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UNIT-IV        APPLIED PHYSICS 

 
 

 QUANTUM MECHANICS  
 
 The physical concept of a particle is characterized by mass and velocity.  

Experiments dealing with particles, usually interpreted in terms of mass and  

Velocity by using Newton’s Laws of Motion.  This classical approach is not 
sufficient to describe some experiments. The results of some of the experiments 
are contrary to Newton’s Laws  
 The experiments like Photo Electric Effect, Black Body Radiation and 

Compton Effect confirmed the particle nature of Photons. 

 Interference, diffraction and Polarization of light confirmed that light is 

having wave nature. 

Louis De Broglie extended the idea of dual nature of radiation to matter.   

According to De Broglie matter possesses wave as well as particle characteristics.  

The concept of dual nature of radiation can be understood by knowing 

relationship between particle as well as the wave and their characteristics. 

Waves and Particles:  

PARTICLES WAVES 

1. A particle occupies space. 

2. A particle will have a definite mass. 

3. The particle will have position. 

4. Due to change in position of the 

particle, it will have velocity. 

5. Due to Mass and Velocity , the 

particle posses momentum 

Momentum P= m X v  

6. A Particle will have Energy. 

 

1. The transmission of disturbance 

from one point to other point in a 

material medium is known as 

Wave. 

2. A Wave will have amplitude. 

3. It will have time period. 

4. It will have frequency. 

5. It will have wave length. 

6. It will have phase. 

7. It will have intensity 2AI  . 
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The particle and wave nature can be explained by using Planck’s Quantum 

Theory.  According to this theory emission of radiation is in the form of photons.  

A photon will have velocity of light and mass which is in motion. i.e., it will have 

both momentum and energy.  Thus a photon behaves like a particle.  The energy 

of a photon is given by (According to MaxPlank)  

nhE    Where n=1, 2, 3… i.e., the energy of the photon is quantized.  

h= Planck’s constant,   Frequency of radiation. 

Therefore in addition to frequency, the other parameters attribute wave nature to a 
photon. i.e., a photon will have dual nature. 
The De Broglie Hypothesis: 

 The dual nature of light possessing both wave and particle properties was 

explained by combining plank’s expression for the energy and Einstein’s Mass – 

Energy relation. 

 The Energy of a photon according to Max Plank is given by  
         E = h    -------------------- (1) 
            Einstein’s Mass – Energy relation is given by   

                
2mcE  ------------------ (2) 

 Here h= Plank’s constant 
           = Frequency of Radiation 
           m = Mass of Photon 
           c = Velocity of light 
From equations (1) & (2)  
                                                     2h mc       ------------------ (3) 
 Also the velocity of light is given by  
                                                         c =   λ 

                                                  =  

c         ------------------------ (4) 

 

      From (3) & (4) we have            
2mc

hc


  

                                                        
mc

h
  

 

                                                         p

h
           ------------------------------- (5) 

Where      = wave length of the Photon 
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             p    = Momentum of Photon = mc 
 Using this concept, De Broglie proposed the concept of matter waves. 
 According to this the material particle of mass ‘m’ moving with a velocity 

‘v’ should have an associated wave length . 

 This wave length   is called the De Broglie wave length.   

                             Now  = 
momentum

h  

     = 
mv

h   = 
p

h                         ------------------ (6) 

Where h = Plank’s constant, p=momentum 

Equation (6) is known as De Broglie wave equation and    is called De Broglie 

wave length. 

 If the particle is moving with a velocity comparable to the velocity of light 

then the mass of the particle is always changes. The mass ‘m’ according to theory 

of relativity is not an invariable entity as in Newtonian Physics. The relativistic 

mass ‘m ‘ is given by                   Here 0m   rest mass of the electron     

                 

2

2

0

1
c

v

m
m



                        c = Velocity of Light                                                                      

From equation (6) it is found that if the particles are accelerated to various 
velocities, we can produce waves of various wave lengths. 
Higher the electron velocity, smaller the De Broglie wave length and vice versa. 

RalationbetweenDeBroglie Wavelength  and KiniticEnergyEof the particle  

 Let us assume m is the mass of the particle.  Now the particle is moving 
with velocity   ‘v’. 

Kinetic Energy of the particle ,      
2

2

1
mvE      since 

2
2 21 ( )

2 2

mv
E m v

m m
   

                                                     
m

p
E

2

2

   

                                                     mEp 22   

                         mEp 2    ---------------------------- (1) 

 But according to De Broglie hypothesis  
p

h
     ----------------------- (2) 

        From (1) & (2)           
mE

h

2
     -----------------------------(3)  
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Where h = Plank’s constant  
           m = Mass of the particle   and   E = Kinetic energy of the particle 
Relation between de Broglie wave length and the applied potential 
difference: 
(De Broglie wave length of electrons) 
Let m be the mass of the electron. This electron is applied with a potential 
difference of V volt. 
Here the work done (energy) on the electron is given by   eV. 
Here e = charge on the electron  
        V= applied potential difference in volts. 
The work done is converted into Kinetic Energy of the electron. 

                    i.e. eVmv 2

2

1
       

Here v = velocity acquired by the electron . 
 

     Now eV
m

p


2

2

 

    meVp 22   
 

 Momentum, meVp 2       ---------------------------- (1) 
Now the De Broglie wave length associated with the electron is given by  

   
p

h
                   ---------------------------- (2) 

From (1) & (2)   
meV

h

2
          ----------------------------(3) 

          
Ignoring the relativistic considerations, m = rest mass of the electron 

 2

h

meV
   

 

34 10

31 19

6.625 10 12.26 10

2 9.1 10 1.602 10

X X

VX X X X V


 

 
   meter 

 
             

                                   
026.12

A
V

  V = Applied Voltage in Volts. 

 
Matter Waves: 

   According to Debroglie concept that a moving particle is associated with 
wave nature.  This can be explained by Bohr’s atomic model. 
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Here m=mass of an electron 

         v=linear Velocity of Electron 

         r=Radius of the orbit 

form (1)&(2) ,now we have 

                        L = mvr =  2

nh
………(3)              

                               mv

nh
r  2  

 

                           p

nh
r  2 …………..( 4) 

mvp  , momentum of electron. 

According to Bhors concept the angular momentum (L) of a moving electron in 
an Atomic orbit of radius ‘r’ is quantized. 

   i.e.      L=
2

nh   ……………………………… (1) 

                                              n=1, 2, 3, 4…………… 

Now Angular momentum L= m v r ………... (2)                                                         

                                                                                                             

 

 

In the equation (4), r2   is the circumference 

length of the orbit in which the electron is revolving. 

This circumference is equal to the ‘n’ times the wave length of the associated 

wave of a moving electron in the orbit. 

                            i.e       nr 2 ……………(5), since 
p

h
  

This is shown diagrammatically for n=4 and n=6 in figure (1). 

According to the deBroglie, a moving particle will have both particle and wave 
nature. The waves associated with a moving material particle are called matter 
waves or deBroglie waves. The deBroglie waves are associated with materialistic 
particles such as electrons, protons, neutrons etc.    
 

Properties of Matter Waves: 

1. DeBroglie waves are not electromagnetic waves. 

Figure (1) Bohr’s orbit and deBroglie  

Waves of an electron in the orbit  
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They are called pilot waves. 

The waves that guide the particles are called matter waves or pilot waves. 

2. Matter waves consist of a group of waves or a wave packet associated with 

a particle. The group has the velocity of particle. 

3. Each wave of the group travel with a velocity known as phase velocity 

given by   Vph =
K

         where  = Angular frequency, K = Wave vector. 

or wave Number. 

4. These waves cannot be observed. 

5. The wave length of matter waves is given by 

           
p

h
   Where   h = Planck’s constant, p = momentum of the particle                                     

           



m

h
                       

6. Lighter the particle, greater will be the wave length associated with it. 

7. Smaller the velocity of the particle, longer will be the wave length. 

8. When  ,0V .  Also if 0,  V  

9. Matter waves can be produced whenever the particles in motion are 

charged or uncharged. 

10. Matter waves travel faster than velocity of light. 

11. The wave nature of the matter introduces uncertainty in the location of the 
position of the particle.  

 

HeisenBerg’s Uncertainty Principle: 

Usually the moving particle must be regarded as a deBroglie wave group rather 

than a localized particle. 

This suggests that there is a fundamental limit to the accuracy with which 

we can measure its particle properties. 

According to classical Mechanics, a moving particle at any instant has a 
fixed position in space and a definite momentum which can be determined 
simultaneously with accuracy. 

But we know that a moving particle is similar to a wave, we cannot 
determine the position and momentum simultaneously, accurately. 
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The measurement of position and moment of a moving particle is 

impossible 

Let x  denotes the error in the measurements of the position of the 

particle along x-axis and p represents the error in the measurement of 
momentum, then      

     
2

))((
h

px        Here h=Planks Constant. 

If we locate the particle exactly  0x  only at the expense of imparting to it 

an infinite momentum  p  

The uncertainty principle can also be written as 
2

))((
h

tE   

Applications: 
1. It explains the absence of electrons in the nucleus. 

2. It gives proof for the existence of protons and neutrons inside the nucleus 

3. Explains uncertainty in the frequency of highest emitted  radiation by an 

Atom 

4. Energy of an electron in an Atom 

 

Differences Between Matter waves and Electromagnetic Waves: 

Matter Waves Electromagnetic waves 

1. These waves are associated with the 

moving particles. 

 

2.wavelength depends upon mass of the 

particle  
mv

h

P

h
  

 

 

 

 

3. Can travel with a velocity greater 

than velocity of light. 

1.Oscillating charged particles gives 

electromagnetic radiation. 

(electromagnetic waves) 

2. Wavelength depends upon the energy 

of the photon. 

hE  , 

, ,
hc c

E c  
 

    

hc

E
   

3. These waves travel with  a velocity 

of light. 
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4. These waves are not electromagnetic 

waves.  

C= sm /103 8  

4. In this wave electric and magnetic 

fields oscillate perpendicular to each 

other. 

 

Note on Simple Harmonic Motion : 

If a particle executing simple Harmonic motion, then its motion is periodic, 

acceleration is directed towards an equilibrium point and acceleration is 

proportional to displacement. ( a  -x) 

The general equation of motion for SHM is given by 

   y = A Sin (t - )        ……………………………( 1 ) 

 Here y = displacement of the particle executing simple harmonic motion  
        A = Amplitude of the particle executing simple harmonic motion 

        ω = Angular frequency 

        Φ = Phase difference 

          Now Phase difference =

2  X Path difference 

      
x


 2


 ……………………………………… (2) 

From equations (1) & (2) we get 
 

            )
2

( xtASiny

   

             )
2

2( xtASiny

   

             )(2


 x
tASiny   

        Since we have to solve problems by Schrödinger’s time independent Wave  
Equation, we choose wave equation involving no time. 

2 ( )
x

y ASin 


   

)(2


 x
ASiny   

)(2


 x
ASiny  . 

Schrodinger’s Wave equation(Time independent) 
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Let us consider a particle of mass m, moving with a velocity   along the positive 
X-direction. 
          The wave function   for a particle moving freely in the positive  
x-direction has the same form as the wave equation for simple harmonic motion 
and simple harmonic waves in the positive x-direction. 

)(2


 x
ASin …………………….(1) 

Here   is a function of x only. 
Differentiating equation (1) with respect to x once and two times, we get 





 x

A
dx

d 2
cos

2
  

Again differentiating, we get 





 x

A
dx

d 2
sin

4
2

2

2

2

   

 





 x

A
dx

d 2
sin

4
2

2

2

2

  

But 

 x

A
2

sin  

      



2

2

2

2 4


dx

d
    ……………………………..(2) 

 
DeBroglie wavelength associated with the particle is  

      
mv

h
  

      
h

m 



1  

2

2
2 2

2 2

1
2 ( )1 2
m mvm v

h h
   ………………….(3) 

Let E be the total energy of the particle and V be the potential energy of the 
particle and T be the kinetic energy. 
Then  total energy ,E=T+V 

T, KE = 
2

2

1
mv  = E – V              ……………………………….(4) 

Substituting the above value of K.E. in Equation (3), we get 
 

2

)(21
2 h

VEm 


       ……………………………(5) 

From equations (5) and (2), we get 
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  
)(

8 2

22

2

VE
h

m

dx

d
  

  0)(
8

2

2

2

2

 
VE

h

m

dx

d
 

 

  0)(

4

2

2

22

2

 




VE

h

m

dx

d  

0)(

)
2

(

2

2
2

2

 




VE

h

m

dx

d  

2

2 2

2
( ) 0

d m
E V

dx

   
     ( ( )

2

h


  )  ………………….(6) 

This is the Schrödinger’s time independent one dimensional wave equation. 
 
