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DIFFERENTIAL CALCULUSAND ITS
APPLICATIONS

3.1 INTRODUCTION:

Calculus is a very versatile and valuable tool. It is a form of Mathematics which was developed
from algebra and geometry. It is made up of two interconnected topics, differential calculus and
integral calculus.

Differential calculus can be termed as the Mathematics of motion and change. Integral calculus
covers the accumulation of quantities, such as areas under a curve. The two ideas work inversely
together as defined by the Fundamental Theorem of Calculus.

Calculus is deeply integrated in every branch of the physical sciences, such as physics and
biology. It is found in computer science, statistics, and engineering; in economics, business, and
medicine. Modern developments such as architecture, aviation, and other technologies all make
use of what calculus can offer and why calculus is so important and useful.

APPLICATIONS:

Finding the Slope of a Curve

Calculating the Area of Any Shape.

Calculate Complicated X-intercepts

Visualizing Graphs

Finding the Average of a Function

Calculating Optimal Values

Differential calculus can be used to determine the stationary points of functions, in order
to sketch their graphs. Calculating stationary points also lends itself to the solving of
problems that require some variable to be maximised or minimised. These are referred to

as optimisation problems.

ogakrwnE

%+ Optimal Shape of an Irrigation Channel (Civil engineering)

¢+ Overcoming Friction and other Forces to move an Object (Mechanical,
Aerospace, Civil engineering)

%+ Beam Design (All Engineering)


http://calculus.nipissingu.ca/tutorials/integrals.html#ftc

3.1.1 DEFINTIONS:
Let y= f(x) be a function continuous in the closed interval [a,b]. This means that ifa < ¢ < b,

lim f(x) = f(c)and lim () = f(a), lim f(x)=f(b).

Let y= f(x) be a function continuous in the closed interval [a, b]. This means that ifa < ¢ < b,
the derivative of f(x) at x = c exists i.e.,

lim Mexists .

X—C X —C

Further’ lim M and lim M exists.
X—a+0 X—a x—b-0 X—b

Geometrically, if f(x) is a continuous function in the closed interval [a, b], the graph y = f(x) is

a continuous curve for the points x in [a, b]. If f(X) is derivable in the closed [a, b), there exists a
unique tangent to the curve at every point in the curve [a, b].

Properties:

1. If f(x) is continuous in the closed interval [a, b], f(x) is bounded there in. Also it attains
its glb and lub.

2. Iff(x) is continuous is closed interval [a, b], it attains all values between f(a) and f(b).

3. Iff(x) is continuous in the closed [ a, b] and f(a), f(b) are of opposite signs, then there
exists atleast one point ¢ in the open interval (a, b) such that f(c) = 0.

3.1.2 ROLLES THEOREM:
Let f(x) be a function such that

i.  itis continuous in the closed interval [a, b];
ii. itis differentiable in open interval (a, b) and
iii.  f(a) =f(b)

Then there exists atleast one point ¢ in open interval (a, b) such that f*(c)=0.
3.1.3 LARGANGE’S MEAN VALU THEOREM :

Let f(x) be a function such that

i. it iscontinuous in the closed interval [a, b] and



ii. it is differentiable in open interval (a, b)

Then there exists atleast one point c in open interval (a, b) such that

fio)=D=1@ (bg:;(a) .

3.2.1 TAYLOR’S THEOREM :
Iff:[a,b] — R issuch that
a) ™ is continuous on [a, b]

b) ™ is derivable on (a, b) (or) f™ existson (a,b)andp € z* then there exist a
point ¢ € (a, b) such that

PPN - PO R (b-a)"
f(b)y="f(a)+ T f'(a)+ 2 f"@)+......... + (1)1 f"7(@+R,

(b-a)" (b-c)" " ™ (c)

Where R, =
(n-1'p

Note:
i.  Schlomilch — Roche’s form of remainder
(b-a)” (b—c)" * £ (c)

(n-Dtp
ii.  Lagranges form of remainder

n

Putting p = n, we get

_(b-a)"f"(c)
B n!

R

n

iii.  Cauchy’s form of remainder:
Putting p = 1, we get
_(b-a) (b—c)"" f™(c)

Rn
(n=D!

3.2.2 MACLAURIN’S THEOREM :

Iff: [0, x] > R issuch that



a) f " is continuous on [0, X]

b) f D js derivable on (0, x) and p € z* then there exists a real number < (0, 1)
such that
2 n-1 ne_ g\n-p
f(x)=f(0)+xf '(0)+X— N (0) E + =2 f”-%oHM £ (6x)
2! (n-1)! p(n-1)!

Note :
1. Schlomilch — Roche’s form of remainder:

_X"(1-9)"" £ (0x)
" (n-Dlp

2. Lagrange’s form of remainder:

R

Putting p = n, we get

X" (0x)
B n!

