Indirect Bandgap

) Electron === Photon Emission
Y Hole onen Phonon Emisslon

44




Zener Diode:

Symbol +le
y Forward
Current
Cathode Anode ’
(K) or (A) Forward
Bias
Region
Reverse Bias _uf' -
VR - Ve
I,:;r . r‘ v Forward Bias
0.3-0.7v
“Zener' Breakdown
Region
Iélf'r' ax)
' Reverse
Constant Currant
Zener Voltage -Ir

Fig (1) Zener Diode symbol and V-I Characteristics

Zener diode is similar to ordinary PN junction Diode.
The PN junction is moderately doped.

Zener diode is having a sharp breakdown voltage.

A Zener diode must be always connected in reverse bias.
Zener Diode Symbol and V-I Characteristics are shown in figure (1).
In forward bias, current increases slowly. At voltage called forward voltage (V) or Knee
voltage (Vinee) current increase sharply.
In reverse bias originally current is very less. But with increase in reverse voltage , ata
voltage called zener breakage voltage (V) current increases abnormally. This breakdown
voltage is negative.
Zener Diode Voltage Regulator:
A voltage regulator circuit with Zener diode is shown in figure(2).

Figure (2) Zener diode -voltage Regulator.
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Zener

In fig (2), Vs= Variable voltage source.
Is =Source current.
Rs = source Resistance.
R;= Load resistance.
V1 =Load voltage.
With increase in source voltage, at a voltage called Zener breakdown voltage, voltage
across the Zener diode remains constant.
This constant voltage appears across the diode and hence the same appears
across the load.
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