 
 
 
 
 
 
 
 
Wave number: 
 
In Spectroscopy In wave mechanics 
wave Number of  an Electromagnetic 
wave is given by 


 1
K  , But 

p

h
  

h

P

P

h
K 

)(

1  

12  m
h

mE
K  

 

For the special case of an 

electromagnetic wave,

2

K . 

 

         


 hC
hE   

     
E

hC
   

        
hC

E
K

2
  

        
C

E
K


  

 
 
 
Wave velocity: 
    Wave velocity is defined as the velocity with which a 
particular crest or trough or a particular phase of a wave advances in a medium. 
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The wave Velocity u of the matter waves can be obtained from the energy of 
photon. 
 Now hE       ……………………………….(1) 

 Or frequency, 
h

X
m

p

h

mv

h

E 1

2

)( 22
2

1

  

Multiplying and dividing the numerator and the denominator by h, we get 
 

                    Frequency, 22

2 1

22 
 X

m

h

h

p
X

m

h
   ……………..(2) 

There fore, the wave velocity, 
                      u = frequency X wave length 

                      u 


XX
m

h
2

1

2  

                                                  
  The wave velocity of the electron                        

m
h

u
2

 ……………………………(3)   

  
 
Physical Significance of Wave Function 
 
         The wave function is a Complex function.  This does not have a direct 

physical meaning.   The square of its absolute magnitude 
2 can be taken as 

definite meaning by considering the case of an electromagnetic wave. 
 The intensity of a light wave is proportional to the square of the amplitude. 
( 2AI ) 

2  Is the probability density of the particle associated with the deBroglie wave 

described by the wave function . 

That is the probability of finding a particle is proportional to
2   at the point x, 

and at any instant of time t. 
The wave function is given by  

     ( , )x t a ib   , 
*  is its complex conjugate, 

* = iba   

Now  * = ( iba  ) ( iba  ).= 2 2 2[ ]a i b  

        * = 22 ba  ,  * is denoted by P 
2 is called the probability density. 

The probability of finding a particle is real. 
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The probability of a particle being present in a volume dv=dx dy dz is 
2 dx dy dz. 

The total probability of finding the particle some where is unity. 
Since the probability of finding a particle some where in the space is certain. 
 

      1
2  dxdydz  

Or   1*dxdydz  

The triple integral extends over all possible values of x, y and z. 
A wave function   satisfying the above relation is known as normalized wave 
function.This Condition is called condion of Normalization. 
 
Particle in a One-Dimensional Potential Box: 
 (OR Electron in a Potential Well): 
Consider an electron of mass ‘m’ this is bound to move in a one dimensional 
crystal of length L. 
The electron is prevented from leaving the crystal by the presence of a large 
potential energy barrier at its surface. 
Though the barriers extend over a few atomic layers near the surface, these are 
taken infinitely large for the sake of simplicity.   The problem is similar to that of 
an electron moving in a one-dimensional potential Box. 
This is represented by a line and is bounded by infinite potential energy as shown 
in figure (2). 
                                                            

        Fig (2) Electron in a one dimensional                     
                                                                    Potential well.      
The potential energy within the crystal or box is assumed to be zero  
Thus we have 
V(x) = 0   for 0<x<L                           ………………… (1) 
V(x) =   for Landxx  0  

The wave function n  of the electron occupying the nth 
  state is given by 
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2

2 2

2
( ) 0n

n n

d m
E V

dx

   
    …………… (2) 

 
Here also En= Total energy of the electron in the nth state. 
                 V= Potential energy. 
 
Inside the box, v=o 

             
2

2 2

2
0n

n n

d m
E

dx

  
 -------------------------- (3) 

              02
2

2

 n
n k

dx

d 
------------------------------- (4)  

          Where    2
2

2
n

m
k E 


 

2 nm E
k 


 --------------(5) 

Equation (4) is a differential equation. The general solution of the equation (4) is 
given by  

             BCoskxASinkxxn )(    ……………………………….. (6) 
In equation (6), A and B are arbitrary constants,   
These constants are to be determined from the boundary conditions. 
Since the electron is constrained by infinitely high potential barriers at x=0 and 
x=L, v . We assume that (0) 0 ( ) 0n nand L    

The product V(x) n (x) in equation (2) also approaches infinity. 

Thus in order that the wave function n (x) may be continuous, the kinetic 
energy must also become infinite which is not feasible.  

Hence n (x) must vanish for x=0 and x=L. 
For x=0 equation (6) gives B=0 

 n (0) =0=A SinK (0) +B CosK (0) 
    0=A (0) +B (1) 
B=0 
Now equation (6) becomes 

n (x)=A SinK(x) -------------------------------- (8) 

Also since n (L) =0, equation (8) becomes 

       A SinKL= n (L)=0 
0A  But SinKL=0 nKL   

Or K=
L

n    …………………………………….(9) 

Where n=1, 2, 3… 
 Thus the expression for the allowed wave function becomes. 
 



14 
 

PVRamanaMoorthy    Unit-IV  

n (x)=A Sin (
L

n  ) x      ……………………. (10) 

Eigen Energy Values: 
The allowed energy values can be obtained from equations (5) & (9) as 

                   
2 nm E

k 


 

 

                  
2 nm E n

k
L


 


 

                 
2

2

2 nm E n

L

   
 

 

                 

22

2n

n
E

m L

   
 


 

               
2 2 2

22n

n
E

m L





            

              2

22

2

2

24 L

n

m

h
En




     , (Since
2

h


 ) 

              2

22

8mL

hn
En              …………………… (11) 

Here h= Planck’s constant 
         m= Mass of Electron. 
          L= Length of One dimensional crystal, are constants. 
       i.e   En   n2 

Some Features: 

1. The lowest energy of the particle is given putting n=1 
 

        2

2

1 8mL

h
E   

        1
2EnEn   

This known as zero point energy. 
2. For n=1, 2, 3…We get discrete energy values of the particle in the one 
dimensional box. 

       

2

1 1 28

h
n E

mL
   

     
2

2
2 2 12

2 4
8

h
n E E

mL
    

     
2

2
3 3 12

3 9
8

h
n E E

mL
    

     ……………………. 
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3. It is apparent from equations (10) and (11) that the allowed wave functions 

n (x) and the allowed energy values  nE   exist only for integral values of n. 
The number n is called principal quantum number. 
4. The spacing between the nth energy level and next highest energy level       
[n+1] th level is given by  

              1
2

2

22

1 )1(
8

)1(
En

mL

hn
En 


  

             1
2

2

22

8
En

mL

hn
En   

              1
2

1
2

1 )1( EnEnEE nn   

             1
2

1
2

1 )21( EnEnnEE nn   

            11 )12( EnEE nn   
 5. The energy spectrum consists of discrete energy levels. The spacing between 
the levels is determined by the values of n and L.   
The Spacing decreases with increase in L. 
If L is of the order of a few centimeters, the energy level form almost a 
continuum. 
But if L has atomic dimensions, the spacing between the levels becomes 
appreciable. 
 The energy levels corresponding to n=1, 2, 3 and 4 are shown in fig (3).     

 E4=16E1                                                                                     n=4 
 
                                                                                                        

 E3=9 E  1                                                                                n=3 
              

 E2 =4 E1                                                                                  n=2 

        E1                                                          n=1 
       E0                                                           n=0  
Fig (3) First four energy levels of an electron in a one dimensional Box. 
 

Determination of constant A in n (x)=A Sin (
L

n  )x  (Normalization of the 

wave function): 

The constant A in n (x) =A Sin (
L

n  )x is determined by using the condition 

that the probability  of finding an electron some where on the line is unity           

1)()(..
0

*  dxxxei n

L

n   

                    1|)(|
0

2  dxx
L

n  
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                   1
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
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Now      0
2

0







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L

n
Cos

L   

 1
2 0
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2
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2

2

0

2


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x
A L  

 
L

A
22      

L
A

2
  

Now from the equation  x
L

n
SinAxn 








 )(  

                          x
L

n
Sin

L
xn 


















 2
)(   …............ (1) 

This is the normalized wave function. The first four wave functions and the wave functions of the 

electron in a one dimensional Box are shown in the figure (4) 

 

Fig (4) First three wave functions                Fig.(5) the probability density of  
of an electron in a one                       an electron in a one dimensional 
dimensional box 

             
The probability density of the particle in the one dimensional  Box. 
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The probability of finding the particle in a small length dx along x is given 

by
dxAdxxP nn

2||)( 


dxxPn )( dxx
L

n
Sin

L








22
 

  Also Probability Density   x
L

n
Sin

L
xPn

22
)(   

This is maximum when  ,
2

5
,

2

3
,

2


x

L

n
 

                                          ,
2

5
,

2

3
,

2 n

L

n

L

n

L
xor

 

For n=1, the most probable positions of the particle is at x=
2

L  

For n=2, the most probable positions are at x=
4

L  and 
4

3L  

The probability density of the particle in the one dimensional Box is shown for 
various values of ‘n’ in the figure (5). 
 
 
Fermi-Dirac Distribution: 
          According to free electron theory, Electrons in a solid move in all possible 
directions like gas molecules in a container. These free electrons contribute for 
electrical conduction. 
           The free electron model of a metal has survived to the actual situation in 
metals, particularly the monovalent atoms such as Alkali metals. 

Quantum mechanics requires that all valence or free electrons should be 
specified by the three quantum numbers nx , ny , nz together with the spin. 

The spin can have either 
2

1
    or  

2

1
  

The Pauli Exclusion Principle does not permit more than one electron to 
have same four quantum numbers. 

Many of the occupied states in a metal containing 1023 free electrons 
must be described with fairly large quantum numbers. 

Now it is most convenient to discuss the metallic state with statistical 
mechanics. 

The probability that a particular quantum state having an energy E is 
occupied is given by Fermi-Dirac function. 

          







 




TK

EfE
Ef

B

exp1

1
)(  

 
Here f (E) is called probability of occupying a state  
EF is the energy of the Fermi level. 
E is the energy of the state in which the electron is occupied at T K0 . 

BK  is the Boltzmann constant. 
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Properties: 

1. The Fermi-Dirac function also valid for semiconductors.  In a 
semiconductor, the probability of occupancy of states by electrons is given 
by the F-D distribution function. 








 




TK

EfE
EfEP

B

e

exp1

1
)()(  

2. The distribution function is valid only in equilibrium. 
3. The Fermi level is absolutely valid in equilibrium only. 
4. Fermi-Dirac distribution function is valid for all the particles obeying 

Pauli’s exclusion principle.  This is equally applicable regardless of the 
type of the solid, doping of the semiconductor, etc. 
Any particle obeying F-D distribution function is called Fermions. 
The Fermi-Dirac distribution function considers statistically the entire 
collection of fermions in the volume. 
Thus it considers all electrons in the semi conducting solid and not merely 
electrons in a Band. 

5. An empty electron state is called a HOLE.  The Fermi-Dirac distribution 
function for holes in the solid would correspond to the statistical 
distribution of vacant sites. 
The hole distribution function is denoted as  
 

Ph (E) =1-PFD (E) 








 




TK

EE
EP

B

f
h

exp1

1
)(    

 6.   AT E = Ef,  

 
2

1

11

1
)()( 


 EPEP eh  

     i.e. the probability of occupancy of the electron or hole is 
2

1  

     This also gives a definition for the Fermi level. 

7. Fermi level is the energy level where the probability of occupation is  
2

1  

8. At 00 K, Pe (E) =1 for E  E f 
And Pe (E) = 0 for E > E f 
This implies that at 00 K all states up to the Fermi level are completely 
occupied by the electrons.  All the states above the Fermi level are empty. 

