SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES::CHITTOOR

SUBJECT: ALGEBRA & CALCULUS (20BSC111) – QUESTION BANK

YEAR: I B.Tech I Sem ACADEMIC YEAR: 2021-22

Question No.	Questions	BLOOMS TAXONOMY	
	UNIT – 1: MATRICES		
	PART-A (Two Marks Questions)		
1.	Define the rank of the matrix	L1	
2.	Define Echelon form of a matrix with suitable example	L1	
3.	Define Normal form of a matrix with suitable example	L1	
4.	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$	L1,L2,L3	
5.	Find the rank of the matrix $\begin{bmatrix} -1 & 0 & 6 \\ 3 & 6 & 1 \\ -5 & 1 & 3 \end{bmatrix}$	L1,L2,L3	
6.	Find the rank of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$	L1,L2,L3	
7.	Write the process in Gauss Elimination method	L1	
8.	Define Eigen values and Eigen vectors	L1	
9.	Write the Characteristic Equation of $\begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix}$	L1,L2,L3	
10.	Write the Eigen values of $\begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$	L1,L2,L3	
11.	Write the Characteristic Equation of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}$	L1,L2,L3	
12.	What are the eigen values of A = $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{bmatrix}$	L1,L2,L3	
13.	Find the eigen values of A ⁻¹ Where A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 7 \end{bmatrix}$	L1,L2,L3	
14.	If the Eigen values of A are 1,-2,3 then eigen values of A ⁻¹ are?	L1,L2,L3	
15.	If the Eigen values of A are 3,4 then Eigen values of A ³ are?	L1,L2,L3	
16.	State the Cayley Hamilton Theorem	L1	
17.	If the Characteristic equation of A is $\lambda^3 - \lambda^2 + 3\lambda - 1 = 0$ then A ⁻¹ is?	L1,L2,L3	
18.	Find A ⁻¹ , when the characteristic equation of the matrix A is $\lambda^2 - 5\lambda + 7 = 0$	L1,L2,L3	
19.	Define Diagonalizable matrix	L1	
20.	Define Modal matrix	L1	

Question No.	Questions	BLOOMS TAXONO MY
	UNIT – 1 MATRICES	
	PART-B (Ten Marks Questions)	
1.	Find the rank of the following matrix, by reducing into the echelon form $\begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$	L1,L2,L3
2.	Find the rank of the following matrix, by reducing into the echelon form $\begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$	L1,L2,L3
3.	Reduce the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 2 & 6 & 5 \end{bmatrix}$ to normal form and hence find the rank.	L1,L2,L3
4.	Reduce the matrix $ \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix} $ to normal form and hence find the rank.	L1,L2,L3
5.	Solve $x + 2y + z = 4$, $2x - y + 3z = 9$, $3x - y - z = 2$	L1,L2,L3
6.	Solve the system $x - y + z = 2, 3x - y + 2z = -6, 3x + y + z = -18$	L1,L2,L3
7.	Show that the system of equations , if they are consistent $x + y + z = 6$, $x + 2y + 3z = 14$, $x + 4y + 7z = 30$ is consistent and solve them	L1,L2,L3
8.	Solve $4x + 2y + z + 3w = 0$, $6x + 3y + 4z + 7w = 0$, $2x + y + w = 0$	L1,L2,L3
9.	Investigate for what values of a & b the equations $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + az = b$ have i) Unique solution ii) Infinite solutions iii) No solution	L1,L2,L3
10.	Find the Eigen values & Eigen vectors of the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	L1,L2,L3
11.	Find the Eigen values & Eigen vectors of the matrix $\begin{bmatrix} 3 & -4 & 3 \\ 1 & 0 & 1 \\ 1 & 2 & -1 \end{bmatrix}$	L1,L2,L3
12.	Find the Eigen values & Eigen vectors of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	L1,L2,L3

13.	Verify Cayley – Hamilton theorem and hence find the A ⁻¹ and A ⁴ where $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$	L1,L2,L3
14.	Verify Cayley – Hamilton theorem and hence find the A ⁻¹ and A ⁴ where $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	L1,L2,L3
15.	Diagonalize the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$	L1,L2,L3