R

n

3. Cauchy’s form of remainder:
Putting p = 1, we get
x"(1-6)"" ™ (0x)

R, =
(n=1)!

PROBLEMS

1. Obtain the Maclaurin’s series expansion for f(x) =(1+x)"
(or)Expand (1+x)" in power of x.

Sol : Let f(x)=(1+X)". Then
/00 =n@+x)""; () = n(n =D)L+ x)"*;
f7(x) = n(n—1)(n — 2)(1+ )" etc.,

Thus f*(x) =n(n—-1)(n—2)...(n—k +1).(1+x)"*

- F40) =n(n=1)...(n—k +1).



- K i) (n—k+1)
Hence f(x) =Y f*(0)X = n(n
0= O =2 1ok
i.e.(1+x)”=1+ﬂx+Mx2+wx3+ .....
1 1.2 1.2.3

[This expansion is valid in -1<x<l.i.e., |x|<1].

2: Find the Maclaurin series for sinx for all x .

Sol: We arrange our computation in two columns as follows:

f(x) =sinzx
f'(z) =cosx
f'(xz) = —sinz
f"(x) = —cosz

f@(z) =sinx

£(0) =0
7/0)
1(0) =
fﬁ‘!(o)
19(0) =

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as follows:

90 ,

J) - f0) 5 J7(0) 4 1 .0 —1 0
f(0)+ T TR TR Sy TR —O+f3:+§:r: +?:c 0
.’L'3 I‘S CL'T
TR I
200: 2n+1
— 2n—|—1)
3 5 7 00 2n+1
sinx=x—~—+X2 X o . =Y. forallx
31 51 71 = (2n+1)!

3. Obtain the Maclaurin’s series expansion of e*, sinh x, cosh x
Sol : Let f(x)=e*. Then
') = f*"x) = ") =.....=e

= f(0)= f*(0)= f*(0)= f™(0) =.......... =e’=1
TheMaclaurin’s series expansion of f(x) is given by

Yy



Similarly proceed for sinh x, cosh x.

4. Verify Taylor’s theorem for f(x)=(1-x)%? with Lagrange’s form of remainder upto 2
terms in the interval[0,1].

Sol : Consider f(x) = (1-x) *2in [0, 1]

(1) f(x), f'(x)are continuous in [0,1]

(i) f"(x)is differentiable in(0,1)

Thus f(x) satisfies the conditions of Taylor’s theorem.

We consider Taylor’s theorem with Lagrange’s form of remainder

2

f(x) = f(0) + xf'(0) X f "(X)with0 < 8 <1.....(2)

Here n=p=2,a=0 and x=1
f(X)=1-x)*?= f(0)=1

F(x) = _75(1- X)*'2 = £/(0) = _75

15 12

f7(x) = % L-x)"2 = (k) = LU= = £1(0) = %(1— 0)"'?and f(1)=0

2

From(1), we have f(x)= f(0)+ xf (0)+ f”(@x)

Substituting the above values, we get

_ 2
0=1+1]=> 1—E(1 )
2 ) 24

:>49=i=0.36
25



.. @lies between 0 and 1.

Thus the Taylor’s theorem is verified.

5.Show that sin " X —x+4 X (or)Expand in"" X in powers of X
1-x? V1-x°
Sol - Let f(x) = S % Thenf (0) =0
1—x?

= J@-x*)f(x)=sin" X (1)

Differentiating (1) w. r. t ‘x’, we get

Ja=x3) /(0 +f(%). !
\/1—x2 \/1—x2

= 1-x*)f'(x)=xf(x)=1...(2)

Now f'(0) =1
Differentiating (2)w.r.t’x’ we get

(A= x2) £7(x) + F/(x)(=2X) = xF (x) — f (x) =0

= (=X 00 -3 ()~ () =03

= £(0)— f(0)=0= f"(0)=0

Diff.(3)w.r.t.’x”, we get

(A—x2) £ "(x) — 2xF "(x) = 3F'(x) = 3xF "(x) — '(x) =0
= (=X () =5x— F"() =4 () =0

= f"(0)-4f'(0)=0= f"(0)=4

Similarly f*(0) =0

We have by Taylor’s theorem,

f(x) = (0)+xf (0)+ f"(0)+ f”’(O)+ f(0)+ .....



-1 2 3 3

Le., X =O+1.x+x—(0)+x—.4+ ...... —x+4 o0
12 2 3 3
. x x> x
6.Show that log(1+e*)=log2+>+-~———+.....and hence deduce that
2 8 192
e 1 x X
w 1=zt m

Sol : Let f(x) =log (1+&*). Then f(0) =log2

Differentiating successively w. r. t. x, we get

e* 1 1
f'(x)= = f(0)=——=
9 1+¢e* 0= 1+1 2
frg - ArE)E el € g 11
@+e)2 1+e")2 1+1)° 4
£7(3) = (1+e*)%e* —2e*(L+e¥)e*  (1+ ex)[eX +e* —2e2x]_ eX — g2
(L+e®)* (L+e*)* (1+e*)?
- f"(0)=0
X\3 X 2X _ X 2X X\2 AX
£V (x) = @A+e*)’(e*—2e")—(e* —e").3(1+e") e

(L+e¥)°

(e (eX —2e%) -3 (e* —e*)
- (1+e*)*

Q+)1-2)-31-1) -2 -1
1+1)* 16 8

- £V(0) =
Substituting the values of f(0), f'(0), f"(0)etc., in the Maclaurin’s series
u@_um+ﬁmp- H@ fwm fwm+ .....