9. The distribution function is a strong function of temperature only at energies 
close to Ef. 
Plots of Pe (E) and E at different temperatures are shown in figure (6). 

       Y                                 T 
                                                                 T2>T1>T in 0 K 
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                                                               T1                                   

P(E) 

                                                                T2 

            1/2 
 
 
                                                                         X 
   O                         E         Ef  
 
Fig (6).  Pe (E) versus E for various T values.  At all temperatures, the 

curves passes through the point  1
,
2fE

 
  

. 

 
Note on Fermi-Dirac Distribution function: The Fermi-Dirac distribution for  

Electrons is given by 
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
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e

exp1

1
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Now at the Absolute zero (T = 00K ), there are two situations 
 
(i) For E < EF ,  








 



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EE
EP

B

F

e
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1
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)0(1

1
)(

BK

Xe

e

EP




  


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e
EPe 1

1
)(  

 


e

EPe 1
1

1
)(       But 0

1



e  

Pe (E) = 1, for E < EF at T = 00  
 
                   (ii) For E > EF   
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


e
EPe 1

1
)(  




1

1
)(EPe  




1
)(EPe  

0)( EPe  
 

This means that no electrons have energy greater than EF at 00 K. 
i.e the Fermi energy EF is the maximum energy that a free electron in the 
metal can have at absolute zero. 

 
Schrodinger’s Wave equation(Time independent) 

Let us consider a particle of mass m, moving with a velocity v along the positive 
X-direction. 
          The wave function   for a particle moving freely in the positive  
x-direction  is given by a complex function 

…………………….(1) 
Here   is a function of x and t only. 
A= amplitude. 
k= Wave vector. 
x= position. 
ω=Angular frequency. 
t=time 
Differentiating equation (1) with respect to x once and two times, we get 

( )i kx td
iKAe

dx
   

Again differentiating, we get 
2

2 2 ( )
2

i kx td
i k Ae

dx
    

 

2
2 2

2

d
i k

dx

  . ,Here 1i   , Also
2

k



 , k= wave number 

But 2 1i    

     



2

2

2

2 4


dx

d
    ……………………………..(2) 

 
DeBroglie wavelength associated with the particle is  

      ,
h h

p m o m e n tu m
p m v

   
 
 

      
h

m 



1
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2

2
2 2

2 2

1
2 ( )1 2
m mvm v

h h
   ………………….(3) 

Let E be the total energy of the particle and V be the potential energy of the 
particle and T be the kinetic energy. 
Then  total energy ,E=T+V 

T, KE = 
2

2

1
mv  = E – V              ……………….(4) 

Substituting the above value of K.E. in Equation (3), we get 
 

2

)(21
2 h

VEm 


       ……………………………(5) 

From equations (5) and (2), we get 
 

  
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8 2
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dx
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  0)(
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dx
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E V

hdx

 



    

0)(
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(
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h
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dx

d  
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2
( ) 0

d m
E V

dx

   


    ( ( )
2

h


 )  ………………….(6) 

This is the Schrödinger’s time independent one dimensional wave equation. 

Schrödinger Wave Equation Derivation (Time-Dependent) 

Considering a complex plane wave for particle 

ψ(x,t) = ( )i kx tAe  --------------(1) 
Here   is a function of x and t only. 
A= amplitude. 
k= Wave vector. 
x= position. 
ω=Angular frequency. 
t=time. 

Now the Total  energy  of a system is 



22 
 

PVRamanaMoorthy    Unit-IV  

E=T+ V, [ (K.E)+(P.E)] 

Where ‘V’ is the potential energy and ‘T’ is the kinetic energy. 

T=  21

2
mv = 

2

2

p

m
 

And   V= A function of x only. (v= mgx or v= mgh)  
As we already know that E is the total energy, we can rewrite the equation as: 

2

( )
2

p
E V x

m
   

Differentiating equation (1) with repect to t ,we get 

( ) ( , )i kx td
i Ae i x t

dt
       
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But according to MaxPlanck, E=hυ ,   E
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Also the time independent wave equation is given by 
 

2

2 2

2
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dx
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From equations (2) and(3) we get 
 

2

2 2 2

2 2
(4)

d m m d
V

dx i dt

          
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2 2
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d m m d
V
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          
   

 
This is time dependent Shroedingers wave equation. 
 

Schrodinger’s Wave equation 

Let us consider a particle of mass m, moving with a velocity   along the positive 
X-direction. 
          The wave function   for a particle moving freely in the positive x-
direction has the same form as the wave equation for simple harmonic motion and 
simple harmonic waves in the positive x-direction. 

…………………….(1) 
Here   is a function of x only. 
Differentiating equation (1) with respect to x once and two times, we get 

( )i kx td
iKAe

dx
   

Again differentiating, we ge 
2

2 2 ( )
2

i kx td
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dx
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2
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dx
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DeBroglie wavelength associated with the particle is  
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Let E be the total energy of the particle and V be the potential energy of the 
particle and T be the kinetic energy. 
Then  total energy ,E=T+V 

T, KE = 
2

2

1
mv  = E – V              ……………………………….(4) 

Substituting the above value of K.E. in Equation (3), we get 
 

2

)(21
2 h

VEm 


       ……………………………(5) 

From equations (5) and (2), we get 
 

  
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  )  ………………….(6) 

This is the Schrödinger’s time independent one dimensional wave equation. 

Schrödinger Wave Equation Derivation (Time-Dependent) 

Considering a complex plane wave: 

 

Now the Hamiltonian of a system is 

 

Where ‘V’ is the potential energy and ‘T’ is the kinetic energy. As we already know that ‘H’ is 
the total energy, we can rewrite the equation as: 

 



25 
 

PVRamanaMoorthy    Unit-IV  

Now taking the derivatives, 

 

We know that, 

 

where ‘λ’ is the wavelength and ‘k’ is the wave number. 

We have 

 

Therefore, 

 

Now multiplying Ψ (x, t) to the Hamiltonian we get, 

 

The above expression can be written as: 

 

We already know that the energy wave of a matter wave is written as 

 

So we can say that 
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Now combining the right parts, we can get the Schrodinger Wave Equation. 

 

This is the derivation of Schrödinger Wave Equation (time-dependent).  
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FREE ELECTRON THEORY & BAND THEORY OF SOLIDS 

FREE ELECTRON THEORY 

Introduction: 
In solids, electrons in outer most orbits of atoms determine its electrical 
properties. Electron theory is applicable to all solids, both metals and non 
metals. In addition, it explains the electrical, thermal and magnetic properties of 
solids. The structure and properties of solids are explained employing their 
electronic structure by the electron theory of solids. It has been developed in 
three main stages. 
1. Classical free electron theory. 
2. Quantum Free Electron Theory. 
3. Zone Theory. 

 

1. Classical free electron  theory:  The first theory was developed by Drude  and  
Lorentz in 1900. According to this theory, metal contains free electrons which 
are responsible for the electrical conductivity. Also electrons obey the laws of 
classical mechanics. 

2. Quantum Free Electron Theory: In 1928 Sommerfeld developed the quantum 
free electron theory. According to Sommerfeld, the free electrons move with  a  
constant potential. This theory obeys quantum laws. 

3. Zone Theory: Bloch introduced the band  theory  in  1928.  According  to  this  
theory, free electrons move in a periodic potential provided by the  lattice.  This  
theory  is  also called “Band Theory of Solids”. It gives complete information 
regarding electrons. 

Classical free electron theory of metals (Drude – Lorentz theory of metals): 

Drude and Lorentz proposed this theory in 1900. According to this theory, the 
metals containing the free electrons obey the laws of classical mechanics. 

Assumptions (or) Salient features in classical free electron theory 

1.  In metals there are a large number of free electrons moving freely in all 
possible directions. 

2.  These free electrons behave like gas molecules in a container obeying the 
laws    of  kinetic theory of gases. 

       4. In metals, the positive ion cores are at fixed positions and the free electrons       
         move  randomly and collide either with positive ion cores or with other free   
        electrons or with boundaries. Hence these collisions are elastic. Therefore the  
  electric conduction is due to free electrons only. 
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 5.  Electron velocities in a metal obey Maxwell-Boltzmann distribution of 
velocities. 

6. The free electrons move in a constant potential field. Hence the potential energy 

of the electrons is constant. 

                                                                      Electric Field E   

 
 
7. When an electric field is applied to a metal, free electrons are  accelerated  in  
the direction opposite to the direction of applied electric field with a velocity called 

drift velocity represented as Vd.  

   Advantages or Merits classical free electron theory 

1) It verifies ohm’s law. 
2) It explains electrical and thermal conductivities of metals. 
3) It derives Widemann-Franz law. 
4) It explains optical properties of metals. 

   Drawbacks or Demerits classical free electron theory 

1) Failed to explain the electrical conductivity of semiconductors and insulators. 
2) Failed to explain the temperature variation of electrical conductivity at low  

temperatures. 
3)  Failed to explain the concept of specific heat of metals. 
4)  Failed to explain the mean free path of the electrons. 
5) The phenomenon like photo electric effect, Compton effect and black body  

radiation could not be explained by classical free electron theory. 
6)  Failed to explain temperature dependence of paramagnetic susceptibility 

and  ferromagnetism. 

Quantum Free Electron Theory: 

Quantum free electron theory was proposed by Sommerfeld in 1928. It 

overcomes many of the drawbacks of classical theory. Sommerfeld explained 

them by choosing Fermi- Dirac statistics instead of Maxwell-Boltzmann 

statistics. He developed this theory by applying the principles of quantum 

mechanics. 

Assumptions of Quantum Free Electron Theory 

1) Valence electrons move freely in a constant potential within the boundaries 
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of metal and is prevented from escaping the metal at the boundaries (high 

potential). Hence the electron is trapped in a potential well. 

2) The distribution of electrons in various allowed energy levels occurs as per  

Pauli Exclusion Principle. 

3) The attraction between the free electrons and lattice ions and the repulsion 

between electrons themselves are ignored. 

4) The distribution of energy among the free electrons  is  according  to  Fermi-
Dirac  
   statistics. 
5) The energy values of free electrons are quantized. 

 

   6.)To find the possible energy values of electron Schrodinger time independent 
wave equation is applied. The problem is similar to that of particle present in 
a potential box.  

Energy of the electron is given by 
2 2

28n

n h
E

mL
  

Merits of quantum free electron theory 

1. Successfully explained the electrical and thermal conductivities of metals. 
2. Explained the phenomenon of Thermionic emission. 
3. It explains temperature dependence of conductivity of metals. 
4. It can explain the specific heat of metals. 
5. Explained magnetic susceptibility of metals. 
6. Explained photo electric effect, Compton Effect and black body radiation etc. 
7. It gives the correct mathematical expression for the thermal conductivity a nd  

e l e c t r i ca l  c o ndu c t iv i t y  o f   metals. 
 

Demerits of quantum free electron theory 

1. It is unable to explain the metallic properties exhibited by only certain 
crystals. 

2. It is unable to explain why the atomic arrays in metallic crystals should 
prefer certain structures only. 

3. This theory fails to distinguish between metals, semiconductors and 
Insulators. 

4. It also fails to explain the positive value of Hall Co-efficient. 
5.  According to this theory, only two electrons are present  in the Fermi 

level and they are responsible for conduction which is not true. 
 
Fermi-Dirac Distribution: 
          According to free electron theory, Electrons in a solid move in all possible directions like 
gas molecules in a container. These free electrons contribute for electrical conduction. 
           The free electron model of a metal has survived to the actual situation in metals, 
particularly the mono valent atoms such as Alkali metals. 
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Quantum mechanics requires that all valence or free electrons should be specified by 
the three quantum numbers nx , ny , nz together with the spin. 

The spin can have either 
2

1
    or  

2

1
  

The Pauli Exclusion Principle does not permit more than one electron to have same four 
quantum numbers. 

Many of the occupied states in a metal containing 1023  free electrons must be 
described with fairly large quantum numbers. 

Now it is most convenient to discuss the metallic state with statistical mechanics. 
The probability that a particular quantum state having an energy E is occupied is given 

by Fermi-Dirac function. 
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Here f (E) is called probability of occupying a state. 
EF is the energy of the Fermi level. 
E is the energy of the state in which the electron is occupied at T K0 . 