Q No.	Questions	BLOOMS TAXONOMY	
	UNIT – 2: DIFFERENTIAL CALCULUS AND ITS APPLICATIONS		
	PART-A (Two Marks Questions)		
1.	State Rolle's theorem	L1	
2.	State Lagrange's mean value theorem	L1	
3.	Discuss the applicability of Rolle's theorem for $f(x) = 1/x^3$ on [-3,3]	L1,L2,L3	
4.	What is c value in Rolle's theorem for $f(x) = x^2$ on [-1,1]	L1,L2,L3	
5.	Discuss the applicability of Role's theorem for $f(x)=x^2$ on [0,2]	L1,L2,L3	
6.	State Meclaurin's series for f(x)	L1	
7.	State Taylor's series for f(x) about x=a	L1	
8.	Find Meclaurin's series for $f(x) = e^x$	L1,L2,L3	
9.	Find Meclaurin's series for $f(x) = \cos x$	L1,L2,L3	
10.	Find Meclaurin's series for $f(x) = \sin x$	L1,L2	
11.	Find Meclaurin's series for $f(x) = \sinh x$	L1,L2	
12.	Find Meclaurin's series for $f(x) = \cosh x$	L1,L2	
13.	Find Meclaurin's series for $f(x) = \log (1+x)$	L1,L2	
14.	Obtain the Taylor's Series Expansion of e^x about $x = -1$	L1,L2,L3	
15.	Define Jacobian function	L1	
16.	<i>if</i> $x = r \cos \theta$, $y = r \sin \theta$, find $\frac{\partial(x, y)}{\partial(r, \theta)}$	L1,L2,L3	
17.	Define Meclaurin's series for f(x,y)	L1	
18.	Define Taylor's series for f(x,y)	L1	
19.	Find the Stationary points of $x^2 + y^2 + 6x + 12$	L1,L2,L3	
20.	What is the process in Lagrange's method of undetermined multipliers	L1	

Question No.	Questions	BLOOMS TAXONOMY
	UNIT – 2: DIFFERENTIAL CALCULUS AND ITS APPLICATIONS	
	PART-B (Ten Marks Questions)	
1.	Verify Roll's theorem for $f(x) = e^x(\sin x - \cos x)$ on $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$	L1,L2,L3
2.	Verify Roll's theorem for $f(x) = (x - a)^m (x - b)^n on [a, b] b > a; m\&n \in Z^+$	L1,L2,L3
3.	Verify Roll's theorem for $f(x) = x(x+3)e^{-\frac{x}{2}}$ on [-3,0]	L1,L2,L3
4.	Verify Roll's theorem for $f(x) = x(x+3)e^{-\frac{x}{2}}$ on[-3,0] Show that $\frac{b-a}{1+b^2} < tan^{-1}b - tan^{-1}a < \frac{b-a}{1+a^2}$, a <b and="" deduce<br="">$\frac{\pi}{4} + \frac{3}{25} < tan^{-1}(4/3) < \frac{\pi}{4} + \frac{1}{6}$ Verify Lagrange's theorem for $f(x) = e^{-x}$ on [-1,1]	L1,L2,L3
5.	Verify Lagrange's theorem for $f(x) = e^{-x}$ on $[-1,1]$	L1,L2,L3
6.	Expand $log(1+e^x)$ is ascending powers of x	L1,L2,L3
7.	Obtain the Taylor's series expansion of sin x in powers of $x - \frac{\pi}{4}$	L1,L2,L3
8.	Expand $f(x, y) = x^2 + xy + y^2$ in powers of (x-1) and (y-2) using Taylor's series	L1,L2,L3
9.	If $u = \frac{yz}{x}$; $v = \frac{zx}{y}$; $w = \frac{xy}{z}$, show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$	L1,L2,L3
10.	If $x + y + z = u$, $y + z = uv$, $z = uv w$ then evaluate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	L1,L2,L3
11.	Prove that $u = x + y + z$, $v = xy + yz + zx$, $w = x^2 + y^2 + z^2$ are functionally dependent and find the relation between them.	L1,L2,L3
12.	Find the maximum and minimum values of $x^3 + y^3 - 3axy$, $a > 0$	L1,L2,L3
13.	A rectangular box open at the top has a capacity of 32 cubic feet. Find the dimensions of the box requiring least material for its construction	L1,L2,L3
14.	Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	L1,L2,L3
15.	Find the minimum value of $x^2 + y^2 + z^2$ given that $xyz = a^3$	L1,L2,L3