We obtain

1 x*1 X x* (1
log(1+e*)=log2+ x.—+ —.— 4+ — +o
a(1+e") =gz x ]+ e R @<



2 X4

X X
=lbg2+—+———+.... (1
g 2 8 192 @

Deduction:

Differentiating the result given by (1)w. r. t. X, we get

1X12x4x e*
e

. +....0r
1+e” 2 8 192 1+e”

7.Calculate the approximate value of +/10 correct to 4 decimal places using Taylor’s
theorem.

Sol -Let T(x+h)=+10=+9+1=+x+h
Here x=9 , h=1

Take f(x)=+/x .then

n " 3

P =-7= \/; f (X)_ 3/2’f ()= 852
1 -1 -1 1 1
and f(9)=3,f'9==,f"Q)=——=—,f"Q)=——=—"—
®) ®) 6 ®) 4x27 108 ®©) 8x81 648

Substituting these values in Taylor’s series,

2

f(x+h)=f(x)+hf (x)+h f"(9) +.....

i.e. \/_—f(9)+1f(9)+ 1@+

111 11
=3+=——=—+=——+

6 2108 3! 648
—3, 1 1 1

6 216 3888

=3+0.1666-0.0046+0.0002

=3.1623



EXERCISE

w

N o oA

8.
9.

Obtain the Taylor’s series expansion of sin x in powers of (x — %) .
Obtain the Taylor’s series expansion of e*about x = - 1.

Express tan~! x in the powers of (x —%)

Expand eS™* by Maclaurin’s series up to the term containingx*.

Find the Maclaurin series for cos x.

Expand e **"* in power of x.

Write Taylor’s series for f(x) = (1 - X)*? with Lagrange’s from of remainder up to 3 terms
in the interval[0,1].

Expand loge* in powers of (x - 1) and hence evaluate logl.1 correct to 4 decimal places.
Obtain the Maclaurin’s series expansion of log(1+x).

ANSWERS

(-2 | (x-
sinx =+ (x-2) 4" 1

N AN N A N A

2 3
£[1+(x+1)+(x+1) +(X+1) + e
e 2! 3!

T o
(x=-) (x=-)
tanx=1+—4 —% 4 .
V4 T
1+— 1+—
( 16) ( 16)
2 4
e — 1y xr  X
2
x> x* x°
cosX=1-—+———+.........
2! 41 6!
M =14+ X%+ ...
2 3
F) 21— XX g gy
2 8 16
Log 1.1 =0.0953
2 3 4 n

Iog(1+x):x—x—+x——x—+ ........... +(-D™ X,
n

2 3 4



3.3 CONTINUITY:
A function f(x, y) is said to be continuous at the point (a, b) if

I lim f (X, y)exists
X—a
y—b

i, the limit is same irrespective of the path along which the point (X, y) approaches (a,
b).

iii. the limit of f(x, y) as x — a and y — b is equal to the value of f(x, y)
i.e, limf(x,y)=f(ab)

y—b
Examples:
X’y
1. Evalute lim ———
oL X +y +1
y—2
2x%y 2X%y

: ider lIm ————— = lim[lim
Sol :Consider lim =7 imflim Y]
y—2

o 4xP
=lim
Hl[x2+5]
_2
-3
2 2
lim—2*Y _ limflim—2*Y ]
XY +1 2ol x4y 41
= tim—2Y )
yo2T Yy 42
_2
-3
Hence lim—2X Y -2
ence =L X*+y*+1 3°
. Xy +1
2. Evalute lim ———
X X+ 2y

y—2



. Xy + +1
Sol :Consider |Im2y— li [|lmy—2]
25X +2y°  xowyo2 X 42y

2Xx+1

= lim
x> X2 +8]
=0
lim YL |im[|imL+1]
25X +2y y=2xom X2 4 2y?
= [im[0]
y—2
=0
+1
Hence lim al =0.
x +2y°

3. Examine for continuity at the origin of the function defined by
2

f(X y)—x—
' /X2+y2

=0 forx=0,y =0Redefine the function to make it continuous.

forx=0,y=0

Sol : Notice that the value of f(x, y) for x =0 y=0 is not given in the problem let us discuss the
continuity of the given function at(0,0).