BK  is the Boltzmann constant. 
 
 
Properties: 

6. The Fermi-Dirac function also valid for semiconductors.  In a semiconductor, the 
probability of occupancy of states by electrons is given by the F-D distribution 
function. 
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7. The distribution function is valid only in equilibrium. 
8. The Fermi level is absolutely valid in equilibrium only. 
9. Fermi-Dirac distribution function is valid for all the particles obeying Pauli’s exclusion 

principle.  This is equally applicable regardless of the type of the solid, doping of the 
semiconductor, etc. 
Any particle obeying F-D distribution function is called Fermion. 
The Fermi-Dirac distribution function considers statistically the entire collection of 
fermions in the volume. 
Thus it considers all electrons in the semi conducting solid and not merely electrons in a 
Band. 

10. An empty electron state is called a HOLE.  The Fermi-Dirac distribution function for 
holes in the solid would correspond to the statistical distribution of vacant sites. 
 
The hole distribution function is denoted as  
 

Ph (E) =1-PFD (E) 
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      6.   AT E = Ef,  
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     i.e. the probability of occupancy of the electron or hole is 
2

1
 

     This also gives a definition for the Fermi level. 

7. Fermi level is the energy level where the probability of occupation is  
2

1
 

8. At 00K, Pe (E) =1 for E < E f 
And Pe (E) = 0 for E > E f 
This implies that at 00 K all states up to the Fermi level are completely occupied by the 
electrons.  All the states above the Fermi level are empty. 

9. The distribution function is a strong function of temperature only at energies  
     close to Ef. 
    Plots of Pe (E) and E at different temperatures are shown in figure (6). 

       Y                                      T 
                                                                 T2>T1>T in 0 K 
 
                                                                      T1                                   

P(E) 

                                                                           T2 

            1/2 
 
 
                                                                                   X 
   O                         E                  Ef  
 
Fig (6).  Pe (E) versus E for various T values.  At all temperatures, the curves passes 

through the point 
1

,
2fE

 
  

. 

 
Note on Fermi-Dirac Distribution function: The Fermi-Dirac distribution for  

Electrons is given by 
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Now at the Absolute zero (T = 00 K ), there are two situations 
 
(ii) For E < EF ,  
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Pe (E) = 1, for E < EF at T = 00  
 
                   (ii) For E > EF   
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Pe (E) = 0, for E > EF at T = 00  
 

This means that no electrons have energy greater than EF at 00 K. 
i.e the Fermi energy EF is the maximum energy that a free electron in the metal can 
have at absolute zero. 

 

   
 

 
 
 
Fermi Energy Level (Ef): 
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Fermi Energy level is the top most  occupied energy level.  
The level above which all the energy levels are empty and below which all the energy levels 
are  occupied.  
 
Fermi Energy: 
The Fermi energy is only defined at absolute zero, while the Fermi level is defined for any 
temperature. 
Fermi Energy is the energy of highest occupied level. That is kinetic energy of highest 
occupied state.  
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Semiconductors exhibit negative temperature coefficient of Resistance. 
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SEMICONDUCTORS 

Semiconductors are classified basing on their conductivities and resistivity’s.  
 
 Electrical resistivity of semi conductors lies in between those of conductors and 
insulators.  
 In semiconductors, there are two types of carriers namely electrons 
and holes. 
 Hence semiconductors are bipolar materials. 
The current in semiconductors is due to two types of carriers namely electros and holes.  

Pure semi conductors are known as intrinsic semiconductors.  
 
Example : Silicon and Germanium.  
The electrical conductivity can be enhanced by a process called doping. i.e. the 
number of carriers can be increased by a process called doping.  Doping is the 
process of adding an impurity to a pure semi conductor.  By adding a suitable 
impurity to an intrinsic semi conductor, it will become an extrinsic semi conductor. 
The transportation of charge carriers (movement) takes place due to drift and diffusion.  

The extrinsic semi conductors are widely used in solid state electronic devices and 
semi conductor electronic devices. 

To study electronic devices, it is important to study the fundamental electronic 
transportation properties in semi conductors.  
Intrinsic semiconductors  
 Usually pure semiconductors are known as intrinsic semiconductors.  Examples 
are Silicon (Si) and Germanium (Ge) .Silicon (Si) and Germanium belongs to IV group 
of periodic table.  
 Atomic Number of Silicon is 14. 
 Electronic configuration 1s2 2s2 2p6 3s2 3p2 
 
Atomic number of Germanium is 32. 

.Electronic configuration is  
1s2 2s2 2p6 3s2 

 3p6 3d10 4s2 4p2 
 
In Silicon and Germanium, there are four valence electrons. Bonding in these 
semiconductors is covalent bonding.  
Each silicon Atom forms four covalent bonds with the surrounding electrons from 
neighboring Silicon atoms in the silicon Semiconductor crystal.   
Here no electrons are available freely for conduction and the semi conductor acts 
like an insulator. 
 The conduction process can be understood with the help of energy band diagram.  
In the energy band diagram, we have conduction band and valence band.  
The conduction band and valence band are separated by a forbidden energy gap Eg., 
known as energy band gap. The covalent bond representation and the energy band 
structure is shown in figure (1) at O0K. 

At O0K, all valence electrons are tightly bound to their atoms and are taking part 
in covalent bond formation.  
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For  Silicon Eg = 1.12 ev. 
 Germanium Eg = 0.69 ev. 

In the figure (1) b  Ec= Energy level corresponding to Bottom of the conduction   
                                           band. 

Ev = Energy of the energy level corresponding to the top of the  
Valence band. 

   Ef = Fermi energy level.  
At O0K, the semiconductors behave like insulators. 
At O0K, the valence band is completely filled and the conduction band is empty.  
 Above O0K (i.e. At Room temperature), the valence electrons acquire sufficient amount 
of thermal energy. Due to this they break the covalent bonds and make themselves 
available as free electrons. Against to creation one free electron, a vacancy is created in 
its initial position in the crystal structure. This vacancy is known as a hole. 
 
 The hole is a virtual positive charge, having the magnitude of charge of the 
electron.  
 The free electrons after acquiring sufficient thermal energy, and crosses the 
energy gap.  
 These electrons will enter into the conduction band from valence band and occupy 
energy levels in the conduction band.  

The electrons leaving the valence band create holes in its original place.  
Now the valence band will have holes and the conduction band contains electrons. 
 
 
 
 
 
 

Empty 

EC 

EF 

EV 

Eg

Conduction band  

Valence band 

(filled) 

Fig. (1)a: Intrinsic silicon at O0k 
– Two dimensional 

Representation. 
 

Fig (1)b: Energy band structure of Intrinsic 
Semiconductor Silicon at O0k. 
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The crystal structure and energy band structure above O0K is shown in figure (2). 
 

 

 

 
 

 

 

 

 
 
 
 
In an intrinsic semi conductor, 
 Number of holes = No. of electrons = ni;    n=p=ni    
n = Number of electrons per unit volume (or) electron concentration (or) 
electron density.  
p  = Number of holes per unit volume (or) hole concentration (or) hole 
density.  
ni =  Intrinsic concentration.  
Now np = ni

2 (Law of mass action) 
 
Intrinsic carrier concentration  
Above O0K, in an intrinsic semi conductor, each broken bond leads to generation of two 
carriers. They are electron and hole.  
At any temperature T, the number of electrons generated will be therefore equal to the 
number of generated Holes. 

Let  n = Number of electrons per unit volume or electron concentration in the  
                   Conduction band.  

 P = Number of holes per unit volume or Hole concentration in the valence band. 
For an intrinsic semiconductor; 

 n = p = ni    --- (1) 

Where ni = intrinsic carrier concentration.  
Now the electron concentration in the conduction band is given by  

 

 

 

/

/

c F B

F C B

E E K T
c

E E K T
c

n N e

n N e

 






  --- (2) 

The Hole concentration in the valence band is given by  

Figure (2) a: Two dimensional crystal 
structure of intrinsic semi conductor silicon 

above O0K 

EC 

EF 

EV 

Electron  

Hole  
Electron  
Valence band 

Conduction 

Eg 

Figure (2) b: Intrinsic Silicon – Energy band 
structure above O0K. 
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 

 

/

/

F V B

V F B

E E K T
v

E E K T
v

P N e

p N e

 






  --- (3) 

Here ,c VN N  are known as pseudo constants, depends on temperature.  

 BK  = Boltzmann constant  
 T = Temperature in 0K of the intrinsic semiconductor.  

Now 
2

in np  
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E

K T
i c V

n N N e

n N N e

n N N e

 

 









 

 

Where  c vE E Eg  , Energy Gap. 

 
( )1/ 2 2

g

B

E

K T
i c vn N N e

   

   -------------------- (4) 

From equation (4),  It is clear that  
i) Intrinsic carrier concentration is independent of Fermi level. 
ii) Intrinsic carrier concentration in  is a function of temperature T. 

iii) Intrinsic carrier concentration in is a function of Energy gap Eg. 
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Fermi level expression  
The Fermi level is the top most occupied energy level. The Fermi level indicates the 
probability of occupation of energy levels of the electrons in conduction and valence 
bands.  
In intrinsic semiconductors, electron and hole concentrations are equal. 
i.e. it indicates that the probability of occupation of energy levels in conduction band and 
valence band are equal. 
Usually in an intrinsic semiconductor, the Fermi level lies in the middle of the energy  
gap Eg. 
For an intrinsic semiconductors, n=p. 

Now 

 

 

/

/

c f B

f c B

E E K T

c

E E K T

c

n N e

n N e

 






  ------------ (1) 

Hole concentration,
  /f v BE E K T

vp N e
   

 /V f BE E K T

vp N e
   ------------ (2) 

Equations (1) and (2) represent electron and hole concentrations for intrinsic 
semiconductors.  

Since n=p. 

   / /f c B v f BE E K T E E K T

c VN e N e
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( )
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f c

v f
B

B

E E
E EK T
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




   

 f c v f

B

E E E E

K TV

C

N
e

N

  

   

 2 /f c v BE E E K TV

C

N
e

N

      --------------------- (3) 

Taking Naparian Logarithm on both sides.  
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For an intrinsic semiconductor 
* *

e hm m  

Hence V cN N                                                                                      Electric field  E 

 log 1
2 2

2

C V B
F e

c V
F

E E K T
E

E E
E

    
 


 

 

Therefore Fermi level lies exactly midway 
between conduction band and valence band. 
 
Expression for intrinsic conductivity  
  
Let us consider intrinsic semiconductors. This 
is applied with a potential difference of V 
volts.  
 
Due to the applied voltage an electric field           
E will be established as shown in the figure.  
Now the charge carriers drift as indicated in figure (3).This constitutes an electric current 
I.  
The drift velocity acquired by the charge carriers is given by.  

dV E   ----------------- (1) 

Where  = Mobility of charge carriers. E= Electric field 
 

 Fig. 3 Conduction in an intrinsic 
semiconductor 

 

 

+      - 
v 
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Also the current density due to drift of electrons is given by  

n dJ nev      -------------------- (2) 

Where  n= electron concentration  
 e = charge on the electron. 
 dv = drift velocity of the electrons.  

From Equations (1) &(2), we get, 

            n nJ ne E
 ---------------------- (3) 

Where n  = Mobility of electrons. 

Current density 
Current I

J= =
Area A

 

Also the holes will drift in a direction opposite to electrons, the hole current density is 
given by 
 pJ Ppe E  ------------------------- (4) 

Where p = Hole concentration. 
 e = charge on the hole. 
 p = Mobility of holes. 

Now the total current density is given by  

 

 

n p

n p

n p

J J J

J ne E Pe E

J n P eE

 

 

 

 

 

   ------------------- (5) 

But according the classical theory, ohms law is given by  
 J E  ------------------------------- (6) 
Where   = Electrical conductivity 
 From equations (5) and (6), we have 

 
 

n p

n p

E n P eE

n P e

  

  

 

 
 

But according to law of mass Action, for an intrinsic semiconductors in p n   

  i n i pn n e      

  i n pn e     ----------------------- (7) 

Where in = Intrinsic concentration. 