Question No.	Questions	BLOOMS TAXONOMY
	UNIT – 3: MULTIPLE INTEGRALS	
	PART-A (Two Marks Questions)	
1.	Evaluate $\int_{0}^{3} \int_{0}^{5} (x+y) dy dx$	L1,L2,L3
2.	Evaluate $\int_{0}^{3} \int_{0}^{2} (x+y)^2 dx dy$	L1,L2,L3
3.	Evaluate $\int_{0}^{2} \int_{0}^{3} dy dx$	L1,L2,L3
4.	Evaluate $\int_{0}^{3} \int_{0}^{-2} xy dx dy$	L1,L2,L3

5.	Evaluate $\int_{0}^{1} \int_{0}^{1} x^{2} y^{3} dx dy$ Evaluate $\int_{0}^{1} \int_{0}^{x} e^{x+y} dy dx$	L1,L2,L3
6.	Evaluate $\int_0^1 \int_0^x e^{x+y} dy dx$	L1,L2,L3
7.	Evaluate $\int_0^{\pi/2} \int_{-1}^1 x^2 y^2 dxdy$	L1,L2,L3
8.	Evaluate $\int_{0}^{\pi/2} \int_{-1}^{1} x^2 y^2 dxdy$ Evaluate $\int_{-1}^{2} \int_{x^2}^{x+2} dydx$	L1,L2,L3
9.	Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} (x^{2} + y^{2}) dy dx$	L1,L2,L3
10.	Evaluate $\int_0^5 \int_0^{x^2} (x^2 + y^2) dy dx$ Evaluate $\int_0^1 \int_0^1 \frac{dx dy}{\sqrt{1 - x^2} \sqrt{1 - y^2}}$	L1,L2,L3
11.	Evaluate $\int_{0}^{\pi} \int_{0}^{asin\theta} r dr d\theta$	L1,L2,L3
12.	Evaluate $\int_0^\infty \int_0^{\pi/2} e^{-r} d\theta dr$	L1,L2,L3
13.	Find the limits of integration of $\iint xy$ dydx over the region in first Quadrant bounded by circle $x^2+y^2=1$	L1,L2,L3
14.	What is the process for evaluation of double integral by Changing the order of integration	L1,L2,L3
15.	What is the process for evaluation of double integral Changing of Cartesian to polar system	L1,L2,L3
16.	Evaluate $\int_{-1-2-3}^{1} \int_{-3}^{2} dx dy dz$	L1,L2,L3
17.	Evaluate $\int_{-1-2-3}^{1} \int_{0}^{2} \int_{0}^{3} dx dy dz$ Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} y dx dy dz$	L1,L2,L3
18.	Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x dx dy dz$	L1,L2,L3
19.	Evaluate $\int_{0}^{1} \int_{0}^{1} x dx dy dz$ Evaluate $\int_{0}^{1} \int_{1}^{2} \int_{1}^{3} xyz dx dy dz$ Evaluate $\int_{0}^{1} \int_{1}^{2} \int_{2}^{3} (x + y + z) dx dy dz$	L1,L2,L3
20.	Evaluate $\int_{0}^{1} \int_{1}^{2} \int_{2}^{3} (x + y + z) dx dy dz$	L1,L2,L3
	PART-B (Ten Marks Questions)	
1.	Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy$	L1,L2,L3
2.	Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} \sqrt{a^2 - x^2 - y^2} dx.dy$	L1,L2,L3
3.	Evaluate $\int_{a}^{2a} \int_{0}^{\sqrt{2ax-x^2}} xy dy dx$	L1,L2,L3
4.	$\frac{a}{\text{Evaluate} \int_0^1 \int_0^{\sqrt{1+X^2}} \frac{dydx}{1+x^2+y^2}}$	L1,L2,L3
5.	Evaluate $\int_{1}^{2} \int_{1}^{z} \int_{0}^{yz} (xyz) dx dy dz$	L1,L2,L3