X2 | x? :
. i‘m o) 'X'To{'y'ﬁ"o ﬁ} - 'X'To{7} =im,x=0

X2
Also I|m {hm f(x, Y)}_ "mo{lx@o W}

= lim(0) =0

. 0
=1lim
xeo{ [O_'_ y2 } x—0

i ) =gl )}

Also along the path y=mx



2
im £ (x, y) = lim —2%— —jim —2%

0 [x2 imix? 01+ m?

Similarly along the path y=mx?,

=0

Iim0 f(x,y)=0

Hence the function f(x, y) is continuous at the origin if f(x, y)=0for x=0,y=0.
Otherwise f(x, y) is not continuous at the origin.

If f(x,y) is not continuous at (0,0) then define f(x,y)=0 for x=0,y=0 so that f(x, y)is continuous at
origin.

EXERCISE

LIf f(xy)= X+yy showthatllm{limf(ox,y)};tlyim{limf(ox,y)}.
y—> X—>

2. Discuss the continuity of the function

2Xy
f(x'y):{xz+ 2

,(X,y¥) # (0,0)and 0 for(x, y) = (0,0)

3.Discuss the continuity of

ORI mx(y L) (i) lim Xy

SLY(X=1) x4y
N yz
4. Investigate the continuity at (0, 0) of f(x,y) =——=,(x,y) #(0,0)
X*+y
=0 (x,y)=(0,0).
5. Show that the function f(x,y)= y = ,(X,y) = (0,0)

X4y
=0, for (x, y) = (0,0).

ANSWERS
1. f(x, y) is continuous for given values of x and y but it is not continuous at (0, 0).

2. (i) does not exist (ii) does not exist.
3. Not continuous at (0, 0)



3.4  PARTIAL DIFFERENTIATION:

f(X_H]va)_ f(X’y),IfIt

Let z = f(x, y) be a function of two variables x and y. Then DIim0

[x
exists, is said to be partial derivative or partial differential coefficient of z or f(x, y), w.r.t. X.
It is denoted by the symbol a—Zor o or fx.
ox  OX

Thus we see that for the partial derivative of z = f(x, y) w.r.t. y is kept constant
Similarly, the partial derivative of z = f(x, y) w.r.t. y keeping x as constant is defined

lim LY +HY) = X, y)’ and is denoted by ot or fy,

[y—0 ] y ay ay

In the same way, the partial derivatives of the function z = f (X1,X2,.....Xn) W.I.L. X1
keeping other variables constant can be defined by

o F (X Xy ey X HI Xy X0 ) = T (X X ey X ’X”),izl,z

axi ¥ —0 X
right hand exists.

, ....n if the limit on the

HIGHERORDERPARTIALDERIVATIVES

In general the first order partial derivatives Z—f and Z—f are also functions of x and y and they
X y

can be differentiated repeatedly to get higher order partial derivatives.

I AR BT AR AR T A BRI A
ox\ox) oxt'eyloy) oy? 'oxloy) oxoy oylox) oyox

ofo*f) ot o(o*f) of ofof o’ft  0(of o’ f
—N == = == | === = |= - —| = |= > and so on.
OX\ OX ox> oy oy oy® Ox\ oy oxoy” oy oOX OyOX

Itis noted that f, = f

yX
PROBLEMS

2 2 2
1. 'fU=;,X2+y2+22;«r&OthenprovethataU U oV _

+ +
X +y?+ 22 ox2  oy? 0z

Sol : Given U=(x?+y?+z%)1/2

0.

oJ 1 2 2 2\-3/2 0 2 2 2
So—=——"(X"+VYy°+12 X—(X“"+y +2z
x 2( y ) ax( y )



— _%(XZ + y2 + Z2)—3/2(2)()

= (X2+y2+22)-3/2(x)

2 _
andﬁaU :—{(x2+y2+zz)‘3’2+x(73j(x2+y2+22)‘5’2.2x}

X2
:_(X2+y2+22)-5/2[X2+y2+22_3x2]
= (X2+y?+2%) 5[ 2x2-y?-7?] (D)

Similarly, we get

a2U 2 2 2\-5/2 2 2 2

ayzz(x +y +z2°)7(—x"+2y" -2z L (2)
82U 2 2 2\-5/2 2 2 2

and —-=(X"+y +2°)7°(-x"—-y"+22°) .. 3)
az

(1) +(2)+(3) gives

o'y oU o%U
> +t—+— =0
OX oy oz

2
2. If U=log(x3+y3+z3-3xyz), prove that 0,0 0y =2 _.
ox oy oz (X+y+12)

Sol : Given that U=log(x3+y*+z3-3xyz)

oU . 3x*-3yz

S—= Here y and z are constants
ox  xX*+y +2°-3xyz [ y ]

U 3y*-3xz
oy X +y>+1z%-3xyz

[Here x and z are constants]

ou 3z° —3xy

Here x and y are constants
oz x*+y*+z°-3xyz [ Y ]