   But  1/ 2 / 2 BEg K T
i C Vn N N e    ------------------- (8) 

Substituting (8) in (7), we get  

   1/ 2 / 2 BEg K T
C V n pN N e e      

Electrical conductivity for intrinsic semi conductors is given by  
/ 2 BEg K TAe    -------------------- (9) 
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Where    1/ 2

C V n pA N N e     

A = a constant  

*In pure Semiconductors electrical conductivity is due to both electrons and holes.* 

Determination of Energy Gap (Eg) for intrinsic semiconductors   
The energy gap between the conduction Band and the valence band is represented as 
band gap Eg. For intrinsic semi conductors, the energy gap is given by  

 
/ 2 BEg K TAe   , σ = Electrical conductivity. ------- (1) 

Where A = a constant  
 Eg= Energy band Gap. 
 KB= Boltzmann constant. 
 T = Absolute scale of temperature. 

Let ρ = Electrical Resistivity. 

 

1


  

/2

1
BEg K TAe

    

/21
BEg K Te

A
   

/2 BEg K TBe   ------------------------ (2) , Where
1

B
A

 , a new constant. 

Taking Neparian logarithm on both sides,  

     /2log log BEg K T
e e Be    

   

( )
2log log log

g

B

E

K T
e e eB e    

ln ln
2 B

Eg
B

K T
    

ln ln
2 B

Eg
B

K T
     --- (3)  

(3) is slope intercept form equation. 
Where m = slope of the straight line 

From figure (1), 
2 B

Eg y
m

K x


 


 O 

X  

Y  

∆y 
∆x 

ln   

1/T 

Fig 4: Plot of 1/T and ln     
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 2 B

y
Eg K

x

     
 ---- (4) 

If a graph is plotted between 
1

T
 on X-axis 

and  ln  on y-axis, a straight line graph is  
obtained. The straight line graph is shown 
in figure (4). 
Extrinsic Semiconductors  
Extrinsic semi conductors are  impure semiconductors. With the addition of 
impurities, a pure semi conductors becomes an extrinsic semiconductors.  
An extrinsic semi conductor shows good conducting properties due to the 
presence of impurities.  
Depending on the type of impurity present in the intrinsic semi conductors, 
extrinsic semi conductors are classified into two types. 

1) N – type extrinsic semi conductors. 2) P - type extrinsic semi 
conductors. 

N-Type semi conductors 
For silicon if a small amount of pentavalent impurity such as 
phosphorous, arsenic or antimony or Bismuth is added, we get N-type 
semiconductors. 
Four valence electrons of phosphorous form covalent bonds with the 
adjacent four silicon atoms. The fifth electron is left free. It cannot form 
bond with any other electron in the lattice structure. This is shown in figure 
(1).a. 
At O0k, this fifth electron is bou 
nd to phosphorous with 0.045 ev. 
The corresponding energy Band diagram and lattice structure are shown in 
figure (1) at O0k. At O0k, the valence Band and the conduction band are 
separated by an Energy Gap Eg.  
Pure Silicon+ Pentavalent impurity =N-type Semiconductor. 
*Pentavalent Impurities EX: Arsenic ,Antimony,Bismuth, Phosphorous.* 
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Figure (1)a: N-type silicon at O0k 
The donor energy level Ed lies below the bottom of conduction band. This donor energy 
level contains phosphorous atoms. Which denotes electrons at T>O0k The donor energy 
level in shown in the figure (1) b.  Above O0k, when temperature is increased. The 5th 
bond electron becomes a free electron. This free electron enters into the conduction band. 
Due to this the Donor Atoms will get ionized, by denoting an electron to the conduction 
band. When temperature is further increased, the covalent bonds will break down. Here 
electron hole pairs will be generated.  
Electrons will move from valence bond to conduction bond, leaving holes in the valence 
bond.  At higher temperatures, the energy band diagram of N-type silicon is shown in 
figure (2)   
The Fermi level varies as shown in fig (2) b at 3000k. 
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Figure (1) b: Energy band diagram of N-type 
semiconductor at O0k 

 

Figure (2)b: Energy band diagram of N-type silicon at 
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Now the concentration of electrons increases in the conduction band when 
compared to holes. Hence the electrons become the majority charge carriers and 
holes the minority charge carriers.  
The variation of Fermi level is also shown in figure 2( b).  
P-type semi conductors  
For silicon if a small amount of trivalent impurity such as indium, Gallium, 
Thallium or Aluminum or Boron is added, we get a P- Type semi conductors.Three 
valence electrons of Boron form covalent bonds with the adjacent three silicon Atoms. 
There is not fourth electron to form a covalent bond with the neighboring silicon atom. 
This is like a missing bond. This is represented as a missing electron or vacant site.  
This is shown in figure (1) 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. (1)a: P-type silicon at O0K  fig.(1)b:  Energy band structure of P-type  
                                     silicon at 00k  
This missing electron is called Hole. The energy Band structure of P-type semi 
conductors is shown in figure (1) b.  
 
At O0k, the conduction Band is empty and the valence B and contains 
electrons.  
The acceptor energy level EA is just above the top of the valence Band.  
Acceptor energy level EA contains the acceptor atoms.  
Here  cE  = Bottom of the conduction band. 
 VE = Top of the valence band. 
 iE  = Intrinsic energy level. 
The Energy band structure of P-type silicon is shown in figure (2) a above  
O0k. 
When the temperature is above O0k, the covalent bonds with the silicon are 
broken down.  
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EA level  contains acceptor negative ions. 

 

 
 
 
 
 
 
 
 
 
 

Fig.(2)a: Energy band structure of P-type silicon above O0k 
 

Here same electrons are released and the acceptor atoms accept three electrons and there 
by they become negatively charged ions. There are called negative acceptor ions. Here 
the Fermi energy level lies just above the top of the valence bond and below the acceptor 
level. 
The energy band diagram of P-type semi conductors is shown in the figure (2) b. at T = 
3000k.At and above  3000k, the bonds in silicon with further breakdown and the electrons 
will move from valence band to conduction band. Therefore electrons are available in the 
conduction band.  At 3000k the Fermi level varies as shown in the figure. 
 
 

 

 

 

 

 
Fig.(2)b: Energy band diagram  of P-type silicon at 3000K & above 

 
 
Pure Silicon+ Trivalent impurity =P-type Semiconductor. 
*Trivalent impurities EX: Indium, Gallium,Thallium, Aluminium,Boron.* 
Doping: It is the process of adding an impurity to a pure Semiconductor. 
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Law of Mass Action 
The electron concentration in intrinsic semi conductors is given by  

  /c fE E

c Bn N e K T
   

  /f cE E

c Bn N e K T
        ---- (1) 

 
 
Similarly in an intrinsic semiconductors, the hole concentration is given by  

 
  /f cE E

v BP N e K T
  

 
  /v fE E

v BP N e K T
       ---- (2) 

Where cN  and vN  are pseudo constants.  

BK  is the Boltzmann constant. 
T is temperature in 0K. 
EF is the energy of Fermi level. 
EC is the bottom of the conduction band.  
Ev is the top of the valence band.  

In an intrinsic semiconductors n=p=ni 
   / /

.f c B v f BE E K T E E K T

c vnp N e N e
    
   

 

/ /2

/2

/2

.

Where

f c B v f B

f c B

B

E E K T E E K T

c v

E E K T

c V

Eg K T

c V c v g

np ni N e N e

np ni N N e

np ni N N e E E E

 





 

 

   

 

 1/2 /2 BEg K T
i c vn N N e      --- (3) 

The above relation shows that for any arbitrary value of Eg the product of n and p is a 
constant.  
This is known as Law of Mass Action 
For an extrinsic semiconductors, the electrons and hole concentrations are given by 
expressions similar to Equations (1) and (2) 
For an  N-type semiconductor  

 
  /f c BE E K T

n cN N e
      ----- (4) 

 
  /v f BE E K T

n vP N e
      ----- (5) 

Where nn   Electron concentration.  And nP   Hole concentration.  

Now     / /
.f c B v f BE E K T E E K T

n n C V vN P N N e N e
   

   /f c BE E K T

n n C Vn P N N e
  
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 /g BE K T

n n C Vn P N N e      ------ (6) 

Where c v gE E E   

 2
n nn P ni       ---- (7) 

The above expression (7) is known as Law of Mass action for N-type semi conductors.  
For P-type semi conductors, the law of mass action is given by  

 2
p p ip n n       ----- (8) 

Equations (7) and (8) imply that the product of majority and minority carrier 
concentrations in extrinsic semi conductors at a given temperature is equal to the square 
of Intrinsic carrier concentration at that temperature.  
The law of mass action is very important in conjunction with charge neutrality condition.. 
This enables us to calculate minority carrier concentration. This law states that the 
addition of impurities to intrinsic semi conductors increases the concentration of one type 
of carrier, which consequently becomes majority carrier and simultaneously decreases the 
concentration of the other carriers, which is known as the minority carrier. 
The minority carriers decrease in number below the intrinsic value.  
This is because there is an increase of majority charge carriers Recombination rate. 
According to the law of Mass action, the product of majority and minority carriers 
remains constant in an extrinsic semi conductors and it is independent of the amount of 
donor and acceptor impurity concentrations. When the doping concentration levels are 
high, the minority carrier concentration will be law and the majority carrier concentration 
will be high when the doping concentration levels are low, the majority carrier 
concentration is low and the minority carrier concentration is high.  
 
Charge neutrality 
Let us consider extrinsic semi conductors with both donor and Acceptor impurities.  
At usual ambient temperatures, we may assume that impurity atoms are ionized and no 
charge carriers are created due to breaking of covalent bonds.  
Now concentration of electrons n = concentration of positively ionized donor impurity 
atoms, Nd. 
Concentrations of holes P = concentration of negatively ionized acceptor impurity atoms 
Na.  
Now the total charge neutrality of the material can be written as  

d aP N n N         --- (1) 

According to law of Mass action, in any semiconductor, under thermal equilibrium 
condition, the product of the number of electrons and number of holes is a constant.  
 2np ni        ----- (2) 
Where ni  = intrinsic carrier concentration.  

Also 
2ni

n
p

  and 
2ni

p
n

  

Now from equation (1), we have  
 a dp n N N    
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But  
2ni

n
p

  

 
2

a d

ni
p N N

p
    

 2 2
a dp ni P N N     

 2 2 0a dp P N N ni      

This is a quadratic equation of the type  
2 0ax bx c    

 2 24

2 2
a da d

N N niN N
P

 
     

 
1/ 22

2

2 4
a da d

N NN N
P ni

 
   

  
   ---- (3) 

Similarly we can show that 

 
1/ 22

2

2 4
d ad a

N NN N
n ni

 
   

  
    ----- (4) 

Equations (3) and (4) represent the equations for charge densities.  
Case I:  For intrinsic semi conductors.  
 0aN   

Hence we get n p ni     ---- (5) 
Case II: N – type semiconductors 

Now  
 

1/ 22

2

2 4

NdNd
p ni

 
   

  
 

 

 

 

1/ 22 2

1/ 22 2

1/ 22
2

2

4

2 2

4

2

4
1

2

Nd niNd
p

Nd Nd ni
p

ni
Nd Nd

Nd
p

 
  

   


 
   

 

 

Since p cannot be negative  

 

1/ 22

2

4
1

2

ni
Nd Nd

Nd
p

 
   

    

Expanding using power series and neglecting higher power terms 
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2

2

1 4
1 .......

2 2 2

Nd Nd ni
P

Nd

  
      

  
 

2

2

2
1

2 2

Nd Nd ni
P

Nd

 
    

 
 

 

2

Nd
P  

2

Nd


2 2

2

2

2

Nd ni

Nd
  

2ni
P

Nd
       ---- (6) 

Similarly electron concentration  
1/ 22 24

2 4

Nd Nd ni
n

 
   

 
 

1/ 22

2

4
1

2 2

Nd Nd ni
n

Nd

 
   

 
 

Expanding using power series and neglecting higher power terms 
2

2

1 4
1 .........