6.	Evaluate $\int_{0}^{a} \int_{0}^{x+y} \int_{0}^{x+y+z} dz dy dx$	L1,L2,L3
7.	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$	L1,L2,L3
8.	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyzdzdydx$	L1,L2,L3
9.	Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r dr d\theta$	L1,L2,L3
10.	Evaluate $\int_{0}^{\pi/2} \int_{0}^{a\cos\theta} r\sin\theta dr d\theta$	
11.	Evaluate $\iint_R (x^2 + y^2) dxdy$ where R is the region bounded by $y = x$ and $y^2 = 4x$	L1,L2,L3
12.	Evaluate $\iint_R xy dx dy$ where R is the region bounded by X-axis, x=2a and the curve x ² = 4ay	L1,L2,L3
13.	Change the order of integration and evaluates $\int_0^1 \int_x^{\sqrt{x}} xy dy dx$	L1,L2,L3
14.	Change the order of integration and evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} dy dx$	L1,L2,L3
15.	Evaluate $\iiint_V (x^2 + y^2 + z^2) dz dy dx$ where V is the volume of the cube bounded by x=0,y=0,z=0,x=a,y=b,z=c	L1,L2,L3

Question No.	Questions	BLOOMS TAXONOMY
	UNIT – 4: VECTOR DIFFERENTIATION	
	PART-A (Two Marks Questions)	
1.	Find grad f of the function $f = x^2 - y^2 + 2z^2$	L1,L2,L3
2.	Find grad f of the function $f = xy^2 + yz^2 + zx^2$	L1,L2,L3
3.	Find grad f of the function $f=xy+2yz-8$ at $(3,-2,1)$	L1,L2,L3
4.	Find the normal vector to the surface $x^2 + y^2 + 2z^2 = 26$ at the point (2, 2, 3)	L1,L2,L3
5.	Find the normal vector to the surface $z = x^2 + y^2$ at the point (-1,-2,5)	
6.	What is Solenoidal vector?	L1
7.	What is divergence of a vector?	L1
8.	What is Curl of a vector?	L1
9.	What is Irrotational vector?	L1
10.	Find $div \bar{f}$ where $\bar{f} = x^2 i + y^2 j + z^2 k$	L1,L2,L3
11.	Find $div \bar{f}$ where $\bar{f} = xy^2i + 2x^2yzj - 3yz^2k$	
12.	Find $\operatorname{curl} \bar{f}$ for $\bar{f} = 2xz^2 \bar{i} - yz \bar{j} + 3xz^3 \bar{k}$	L1,L2,L3