~ou Q+Q_3(x2+y2+zz—xy—yz—zx)
T ox oy oz x®+y%+2° —3xyz



B 3(x* +y? +2° —xy—yz—12X)
(X+y+2)(X*+y? +2° —xy—yz—12X)

o ouU ouU 3
> —+—+—-= :
OX oy 07 X+y+1z

(a o ajz (a o aJ(au ou auj
Now| —+ —+—|U=| —+—+— | —+—+—
oX oy oz ox oy o)\ ox oy oz
= (i + 2 + ij( 3 J [from (1)]

oX 0y OL)\X+Yy+1z

o8 ),o(_8 ), of_3
OX\ X+y+2) oy\x+y+z) 0zZ\xX+y+z

3 3 3 9

()

=_(x+y+z)2 _(x+y+z)2 _(x+y+z)2 =_(x+y+z)2

2
3. If x*y¥ 7% = e show that at x=y=z, oz _ —(xlog ex)™
oxoy

Sol : Given that xX*y¥z* = e

Taking logarithm on both sides, we get
xlog x+ylogy+zlogz=Iloge
=zlogz=1-xlogx—ylogy

Differentiating partially w.r.t ‘x” we get

(z.1 +1.log z)g = —(x.E +1.log xj
z OX X

= (1+log z)g =—(1+log x)
OX

oz _ (1+logx) (1)
x  (@Q+bgzy 7
oz (1+logy)

Similarly —=———+= .. 2
imilarly Y 1+log 2 2



When x=y=z, we have

a_ —land a_ -1
OX oy

Now differentiating (2) partially w.r.t ‘x” we get
0’z _9(az)_ 0| (+logy)
oxoy ox\oy) ox| (L+logz)

zlg}_ l+logy oz
zox| z(l+logz)? ox

= - (1+logy) [— (+log z)” . (3)

When x=y=z from (3), we have

2
02 _ 1+|ng _ (_1)(...g=_1j
oxoy  x(1+logx) OX

1 1

== =- (- loge=1)
X(1+ log x) X(loge + log x)
ot —(xlogex)™
x log ex

2 2
4. If u=tan ‘{%} provethatgx—l;+2y—l2J =0.
X -y

Sol :Given u:tan‘l{ 2xy }

Xz_yz

Jou 1 a{ 2xy}

o - 22 Ayl w2 2

OX 1+ ézlxy“@xx y
(x*—y%)

_ (X2 —y?)? (x* —y?)2y — 2xy.2X
(X2 _ y2)2 +4X2y2 ) (Xz _ y2)2




_2y[X* -yt -2x"] _ 2y(x+y*) -2y

(X2 +y2)2 (Xz N yz)z - X2 +y2

o’u  2y(2x)  4xy

and = =
aXZ (XZ + y2)2 (X2 + y2)2

Also a_u: 12 5 i( 22xy2J [Here x is constant]
& 4, Y Xy
(XZ _y2)2
_(x*-y?)’ .(xz —Y°)2x-2xy(-2y) _ 2x(x’ —y*+2y*)  2x
(X2+y2)2 (XZ_yZ)Z (X2+y2)2 X2+y2
and o’u  —2x2y  —4xy

(X +y?)? (P +y?)?

o°u o
—2+—2:0
ox® oy
2 2
5. Verify ou _ou for the function u = tan™ <.
OX0y  0OyoOX y
4 X
Sol: Letu=tan— —.
y
6—u:;2 1 = 2y 5 [Here y is constant]
ox 1+(x/y)ly) y +x

'u _ (Y +x-yy)  x*-y?
Oyox (y? +x%)? (y? +x%)?

Now a_u— 1 __X —_—X
ay 1+{X]2' 2 y2+X2
y

y
o%u (y% +x*)1-x(2x) y? —x° X% —y?
and == 2 272 =T VRN 272
OXoy (y* +x%) (y"+x)°  (y"+x9)

and

[Here x is constant]




2 2
From (1) and (2), we have ou = ou

OXoy  OXoy
2
6. IF z( x +y) =x?*+y2. show that a_a =4 1_@_@ :
x oy ox oy
2 2
Sol : Given =X *Y
X+Yy

Difterentiating ‘z’ partially w.r.t to ‘x’,

0z _ (x+y)@)-(x*+y)(@Q) _2x*+2xy-x"—y* X’ +2xy—y’
o (x+y)’ (x+y)’ (x+y)’

Differentiating ‘z’ partially w.r.t to ‘y’,

0z _ (x+y)2y)-(x* +y*)D) _ —x" +2xy+y’
oy (x+y)* (x+y)*

2 2 2 2
Now @_@zx +2xy2y { X +2xy:y}
ox oy  (x+y) (x+Y)

oz dz _2x* -2y _2(x+y)(x-y) _2(x-y)