2 2 2

Nd Nd ni
n

Nd

  
      

  
 

2

2

2
1

2 2

Nd Nd ni
n

Nd

 
   

 
 

2

d
d

ni
n N

N
   

At low temperatures 0ni   
Hence dn N     ----- (7) 

Case III :  P-type semi conductor 
In this case 0dN   

Now  
 

1/ 22

2

2 4

NaNa
n ni

 
    

  
 

 
1/ 22

24

2 4

Na a
n ni

 
    

 
 

 
1/ 22 24

2 4

Na Na ni
n

 
    

 
 

 
 1/ 22 24

2 2

Na niNa
n


    
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 1/ 22 24

2

Na Na ni
n

 
   

 

1/ 224
1

2

ni
Na Na

Na
n

 
   

   

Since n cannot be negative 

 

1/ 224
1

2

ni
Na Na

Na
n

 
   

   

Expanding using power series and neglecting higher power terms 
2

2

1 4
1 .......

2 2 2

Na Na ni
n

Na

  
      

  
 

2

2

2
1

2 2

Na Na ni
n

Na

 
    

 
 

2

Na
n  

2

Na


2

2

2

2

Na ni

Na
  

2ni
n

Na
        --- (8) 

Similarly Hole concentration  
1/ 22

2

2 4

Na Na
P ni

 
   

 
 

1/ 22 24

2 4

Na Na ni
P

 
   

 
 

 1/ 22 24

2

Na Na ni
P

 
  

1/ 22

2

4
1

2

ni
Na Na

Na
P

 
  

   

1/ 22

2

4
1

2 2

Na Na ni
P

Na

 
   

 
 

Expanding using power series and neglecting higher power terms.  
2

2

1 4
1 ........

2 2 2

Na Na ni
P

Na

  
     

  
 

2

2

4
1

2 2

Na Na ni
P

Na

 
   

 
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2

2

2

2 2 2

Na Na Na ni
P

Na
    

2ni
P Na

Na
   

At low temperature 0ni   
Hence p Na       ---- (9) 
 
Equation of Continuity   
This equation governs the behavior of charge carriers in a semi conductor. 
This equation gives a condition of dynamic equilibrium for the density of charge carriers 
in any elementary volume of semiconductors.  
This is based on the fact that charge can neither be created nor be destroyed.  
When an N-type semiconductor is exposed to 
light, excess carriers are generated at the exposed 
surface. 
The generated carriers are in the form of electron 
– hole pairs. Since the given semiconductors are 
N-type, here the excess carriers are holes. 
These charge carriers diffuse throughout the 
material. Hence the carrier concentration in the 
semiconductor is a function of both time and 
distance.  
Consider the infinitesimal volume element of are 
A and length dx as shown in figure (1). 
 
 
 
 
Let P be the average hole concentration within this volume.  
Let p  = Mean life of holes.  

Now the holes lost per unit volume by recombination is 
p

P


. 

The rate of loss of charge within the volume under consideration =  
p

P
eAdx


--------(1)  

Recombination : Electrons combining with holes is called recombination    
Let g = Thermal rate of generation of electron hole pairs per unit volume.  

Now rate of increase of charge within the volume under consideration = eAdxg ---- (2) 
Let I = The current entering the volume at x.  
I +d I = The current leaving the volume at x+dx. 
It is found that the current leaving the sample has increased by an amount dI. 
This means that these is a decrease of hole concentration. Now the decrease of holes (in 
coulombs) per second from the volume under consideration = dI.  
Due to above stated three effects, the hole density changes with time. 
Now increase in the number of holes per second 

Figure (1) Conservation of charge 
carriers 

P holes /m3 

I + dI 
I  

x x+dx 

Area A  
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 Within the given volume = 
dp

eA dx
dt

  ----------------------- (3) 

According to conservation of charges, charge can neither be created nor be destroyed.  
 Increase of Holes = generation of Holes – loss of Holes.  

P

dp p
eAdx eAdxg eAdx dI

dt 
    -----------------------(4) 

Now total current due to excess carries (holes) in given by  
Total current = Diffusion current + drift current  

 p

dp
I Ae D Ape pE

dx
    -------------------------- (5) 

Where E = Intensity of the electric field with in the given volume when there is no 
external field applied, then E = 0 under thermal equilibrium conditions the hole density 
attains a constant value P0  

Under these conditions dI=0 and 0
dp

dt
  

Now equation (4) becomes 

0

p

P
O eAdxg eAdx


   

0

p

P
g


   ---------------------------- (6) 

Here g = generation rate.  
This equation (6) indicated that, the rate of generation of holes is equal to the rate of loss 
due to recombination under equilibrium conditions.  

Also (5) p

dp
I AeD Ape pE

dx
      

Now 
2

2p

dI d p dp
AeD Ae p E

dx dx dx
      

 
 ----------------------- (7) 

From equations (4), (6) and (7), we get  

0

p p

dp P p
eADx eAdx eAdx

dt  
   

 
2

2

d p dp
AeDp dx Ae p Edx

dx dx


      
  

 

e A dx
dp

e
dt

  A dx 0

p

P P
A


 

  
 

e
2

2P

d p
D dx

dx
A e

dp
p E dx

dx
  

2
0

2P
p

P Pdp d p dp
D p E

dt dx dx



              

 -------------- (8) 

This equation (8), is called equation of continuity, since hole concentration P is a function 
of tome t and distance x, we have to use only partial derivatives.  
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2

0
2P p

p

P Pp p p
D E

dt dx dx



               

  ------------- (9) 

For holes in an n-type semiconductor 
  2

2
n onn n n

P p
p

P Pp p p
D E

t dx dx



  

    


   ---------------- (10) 

For elections in a p-type semi conductor 

  2

2

p opp p p
n n

n

n nn n n
D E

t dx dx




   
       

 -------------- (11) 

This sign difference between the above two equations in due to the different directions of 
drift of holes and electrons in an applied electric field.  
Hall Effect: 
Some times it is necessary to determine whether a material is n-type or p-type. Measured 
conductivity of a specimen will not give this information since it cannot distinguish 
between positive hole and electron conduction.  
The Hall Effect can be utilized to distinguish between the two types of carriers, and it is 
also useful in the determination of density of charge carriers.  
Hall Effect definition  
“If a piece of conductor or Specimen (metal or semiconductor) carrying current is 
subjected to a transverse magnetic field, an electric field is generated inside the 
specimen in a direction normal to both the current and the magnetic field” 
 This phenomenon is known as Hall Effect. The generated voltage is known as 
Hall voltage. The corresponding electric field is known as Hall Electric field.  
 Let us consider a sample having thickness t and width b. the sample is a rectangle 
sample, as shown in the figure(1).  
 

                   + + + + + 

 

 

_ _  _ _ _ 

 E 

Figure (1) Hall effect 

 

 
 Assuming that the material is an n-type semiconductor, the current flow consists  
 
of almost due to electrons, moving from right to left. 

I  
t 

y 

z 

F

I  or Ix 

Electrons 
experience a 
force F in the 
down ward 
direction due to 
B 

 

X

B  
Face (1) 

 

Face (2) 

 b 

Fig (2) Motion of electrons in an n-type 
semiconductors 

 

eEH 

Be 
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 This corresponds to the direction of conventional current from left to right as 
shown in figure (1). 
 Current I is in the positive X-direction and the magnetic field B is applied in the 
positive Z direction. According to Flemings, left hand Rule, The electrons experience a 
force, called Lorentz force. This Lorentz force acts in the negative Y-direction.  

Now Lorentz force LF B ev   ( cross product) 

sinLF Bev  ----------(1) 
Where v = velocity of electrons.  

Since the velocity of electrons and B are perpendicular .θ=900 
FL=Bev   -------------(1)a 
Electrons experience a force downwards in the negative Y-direction and the 

positive charges drift upwards in the positive Y-direction. As a consequence, the lower 
surface collects negative charge and upper surface becomes positively charged. Due to 
this an electric field called Hall electric field will be established between upper and lower 
surface of the specimen.  

This hall electric field EH establishes a potential called the Hall Voltage VH.  
The hall field EH exerts an upward force FH on the electrons as shown in figure (2). 

H HF eE    ---------------- (2) 
But total force on the electrons, is given by  

0HBev eE   ----------------- (3) 
The above equation is called Lorentz equation. Under equilibrium conditions.  
     

HE Bv    ----------------------- (4) 
Now the current density in the X-direction is given by  

 xJ nev  ------------------ ----- (5) 

Now (5) 
xJ

v
ne

   ----------------------- (6) 

Here n = electron density (electron concentration)  
 e = charge on the electrons.  
Now from (4) and (6), 

x
H

BJ
E

ne
   --------------------------- (7) 

Now the Hall coefficient RH can be described as follows.  
For a given semiconductor electron concentration n is constant and charge on the electron 
e is constant.  

H xE BJ  

H H xE R BJ  ------------------- (8) 

Where HR  is a constant of proportionality. 

 
1

HR
ne

    ------------------------- (9) 
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Here ,HE B  and xJ  are measurable. Hence Hall coefficient HR  and carrier density ‘n’ 

can be found.  
 
Determination of Hall coefficient  
Let t be the thickness of the rectangular slab.  

b be the width of the sample.  
Now the Relation between HE  and HV  is given by  

 H HV E t  ---------------------- (10) 

Also (8) H H xE R BJ  ---------------- (8) 

 Now from (8) and (10), we get  

 H H xV R BJ t  ----------------------- (9) 

But xJ  = current density  

 
x

x

I current
J

A area
   

 
x

x

I
J

bt
   (Since A = Area of cross section  

A = b t) 
 Equation (9) becomes  

x
H H

I
V R BX

b t
 t      

x
H H

I B
V R

b
  

H
H

x

V b
R

I B
       -------------------------- (10) 

HV , b , xI  and B  all are measurable and substituting them in equation (10), we can 

obtain the value of Hall coefficient HR . 

Note that the polarity of HV  will be opposite for n and p type semiconductors.  
 
Carrier concentration and mobility  

Hall coefficient 
1

HR
ne

   

 
1

HR
ne

  (Magnitude) 

Electron concentration 
1

H

n
R e

  can be determined.  

Now electrical conductivity ne   . 
 Where     mobility  

Mobility
ne

   , HR    
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For a P-type material Hall coefficient is positive.  
1

HR
pe

 ,  Where p= hole concentration. e= Charge on hole  Which is +ve. 

 
Application of the Hall Effect: 
1. Useful in determining whether the given semiconductor is n-type or p-type.  
2. Hall Effect can be used to find the carrier concentration and mobility of 

carriers. 
3. Hall Effect is used to measure the magnetic field.  
4. Hall Effect semi conducting devices are used as sensors to sense the magnetic 

fields.  
5. The Hall Effect is used in magnetically activated electronic switches. They are 

used as non contacting key boards and panel switches. 
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PN Junction  
When a P type material is suitably joined with an N type material, a PN junction is 
formed. When an intrinsic semi conductors is  simultaneously doped with  P-type  
and n-type impurities, a PN junction is formed.  
 The PN junction may be formed by crystal growth or alloying or diffusion 
method.  

The plane dividing the two zones is called PN Junction.  
The PN junction is shown in figure (1) a 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    + ve ionized Donors  
       - ve ionized Acceptor 
+       Hole 
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Fig (1) b: Diffraction of electrons and holes  

Fig (1) a:  a Pn junction  
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In the p side ‘+’ represents holes. In the n side ‘-’ represents electrons.  
In the n-side there is a high concentration of electrons. 
In the P- region there is a high concentration of holes. 
 Therefore, at the junction there is a tendency for the electrons to diffuse from n-

region to p-region and holes from p-region to n-region. This process is called diffusion. 
When the free electrons move across the junction from n-side to p-side. The demotions 
become positively charged. Hence a not positive charge is built on the n-side of the 
junction.  

The free electrons that cross the junction uncover the negative acceptor ions by 
combining with the holes.   

Therefore a not negative charge is established on the p-side of the junction. 
This not negative charge n the p-side prevents further diffusion of electrons from 

n-side to p-side.  
Similarly the net positive charge on the n side prevents further diffusion of holes 

from p side to n side.  
Due to this a barrier is set up near the junction.  