		1
13.	Find $curl \bar{f}$ for $\bar{f} = z \bar{i} + x \bar{j} + y \bar{k}$	L1,L2,L3
14.	Show that $curl r = 0$ where $r = xi + yj + zk$	L1,L2,L3
15.	Show that $\overline{f} = 3y^4 z^2 i + z^3 x^2 j - 3x^2 y^2 k$ is solenoidal	L1,L2,L3
16.	Find p when $\overline{f} = (x + 3y)i + (y - 2z)j + (x + pz)k$ is solenoidal	L1,L2,L3
17.	Show that $f = (y+z)i + (z+x)j + (x+y)k$ is irrotational.	L1,L2,L3
18.	Find div \bar{r} where $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$	L1,L2,L3
19.	Find grad f of the function $f = x + y + z$	L1,L2,L3
20.	Find $\operatorname{curl} \bar{f}$ for $\bar{f} = x^2 i + yz j + zx k$	L1,L2,L3
	PART-B (Ten Marks Questions)	
1	a)Find a unit normal vector to the surface $z = x^2 + y^2$ at $(-1, -2, 5)$	L1,L2,L3
1.	b) If $\emptyset = 2x^3y^2z^4$, then find div(grad \emptyset)	L1,L2,L3
2.	Find div \overline{f} and curl \overline{f} where $\overline{f} = grad(x^3 + y^3 + z^3 - 3xyz)$	L1,L2,L3
	a) If $\overline{f} = xy^2i + 2x^2yzj - 3yz^2k$ then find div \overline{f} at (1,-1,1)	L1,L2,L3
3.	b)Find the greatest value of the directional derivative of the function $f = x^2 yz^3$ at $(2,1,-1)$	L1,L2,L3
4.	Find div \overline{f} and curl \overline{f} where $\overline{f} = (x^2 - y^2)i + 4xyj + (x^2 - xy)k$	L1,L2,L3
5.	Find div \overline{f} and curl \overline{f} where $\overline{f} = (x^2 + yz)i + (y^2 + zx)j + (z^2 + xy)k$	L1,L2,L3
6.	Show that $V = (\sin y + z)i + (x \cos y - z)j + (x-y)k$ is irrotational	L1,L2,L3
7.	Find the directional derivative of $f = xy + yz + zx$ in the direction of the vector $\overline{i+2j+2k}$ at the point (1,2,0).	L1,L2,L3
8.	Find the directional derivative of $f = 2xy + z^2$ at $(1, -1, 3)$ in the direction of the vector $i + 2j + 3k$.	L1,L2,L3
9.	Find the directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at (2,1,3) in the direction of the vector i-2k	L1,L2,L3
10.	Find the directional derivative of $f = x^2 - y^2 + 2z^2$ at the point P = (1, 2, 3) in the direction of the line PQ where Q = (5, 0, 4)	L1,L2,L3
11.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2, -1, 2).	L1,L2,L3
12.	Show that $\nabla r^n = n r^{n-2} \overline{r}$ wher $r = xi + yj + zk$ and $r = r $	L1,L2,L3
13.	Evaluate $\nabla \cdot \left(\frac{\bar{r}}{r^3}\right)$ where $\bar{r} = xi + yj + zk$ and $r = \bar{r} $	L1,L2,L3

14.	Show that $curl(r^n r) = 0$	L1,L2,L3
15.	Find the constants a, b and c if the vector $\vec{f} = (2x+3y+az)\vec{i}+(bx+2y+3z)\vec{j}+(2x+cy+3z)\vec{k}$ is Irrotational	L1,L2,L3

Question No.	Questions	BLOOMS TAXONOMY
UNIT – 5: VECTOR INTEGRATION		
	PART-A (Two Marks Questions)	
1.	Define Line integral?	L1
2.	Define Surface integral?	L1
3.	Define Volume integral?	L1
4.	If $\overline{F} = x i - y j$ then evaluate $\int_C \overline{F} dr$ where C is the line $y = x$ in the xy plane from (0,0) to (1,2)	L1,L2,L3
5.	If $\overline{F} = x i + y j$ then evaluate $\int_C \overline{F} dr$ where C is the line $y = x^2$ in the xy plane from (0,0) to (1,1)	L1,L2,L3
6.	If $\overline{F} = x^2 i - y^2 j$ then evaluate $\int_C \overline{F} dr$ where C is the curve x=t, y=t in the xy plane from t=0 to t=1.	L1,L2,L3
7.	What are the limits of x &y in the integral $\iint_R xy dx dy$ where R is the region bounded by x=0,y=0 and x+y=1	L1,L2,L3
8.	What are the limits of x, y &z in the integral $\iiint_V xyz dxdydz$ where v is the volume of the cube x=0, y=0, z=0, x=a, y=a, z=a	L1,L2,L3
9.	For any closed surface S , $\iint_{S} curl \bar{F} \cdot \bar{n} dS$ by Gauss divergence theorem is?	L1,L2,L3
10.	State Stoke's theorem.	L1
11.	State Gauss Divergence theorem.	L1
12.	State Green's theorem.	L1
13.	Convert $\int_C (2xy - x^2)dx + (x^2 + y^2)dy$ into double integral over a region R by Green's theorem, where C is a simple closed curve bounded by a region R.	L1,L2,L3
14.	Convert $\int_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$ into double integral over a region R by Green's theorem, where C is a simple closed curve bounded by a region R.	L1,L2,L3
15.	Convert $\int_{S} \overline{F} \cdot \overline{n} dS$ where $\overline{F} = xyi + z^2j + 2yzk$, into triple integrals over V by Gauss divergence theorem, where S is the closed surface bounded a region V.	L1,L2,L3
	PART-B (Ten Marks Questions)	
1.	If $\overline{F} = 3xy i - y^2 j$ then evaluate $\int_C \overline{F} dr$ where C is the curve $y = 2x^2$ in the xy plane from (0,0) to (1,2)	L1,L2,L3
2.	If $\overline{F} = (5xy - 6x^2)i + (2y - 4x)j$ then evaluate $\int_C \overline{F} dr$ where C is the curve $y = x^3$ in the xy plane from (1,1) to (2,8)	L1,L2,L3
3.	If $\overline{F} = y i - x j$ then evaluate $\int_C \overline{F} dr$ where C is the curve $y = x^2$ in the xy plane from (0,0) to (1,1)	L1,L2,L3