== _Z=

x oy  (x+y)? (x+Y)? (X +Y)
S(ez_a) Aoy .
e dy) o (x+yy?
Now 1_@_221_{X2+2Xy2y2+y2—x2 +22xy}

oy (x+Y) (x+Y)

g Ay (x+y) -dxy  (x-y)°

(X+y)2 (X+y)2 (X+y)2
:4{1—Q_Q}:M o

ox oy| (x+y)*

From (1) and (2), we have



2
@ _a)_,, @ @
oXx oy oX oy
EXERCISE

1. Ifu+xv> —uy=0,u’ + xyv+Vv? =0find6_u v ou v

ox ' ox' oy oy
2. If u=xlogxy where x3+y3+ 3xy:1find3—u.
X

3. Find the first and second order partial derivatives of

’ ) . 0°f 0%
ax” + 2hxy + by“andverify = .
oXoy  oyox
0’1 0’z
4. If z=f(x+ay)+qp(x—ay).Provethat— =a’ —
(x+ay)+p(x-ay) 5 e
o’f o°f
5. If f(x,y)=log(x*+y?) +tan™" Xj,then rove that = .
(x,y) =log(x” +y7) [X p ooy
2 2 2
6. If r>=x*+y?+z? and u=r " then prove that 0 121+6 l: + 0 l: =m(m+2)r"2.
X* oy 0z
2 2 2
7. If z=log(e*+ e¥) show that rt-s*=0, where r=a f,tz 0 f,s= oz .
OX oy Oxoy
X y z ou ou ou
8. Ifu=f(r,s,t)where r=—,s==andt=—showthat x—+y—+z—=0.
z X OX oy oz

9. Ifu=f(x*+2yz,y* +2zx) prove that(y*— zx)a—u+ (X - yz)a—u+ (2% - xy)a—u =0.
: OX oy 0z

3

10. If u=e?, show that 4_ (1+3xyz + x*y?z%)e™,
z

ANSWERS

ou 2X°v% 4+ uxy + 2uv ou 2Xyv? —2v° — xyv?

1. —_— = y . — ]
oy  3u’Xy+6uiv—xy> —2vy —4xuv OX  BU’V+3u’xy —2vy — Xy —4xuv

v 2uv? + vy’ —3u’vy and &Y Xyv — 3xu’v — 2u°
OX  BUV+3u’Xy — 2vy — xy? —4xXuv oy  3u’Xy+6u’v—xy* —2vy — 4xuv

2
2. d—u:1+log(xt)—w
dx y(y® +Xx)



3.5 JACOBIAN:
Definition:

If u and v are functions of two independent variables x, y then the determinant

u

ox oy|. . .. .

N o is called the Jacobian named after German Mathematician Jacob Jacobi (1804 — 1851)
ox oy

and is denoted by 8(£) (or) J(M)
X,y X,

Similarly the Jacobian ofu, v, w w.r.tox,y, zis

au
OX
] [u,v,wJ_ ou,v,w) _|ov

X, Y,z ox

S o(x,y,z) |ox
w
OX

N2 22 22

22 22 2|2

Similarly, the Jacobian for four or more variables can be defined.

Properties:

1. IfJisJacobian ofu, v w.r. to x, y and J’ is the Jacobian of X, y w. r. to u,v then
a(x,y) o(u,v)

2. Ifuand v are functions of r and s and r and s are in turn functions of x, y then
= o(u,v) _ o(u,v) o(r,s)
a(x,y) o(r,s) a(x,y)

Results:

=1. This is called inverse property of Jacobians.

. This is called the chain rule for the Jacobians.

1. If there is a change of variables from cartesian coordinates x, y in a plane to polar

coordinates given by X =rsin8 ,y =r cos 6 then J = oY) =r
o(r,0)
2. If there is a change variables from Cartesian coordinates (X, y, z) to spherical polar
coordinates given by x =rsinf cos @,y =rsinfsin@, z=r cos 8. Then




J EM: r’sing.
o(r,0,9)

3. If there is a change variables from cartesian coordinates (X, y, z) to cylinderical
coordinates given by x = pcos¢, y = psing,z =z then the Jacobian of transformation

320y, 2)
o(p, ¢, 2)
1o Ifu =£'V=3,W=ﬁshowthatM=
x oy oz 8(x, Y,2)
Sol : We have

a_uz—yz @zzan ou 'y

oXx X oy X oz X

oV Z OV —XZ ov X
—=—,—= and —=—
x yoy vy oy
and%:liﬁziandﬁz__);y
oX 7 oy I oz 1
ou ou ou -yzzy

OX oy oz 2 yx
LouvW) VOV OV | _\Z Xz X

Co(x,y,z) |oxoyar | |y yiy
ow ow ow| |y X xy
YA

ox oy oz| lzz z
—xyz 2y yz
x? X X
_ 1 ﬁ—xg/zg [Multiplying C1 by x, C2 by y and Cs by 7]
Xyz|y y y
Xy Xy =Xy
z z z2°
1 -1 1 1
:—.E.E.ﬂ 1 -1 1|[Taking common E,E,ﬂfrole,Rz, Rs resp.]
Xyz X y 2 X 'y z