This barrier prevents further movement of charge carriers i.e. electrons and holes. This 
barrier is called potential barrier.  
It should be noted that outside this barrier an each side of the junction. The material is 
still neutral. 
 Only inside the barrier, there is positive charge on n side and negative charge on 
p-side. 
 This region is called depletion layer.  This is so because mobile charge carriers are 
depleted in this region.  
 It is clear that a potential barrier VO or VB is set up. 
 As a consequence of this an electric field is established across the depletion layer. 
 The Barrier potential is about 0.3v for Germanium and 0.72V for silicon.  
The depletion layer and the Barrier potential are shown in the fig (1)a and Fig (1)e. 
The width of the depletion region is less than 1 m  (~0.5 m ). Since the depletion 
region has immobile ions which are electrically charged it is known as space charge 
region.  The space charge region is shown in figure (1) c. the established electric field is 
shown in figure (1) d.  
Hence across the junction no current flows and the system is in equilibrium. 
To the left of this depletion layer (in the P side), the carrier concentration is P ~ NA.  
To the right of the depletion layer (in the n side), the carrier concentration is n~ ND. 
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Width of depletion layer  
For a PN junction, the potential barrier is shown in the figure below.  
 

 

 

 

 

 

 

 

Figure (1) Potential Barrier in a Pn junction 

 
This figure shows the space charge region in the two sides of the junction and the 
consequent potential variation.  
Let  1X   width of the space charge region in the P side.  

 2X   Width of the space charge region in the N side.  
The area of the depletion layer in each region depends on the concentration of the 
impurities in the regions.  
The effective areas of the depletion layer can be calculated using Poisson’s  equation. 
According to Poisson’s equation, the second derivative of the potential with respect to 
distance is proportional to the charge density.  
In one dimension, the voltage varies only in the X-direction only. The length of the 
crystal.  
Now the Poisson’s  equation may be written as  
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2

d V
p

dx
   

2

2

d V p

dx





    ---- (1) 

Here V = voltage 
 P = volume charge density  
 E = Permittivity of the medium.  
In the position of the depletion layers situated in the P-region near the junction the charge 
density may be given by  
 aP eN       ---- (2) 

Where aN = Density of Acceptors Atoms.  

 e = charge on the electron.  
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Negative sign is used, since acceptors atoms are negatively ionized.  
To find 1X  in the P-region, we use Poisson’s equation.  
i.e. from equations (1) and (2), we have 

 
2

2

d v p Na

dx

 
 

 
    ------ (3)  

On integrating the above equation, we get  

 
d dv eNa

dx dx
     

 

dv eNa
d dx

dx
     

 

dv eNa
d dx A

dx
         

dv eNa
x A

dx
     

    ----- (4) 

Again (4) (4)
eNa

dv xdx Adx  


 

Integrating the above equation, again  
eNa

dv xdx Adx B  
    

2

2

eNa x
V Ax B  


    ---- (5) 

Where A and B are the arbitrary constants.  A and B can be determined by applying 
boundary conditions.  
We assume that V = O Where X=0, so that all voltages are measured with respect to the 
potential at the boundary between P-type and N-type materials.  
Using this boundary condition, we get  
 0 0 0 0B B      
In the p-type semi conducting material, the potential is constant at the end of the 
depletion layer or depletion region. 

Thus the depletion region may be assumed to end at a point 1x X   where 0
dv

dx
  

At this point the field strength is zero. 
Using the condition in equation (4), we get  

  10
eNa

x A
     

 

1

eNa
A  


     ----- (6) 

Now substituting the values of the constants A and B in equation (5), we get  
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1

2

eNax eNa
V x

 
     

   ----- (7) 

At 1V x , we have 1V V  
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 from (7), we have 1V V  
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1

1eNa
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
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2

1

1

2

eNa
V


 


    ----- (8) 

In the same manner the Poisson’s equation may be applied for the position of the 
depletion layer situated in the n-region near the junction. Now the charge density in the n-
region, of depletion layer is due to positively ionized donor atoms,  
The charge density is given by  
  dp eN     ----- (9) 

Now the Poisson’s equation is given by  

  
2

2
0

d p

dx





    ----- (10) 

In equation (9),  Nd  = Density of Donor Atoms.  
   e = Charge on the electron.  
From equations (9) and (10), we get  
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dd v eN

dx
 


     ----- (11) 

(11)  
d dv eNd

dx dx
      

 

 
dv eNd

d dx
dx

      
 

On integrating the above equation  
dv eNd

d dx c
dx

          

ddv eN
x c

dx
  


     ---- (12) 

By integrating the equation (12), we get  

deN
dv xdx cdx  


 

deN
dv xdx cdx D   

    
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2
deN x

V cx D   


    ---- (13) 

Where C and D are arbitrary constants. C and D are determined by applying the boundary 
conditions.  
Where 0x  , 0v   
 from (13), We get D =0. 
In the n-region, the potential in constant at 2X X . 
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 At 2 , 0
dv

X X
dx

   

 from equation (12), we get c = 2deN X


  ----- (14) 

Thus 
2

2

1

2
deN x eNd

V xX  
 

   ----- (15) 

At 2 2,x X V V  , now we get  
2

22
2 2

1

2

eNd x eNd
V X

           
 

2
2

2

eNd x
V





      ----- (16) 

 
This 2V  is the potential at 2x X . At 2x X  the depletion layer in the n-region will 
ends.  
Now the potential barrier at the junction is given by  
  2 1BV V V   

 2 1BV V V   
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
   ---- (17) 

The equation of charge neutrality is given by  
 1 2a deN X eN X    

1
2

a

d

N X
X

N
      ---- (18) 

Now substituting the value of 2X  in equation (17) 
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From equation (18) and (19), we get  
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Now the total width of the depletion layer is given by  
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Diode Current Equations 
The diode current pertaining to VI characteristics is given by  

 0 1
VT

V

I I e


 
 
 

 
  

  
 

Where  I = Diode current  
 0I = Diode reverse saturation current at room temperature.  

 V = External voltage applied to the diode. 
   = A constant  
  =1 for Germanium  
  =2 for Silicon 

 TV = Volt equivalent temperature or thermal voltage. 

 B
T

K T
V

q
  

 BK   Boltzmann constant  

 BK  1.3806   23 110 JK   
 q = Charge on the electron 
 q = 91.602 10  coulomb 
 T = Temperature of the junction in 0 K . 
When the diode is reverse biased, the current equation is given by  

 0 1T

v

VI I e 
 

 
 

 
  
  

 

 
Light Emitting Diode (LED) 
Light Emitting diode (LED) is a PNjunction diode that emits light when forward biased.  
The light is  emitted by the forward biased junction by a phenomenon called 
Electroluminescence. 
The materials that are used for fabricating LED are Galliumphosphide (GaP), Gallium 
Arsenide Phosphide (GaAsP) and Gallum Arsenide.  
Usually direct B and Gap semiconductors are used for the fabrication of LEDs. 
When an LED is forward biased, carrier recombination takes place i.e. electrons from the 
n-side cross the junction and recombine with the holes on the p-side. 
In silicon and Germanium semiconducting Pn junctions greater percentage of energy is 
given out in the form of heat and the emitted light is not visible.  
A forward biased LED and its symbol are shown in the figure (1) 
 
  
 

 

 

P        n 

+      - 

 

+  - 

Fig (1) a: Forward biased 
LED 

Fig (1) b: Symbol of LED 
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When an LED is forward biased, the electrons and holes move towards the junction and 
recombination takes place. As a result of recombination, the electrons present in the 
conduction band side of n-region fall into the holes present in the valence band side of               
P-region. When recombination takes place, energy emitted out in the form of light.     
The emitted light will have energy equal to the energy difference between conduction 
band and the valence band. For every recombination light energy is emitted. 
The excess energy in the process of recombination is given to the emitted photons.  
The light emitted is directly proportional to the forward bias current in the LED. 
The energy band diagram for the LED is shown in the figure (2) 
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Figure( 2) Energy Band diagram of an LED 
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The basic structure of a LED is shown in the figure (3). Here an n-type layer is grown on 
a substrate and a p-type is deposited on it by diffusion.  
Since carrier recombination takes place in the p-region, it is kept uppermost. 
Metal contacts are made on the p-layer act like anodes.  
Current is allowed through these anodes. A thin metal (gold) film at the bottom will act 
as a cathode. This also provides the reflection of light by the thin metal layer back into 
the medium.  
LEDs are usually encased to protect their delicate metal contact wire.  
The emission of light and its efficiency can be increased by increasing the junction 
current (injected current) LEDs are used to radiate different colors of light. The 
wavelength of light emitted depends on the energy gap of material.  
The following table shows the colors emitted by different materials.  
Material  Colors Wavelength  
GaAS IR 9000 
Gap Green  5600 
GaAsp Yellow  5900 
 
Usually a protective resistor of 1 k a or 1.5 ka  is connected in series with the LED in a 
circuit. LEDs operate as a forward bias voltage of 1.5 volt to 3.3 V. Usually the current is 
in mill amperes.  
The power requirement is 10 mw – 150 mw. 
The switching time is around 1ms. 
The wavelength of emmited light is given by  
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Figure (3) Structure and Recombination of electrons and holes in a LED. 

Applications of LED 
LEDs are used in  

1. Intercoms 
2. Digital clocks 
3. Digital display systems 
4. Instrument display systems 
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5. Power on/off indicating 
6. Optical switching applications  
7. Optical communication for energy coupling circuits 
8. Opto isolation circuits 
9. Solid state video-display system 
10.   used in computers 
11. Calculators 
12. Electronic panels 

 Photo diode  
A Silicon photodiode is a light Sensitive Device. A photo diode is also known as photo 
detectors.  
A photo diode converts light signals (optical signals) into electrical signals.  
A photo diode must be always reverse biased. The reversed biased photodiode and its 
symbol are shown in figure (1) 
 
 

 

 

 

 

 

 

The photodiode is made of semiconductor PN junction kept in a sealed plastic or glass 
casing.  
The casing is designed in such a manner that the light rays are allowed to fall on one 
surface across the junction.  
The remaining sides of the casing are painted to restrict the penetration of light rays.  
A convex lens permits the light rays to fall on the junction. When light falls on the 
reverse biased PN junction photodiode, electron – hole pairs are generated.  
The movement of these electron hole pairs in a properly reverse biased circuit results in a 
current.  
The energy band diagram of a photodiode is shown in figure (2) 
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Figure (1) a: Photo diode and 
reverse bias  
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Figure (1)b: photo diode symbol  
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Figure (2) Energy band diagram of a photodiode 

 
When reverse bias is applied, the depletion layer is widened, the junction capacitance 
reduced. Here in this situation the junction will not conduct current. However the reverse 
biased junction can conduct current when free carriers are generated in the junction by 
radiation of sufficient energy. 

The magnitude of the photo current depends on the number of charge carriers 
generated and also on the illumination and the diode. 

The photocurrent also depends upon the frequency of light falling on the 
photodiode.  

The magnitude of the current with large reverse bias is given by 

0 1
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SI I I e
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 
 

Where 0I  = Reverse saturation current  

 sI  = Short circuit current which is proportional to the intensity of light.  

 V = Voltage across the diode.  
 TV = volt equivalent of temperature.  
    A constant  
For  Ge,  =1 
  Si,  =2 

The volt ampere characteristics of a photodiode are shown in the figure (3). 
The reverse current increases with increase in illumination. Even if there is no light is 
falling on the photodiode, there is a minimum leakage current called dark current, 
flowing through the device.  
 
 Germanium has a higher dark current than silicon, but it also has a higher level of 
reverse current.  
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Fig(3) V-I Characteristics of Photodiode 

 

Applications of photodiode 
1. Photodiodes are used as light detectors, demodulators and encoders. 
2. They are used in optical Communication systems. 
3. They are used in high speed counting circuits. 
4. They are used in high speed switching circuits. 
5. They are used in high operated switches. 
6. They are used in computer card punching and tapes. 
7. They are used in electronic control circuits. 
8. They are used in retrieving of sound from sound track film. 

Liquid Crystal Display (LCD) 
Liquid crystal displays came under passive types of display since no light generation is 
required.  
There are two types of LCD’s namely.  

i) Reflective type, requiring illumination on the front side. 
ii) Transmittive type requires illumination on the rear side. 