4.	If $\overline{F} = y i - x j$ then evaluate $\int_C \overline{F} dr$ where C is straight line joining (0,0) and (1,1)	L1,L2,L3
5.	Find the work done in moving a particle in the force field $\bar{F} = 3x^2 \bar{i} + (2xz - y) \bar{j} + z \bar{k}$ along the straight line from (0,0,0) to (2,1,3).	L1,L2,L3
6.	If $\overline{F} = xy \overline{i} - z \overline{j} + x^2 \overline{k}$ and <i>C</i> is the curve $x = t^2$, $y = 2t$, $z = t^3$ from $t = 0$ to $t = 1$. Evaluate $\int_C \overline{F} \cdot d\overline{r}$.	L1,L2,L3
7.	Evaluate $\int_{S} \overline{F} \cdot \overline{n} dS$, where $\overline{F} = 18zi - 12j + 3yk$, and S is the part of the surface of the plane $2x+3y+6z=12$ located in the first octant.	L1,L2,L3
8.	Evaluate $\int_{S} \overline{F} \cdot \overline{n} dS$, where $\overline{F} = yz i + zx j + xy k$, and S is the part of the surface of the sphere $x^{2} + y^{2} + z^{2} = 1$ located in the first octant.	L1,L2,L3
9.	Evaluate $\int_{C} \left[(3x^2 - 8y^2) dx + (4y - 6xy) dy \right]$ where C is the region bounded by $x = 0$, $y = 0$ and $x + y = 1$ by Green's Theorem.	L1,L2,L3
10.	Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy]$ where C is bounded by $y = x$ and $y = x^2$.	L1,L2,L3
11.	Evaluate by Green's theorem $\int_C (y - \sin x) dx + \cos x dy$ where C is the triangle enclosed by the lines $y=0, x=\frac{\pi}{2}, \pi y = 2x$	L1,L2,L3
12.	Evaluate by Green's theorem $\int_C (x^2 - \cosh y) dx + (y + \sin x) dy$ where C is the rectangle with vertices $(0,0), (\pi, 0), (\pi, 1)$ and $(0,1)$	L1,L2,L3
13.	Verify Green's theorem $\int_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where C is bounded by $y^2 = x$ and $y = x^2$.	L1,L2,L3
14.	Using Divergence theorem, evaluate $\iint_{S} (x dy dz + y dz dx + z dx dy), \text{ where } x^2 + y^2 + z^2 = a^2.$	L1,L2,L3
15.	Verify Stoke's theorem for the function $\overline{F} = x^2i + xyj$ integrated round the square in the plan z=0 whose sides are along the lines x=0,y=0,x=a,y=a.	L1,L2,L3