1 1 -



2.,252

=22 -1 -1(-1-1) +1(1L+1)]

(xyz)
=-1(0)+2+2=4
Hence 2UV-W) _ 4

o(x,y,2)
2. If u=x*-2y;v=x+y+2z;w=x-2y+3z find —6(u,v,w)l
a(x,y,2)

Sol : We have 8_U:2X;6_u:_2;a_u=0

OX oy oz

=L§!=L =1
OX oy 0z
andﬂzl;@:_z;a_wzg
ox oy oz
o ou u
OX oy oz

2x -2 0
_0(u,v,w) [0V OV oV

T o(x,y,z) |ox oy oz

1 -2 3
ow ow ow
OX oy o0z
3. Ifx+y+z=uy+z=uv,z=uvw, thenevaluate ox.y.2)
o(u,v, w)
(or)
Ifu=x+y+z, y+z:uv,z=uvwshowthatM:[ﬁy,
o(u, v, w)

and uvw=z..... 3)
uv=y+z =y=uv-z=uv-uvw [using(3)]
U=X+y+z = X=u-(y+2z) =Xx=u-uvusing (2)]
.'.gzi[u—uv]zl—v,%:—uand%:0

ou ou ov ow

FAT =1 1 1=2x(3+2) +2(3-1) =10x + 4



andg:v—vw,@:u—uw,ﬂ:—uv
ou ow
0z 0z 0z
and — =vw, — =uwand — =uv
ou ov
Ou oV oW 1—v _u 0
.-.M:@@ﬂ:v—vw Uu—uw —uv
o(u,v,w) |Ou ov ow
@@ﬁ VW uw uv
Ou oV oW

=(1-V)[(u-uw)(uv)+uv(uw)]+u[(v-vw)uv+uv(vw)]=u’v
Thus oAxy.7) _ u’v

(U, v,w)
4. If X =rsin 0 cos¢, y = r sin 0 sin¢, z = r cos0d , show that
0 Y.2) _ 2 g pandfind 209:9).
o(r,0,p) o(x,Y,2)

Sol : From the given spherical polar co-ordinates , we have

%zsin ecos¢,%= rcos&cos«,/ﬁ,%:—rsin @sin ¢
or 00 o¢

@=sin gsin ¢,ﬂ= rcosésin ¢,ﬂ: rsin 6.cos ¢,
or 00 o¢p
gzcose,gz—sin 9,@=o.
or 00 o¢p
or 06 o sin dcos¢ rcosdcos¢g —rsin gsin ¢
Co(x,y,2) oy oy oy|_ | . . .
L = =|sin #sin ¢ rcosdsing rsin @cos¢ | [Expand by Rs]
o(r,0,¢) |or 06 0¢ :
cosé —rsin @ 0
ooz
or 00 0¢

=c0s0 [(r cosB cosd)(r sinf cosd)+(r cosh sind)(r sin 6 sind)]
+rsinf [(sinB cosd)(r sinb cosd)+(sind sind)(rsind sing)]

= cosO[r? sin @cosB(cos® ¢ +sin > )] + rsin G[rsin > H(cos® ¢ +sin * ¢)]



=r?sin @cos’ @+r?sin®o

=r?sin @(cos’* @+sin* @) =rsin @

%, y,2) .6(r,¢9, v) =1, wehave oxy.2) > 1
o(r,0,p) 0(x,Y,2) o(r,0,p) resing

Since

o(u,v)
o(r,0)

5. If u=x*-y? v=2xywherex =rcosé, y = rsin 8, showthat =4r°,

Sol : Given u=x?-y? and v = 2xy

Since x = rcosf and y = rsin 8 ,we have

u=r?cos’ @—r?sin®* @=r?(cos’ &—sin’ §) =r* cos 26...(1)
andv = 2(rcosé)(rsin@) =r’sin26.....(2)

Differentiating (1) and (2) partially w.r.t ‘r” and ‘0’ we have

u_ 2r cos 20,a—u =-2r?sin 26and v _ 2r sin 249,ﬂ =2r?cos26
or 00 or 06
OX OX

~ T~ _ 2

o) _jor 06 |_ 2r0932¢9 2r2 c0s 26 = 4r®(cos® 20 +sin® 20) = 4r®
or,e) |oy oy 2rsin26  2r°cos26

or 00

o(x,y) o(r,0) 1

6. If x=e"secH,y=e"tan@provethat : =1.
o(r,0) a(x,y)

Sol :We havex = e" secf ,y = e tanf (D
x_ e’ sec@,% =e'secftand

or 06
oy oy

2L —e"tang9,-= =e"sec? 0
or 00

OX OX
_a(x,y) |or 66| |e"seco e"secotand
T o(r,0) |oy dy| [e'tang  e"sec?
or 06

=e #(sec®0-sech tan?0)