The liquid crystal state is a phase of matter exhibited by a large number of organic 
molecules of organic material over a restricted temperature range. 
The material becomes a crystalline solid at the lower temperature range while it changes 
into a liquid at the upper temperature range. 
In the liquid state, molecules will have the shape of rod. In any small volume of liquid 
crystal state the orientation of the molecules is described in terms of a unit vector called 
Directors.  
They are basically two liquid crystal materials commonly used as LCD’s. 
They are Nematic and Cholestric  
The arrangement of molecules is shown in the figure (1) and figure (2) for Nematic and 
Cholesteric type of LCD’s. 
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The properly used liquid crystal structure (NLC). In Nematic type the molecules are 
aligned parallel to each other as shown in figure (1). But these molecules are free to move 
relative to each other. Hence they represent a liquid phase. Here the molecules will have 
complete translational motion.  
 

 

 

 

 

  

 

 

 
 
 
 
 
 
 
The liquid is completely transparent. When the liquid is subjected to a strong electric 
field, the well ordered liquid crystal structure is disturbed.  
This makes the liquid to polarize and turns opaque. When the electric field is removed, 
the liquid crystal regains its original structure and form.  
Here the material becomes transparent.  
In the cholesteric phrase the molecules are arranged in a large number of planes. 
In each plane all the molecules are arranged in the direction of director as shown in figure 
(2).  
The director directions thus display a helical twist through the material. 
The distance between planes having the same director’s direction is called the Pitch P. 
Depending on the construction LCDs are classified into two types.  
 
Dynamic scattering type  
The dynamic scattering type liquid crystal cell is shown in the figure (3). 
This consists of two thin glass plates, each coated with tin oxide on the inner side. This is 
transparent and act as electrodes. 
These two glass plates are separated by a liquid crystal layer of 5-50 µm thick. 
The front glass sheet is etched to produce a single or multi segment pattern of characters.  

Figure (1) : Arrangement of 
Molecules in a Nematic 

liquid crystal 

Molecules  

Unit vector 
director  

Figure (2) Arrangement of molecules in a 
cholesteric liquid crystal 

 

Pitch  

Helix Axis  
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When a week electric field is applied to a liquid crystal, the molecules align in the 
direction of the field.  
When the voltage exceeds a certain threshold value, the liquid crystal structure entirely 
distributed and the appearance changes.  
As the voltage further increases, the flow becomes turbulent and the material turns 
optically inhomogeneous.  
In this disordered state, the liquid crystal scatters light.  
Thus when there is not external electric field applied, the liquid crystal is transparent.  
When electric field is applied, the disturbance causes scattering of incident light in all 
directions. Here the cell appears bright.  
Field effect type 
The field effect type of liquid crystal is similar to Dynamic type. This is also known as 
twisted nematic field effect display.  
Its construction is same as dynamic type. But it is sand witched between two pieces of 
polarized.  
The polarized directions of the two polaroids are perpendicular to each other. 
1st polarized is called polarizes and the 2nd one is called Analyses.  
The 1st polarizes is infront of the LCD cell and the 2nd one is at its back. Both of these are 
arranged perpendicular to each other. Beyond Polaroid 2 a reflector is placed in reflective 
mode. 
When a beam of polarized light passes through the polarizes, plane polarized light rotates 
though 900 as transverses the cell. 
When no electric field is applied, it passes through the analyses and then reflects back at 
the mirrors and light retraces the path. 
Thus when no field is applied the device reflects light and appears bright. 
When a field is applied, the direction of polarization of light traversing the cell is not 
rotated. Hence it is stopped by the second polarizes (Analyses).  
No, light is reflected from the device and hence it appears dark. This means that in the 
absence of the field he incident light is reflected while it is blocked when the field is 
applied.  
Advantages 
1. Liquid crystals consume small amount of energy. 
2. Hence the voltages required are loss. 
3. Because low power consumption, a Seven segment display requires about 140w 

(20w per segment), whereas LEDs require 40mw per numerical. 
4. They are economical and cheap. 
5. In a seven segment display, the current drawn in 25µA for dynamic scattering cells 

and 300µA for field effect type cells. 
6. LCDs require AC voltage supply.  
7. They are economical and cheap. 
8. They are used as temperature, measuring sensor. 
9. Since thin layers are used, they are must suitable for display devices. 

Disadvantages  
1. Angle of viewing is limited. 
2. External light must be used.  
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3. LCDs are slow devices. The ON and OFF times are quite large. ON time is  a few 
ms. and off time is 10 ms. 

4. When used with DC, there life time is less. Hence they are used with AC supply 
only.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 Figure (3) Construction of dynamic scattering LCD.  
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Drift current: 
In a perfect crystal the periodic electric field enables electrons and holes to 
move freely as if in vacuum.  
When there is no electric field, there is no net current. This is because 
charge movement in any direction is balanced by charge movement in the 
other direction. In the presence of the electric field field, the carriers 
experience directed movement. This is called drift. 
Definition Of drift: Forcible movement of Charge carriers under the 
influence of an Electric field is called drift. 
With the field carriers drift and this results in current flow through the 
semiconductor. 
Movement  of charge carries under the influence of an applied electric field 
 is called drift. 
                                                                                                

                                                                                         
 
The current density is given by              

dJ neV  --------------- (1) 

Here dV   drift velocity.                                                                                       

 Also d dV E V E    ------------- (2) 

Where   is called the mobility of the carriers. E= Electric field.  
From equations (1) and (2), 

 Now current density dJ nev
      ----------- (3) 

                                 
J ne E

---------------(4) 

In semi conductors, the current flow is due to electrons and holes.  
Electron current density is given by  
  n nJ drift ne E        ------------- (5) 

 Hole current density is given by 

 p pJ drift pe E   ----------- (6) 

The two charge carriers move in the opposite direction.  
Now the total drift current density is given by  
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     n pJ drift J drift J drift   

  n pJ drift ne E pe E    

 ( ) n pJ drift E ne pe    -------- (7) 

 For  intrinsic semiconductors in p n 
 

 
 

( )

( )

i n p

i n p

J drift En e e

J drift n Ee

 

 

 

 
  ------------- (8) 

Equation(8) gives current density equation. 
Diffusion current : 
Usually directed movement of charge carriers will give rise to 
electric current.  
The movement of charge carriers may be due to either drift or 
diffusion.  
Usually non-uniform concentration of carriers gives rise to 
diffusion.  
Definition: Movement of charge carriers from high 
concentration region to low Concentration region in a 
semiconductor is known as diffusion. 
Let us suppose that the concentration of electrons varies with 
distance x in the semi conductors. Here the concentration 

gradient is given by
n

x




. 

Ficks law states that the rate at which carriers diffuse is 
proportional to the density gradient and the movement is in the 
direction of negative gradient.  
Mathematically, the rate of flow of electrons can be written as 

           n

n
f

x
 



   ------------(1)  Here nf = rate of flow of electrons    

across unit area.  
                                                                        

      
The rate of flow of electrons is given by  

n n

n
f D

x


 


 ----------- (2) 

Here nD  = Diffusion coefficient for electrons.  
Partial derivatives are used because n is a function of 
temperature and distance.  
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This flow of electrons constitutes an electron diffusion current 
density. Since conventional current is the rate of negative 
charge, we have  

                 
    Rate of flow of electrons across unit areanJ diffusion e 

 

    ( )n n

n
J diffusion e D

x


  


 

 n n

n
J diffusion eD

x





      ----------- (3)  

If an excess hole concentration is created in the same region, 
hole diffusion takes place in the same direction at a rate per unit 
area.  
The rate of flow of holes per unit area is given by  

p p

p
f D

x


 


              ------------- (4) 

This results in a hole diffusion current density . 
Now    rate of flow of holes across unit areapJ diffusion e   

  (5)p p

p
J diffusion e D

x


      


 

Here pD Hole diffusion coefficient for holes. 
 
 
 
 
Einstein Relations or Einstein Equations 
At equilibrium with no field, the free electron distribution is 
uniform and there is no net current flow. Any tendency to 
disturb the state of equilibrium which would lead to diffusion 
current creates an internal electric field.  
This internal electric field creates a drift current balancing the 
diffusion current component.  
Under equilibrium conditions, we have therefore the drift and 
diffusion currents.  
These currents are due to an excess density of electrons.  

Now  driftnJ n eE
----------------------- (1) 

                    diffn n

n
J eD

x





   --------------- (2) 

          Under equilibrium conditions, ( ) ( )n nJ drift J diff  
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     (3)n n

n
n eE eD

x
 

     


 

The force F on excess carriers restoring equilibrium is given by 
the product of excess charge and Electric field.  

          F ne E
           --------------- (4) 

           (3)
n

n

n
D

xn
E


 

              
----------- (5)  

Now from (4) and (5),we get 

            

n

n

D E n
F e

E x


 


 

             

n

n

e D n
F

x



                       ------------- (6) 

This force F depends on the thermal energy of the excess 
carriers.  
By making an analogy between the excess carriers in a 
semiconductors and gas molecules in a low pressure gas, the 
force F corresponds to pressure gradient.  

Pressure gradient = B

n
K T

x


  

              

n
B

n

eDn n
K T

x x
 

 
 

n
B

n

e D
K T


   

                   
 

 
 

 

                     
B

n n

K T
D

e
         --------------- (7) 

Similarly for holes p

B
p

K T
D

e
   ---------------- (8)     

                        

7

8
n n

p p

D

D




              ------------ (9)  

Equations (7), (8) and (9) are called Einstein’s Relations.  
 
 
 
 
 

n
n BD K T

e



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Direct Bad Gap and Indirect Band Gap Semiconductor. 
Direct Band Gap Semiconductors IndirectBandGapSemiconductors 

1.Emperical formula GaAs1-xPx 
Where x is molar concentration. 
If x≤ 0.45, then semiconductor is called 
Direct Band Gap Semiconductor. 
2. Transition of electrons from 
conduction band to valence band takes 
place directly.  
3. Intra band Transition occurs with 
high probability.  
4. Radiative recombination mechanism 
is dominant. 
5. Momentum of Charge carries is 
conserved. 
6. Life time of emitted photons is large. 
7. Life time Charge carriers is less. 
8. Natural or Artificially occurring. 
materials. Like InP, Ga, GaAs, CdS. 
 9. Used in LEDs and Semiconductor 
Laser diodes. 

1.Emperical formula GaAs1-xPx 

Where x is molar concentration.. 
If x> 0.45,then semiconductor is called Indirect 
Band Gap Semiconductor. 
2. Transition of electrons from 
conduction band to valence band 
takes place indirectly. 
3. Intra band Transition occurs with 
low probability. 
4. Recombination centers are 
present in the form of impurities to 
enhance radiative process. 
5. Momentum of Charge carries is 
not conserved. 
6. Life time of emitted photons is less. 
7. Life time Charge carriers is large. 
8. Artificially or naturally occurring materials. 
Like Gap, PbS, PbTe, Si, Ge. 
9.Used in LEDs 
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Zener Diode: 
    
 

 
 

                      Fig (1) Zener Diode symbol and V-I Characteristics 
 Zener diode is similar to ordinary PN junction Diode.                                 
The PN junction is moderately doped. 
  Zener diode is having a sharp breakdown voltage. 
   A  Zener diode must be always connected in reverse bias. 
Zener Diode Symbol and V-I Characteristics are shown in figure (1). 
In forward bias, current increases slowly. At voltage called forward voltage (Vf) or Knee 
voltage (Vknee) current increase sharply. 
In reverse bias originally current is very less. But with increase in reverse voltage ,  at a 
voltage called zener breakage voltage (VZ) current increases abnormally.This breakdown 
voltage is negative. 
Zener Diode Voltage Regulator: 
 A voltage regulator circuit with Zener diode is shown in figure(2).                                 
   Figure (2) Zener diode -voltage Regulator.  
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In fig (2), VS= Variable voltage source. 
                 IS =Source current. 
                 RS = source Resistance. 
                 RL= Load resistance. 
                 VL =Load voltage. 
With increase in source voltage, at a voltage called Zener breakdown voltage, voltage 
across the Zener diode remains constant. 
This constant voltage appears across the diode and hence the same appears 
across the load. 
 
 
 
 
 
 
 
 
 
 