=e?'sec O (sec?0 — tan?0)
=e?'sec® (2)

Now from (1), we have

And x* —y* =e*"(sec’ §—tan® @) =e"

Thus r = %Iog(xz ~y?),0 =sin 1(¥j 3
X

These give

or 1 1 X or 1 1 y

—=—_. 2X) = y— = —. -2y)=—

aX 2 X2_y2 ) XZ_yZ ay 2 X2_y2( y) X2_y2

%_;(—_VJZ_ y
RN TS AR
QQ_H___;E____(EJ____E___
o J1-(y?/x?) \X x® —y?

ar or X -y
oo |xoy | | X-y' o Xy
Ca(xy) |0906| |y 1

X ay X\/Xz_yz \/Xz_yz‘

2

- X y
- (x? — y2)3/2 - x(x2 — y2)3/2

L |yt (4)
(XZ _ y2)3/2 X X ’XZ _ y2 """
Equations (2) and (4) give the required Jacobeans.
Now substituting for x from (1) and for \/x2 — y2 from (3) in (4) , we get

or,0) 1
d(x,y) e"secd

e ()

e secd

1
er



o(x,y) o(r,0)

Hence : =1[From (2)and (5)
o(r,0) o(x,y)
EXERCISE
2 2
1. fx =2 y:V_, find ow,v)
\Y u o(x, y)
2.1fu=2"Y and# = tan" x + tan" y, find o, )
1-xy a(x,y)
3dfa=xu+v-y, b=u?+vy+w,c=zu-v+vw,show that
sz(yv+l—w)+z—2uv.
o(u,v,w)
4.1f x=u(@+V),y=v(l+u)then prove that %, y) =1+u+v.
o(u,v)
5.Ifx =u(l-v), y = uv, provethat o(u,v) X ox,y) =1.
a(x,y) o(u,v)
6. 1f X=UL V)Y =W grove that 33’ =1
o(u,v,w)

Ifu=xy+yz+zx,v=x2+y2 +Z2andw=x+y+z find 9% Y:2) and also show that

7 wW2_v-2u=0.

ANSWERS

]_.M: 1 2_ 0
oxy) 3

3.6 FUNCTIONAL DEPENDENCE:

Suppose u = f(x, y), v = ¢(X, y) are two given differentiable functions of the two independent
variables x and y. If these functions u and v are connected by a relation F(u, v) = 0, where F is

differentiable. Then u and v are said to be functionally dependent on one another, that is one

. . . . .. Ou du 0 d
function, say, u is a function of the second function v if %,%,i and ﬁ are not all zero

simultaneously. To establish the functional dependence of two functions, we have a result.



Result:

1. Two functions u and v are functionally dependent if and only if their Jacobian

] (u,v) _ o(u,v) 0
(x,y) a(x,y)

2. 1fJ=0, then uand v are functionally independent.
1. Show that the functionsu =xy +yz +zx, v=x2+y*+ ZZandw=x +y + z are
functionally related. Find the relation between them.
(or)
Prove that the functionsu=x+y +z, v=xy +yz +zx, w = x>+ y?+ 7% are functionally
dependent and find the relation between them.

Sol :We have u=xy+yz+zx,v=x*+y’+z2andw=x+y+z..(1)

ou ou ou

OX oy 01

Yy+Z Z+X X+Yy
. 0(u,v,w) |ov ov ov

A =X v 22 =| 2X 2y 21
X
,Y,2) |OX 0y Oz 1 1 1
W ow ow
oX oy oz

Y+Z Z+X X+Y
=2 X y z

1 1 1
X+Y+2Z X+y+Z X+Yy+2
=2 X y z (Applying Ri—R1+R?)
1 1 1
111
=2(X+y+2)X y z
111

=2(x +y + z) (0) (--R1 and Rs are identiacal)

Hence u,v and we are functionally dependent .That is, the functional relationship exists between
u,v and w.

Now W2=(X +y + 2)?= X2+ Y2+ 72+ 2(Xy + yz + zxX) = v + 2u, [by (1)]

~W2+2u+V is the functional relationship between u,v and w.



2. Show that the functionsu =x+y +z,v=x2+y?+72- 2xy - 2yz - 2zx and w = X3+ y® + 78
- 3xyz are functionally related.

Sol :Givenu=x+y+2z,v=x+y?+ 72 2xy-2yz - zxand w = x>+ y° + 73 - 3xyz

ou ou ou

OX oy oz 1 1 1
Wa(U’V'W)_@@@ =2(x-y-2) 2(y—-x-2) 2(z-y-Xx)

No =
o(x,y,z) |ox oy oz 5 ) )
3(x° —yz 3(y” —xz 3(z°—x
@@@(y)(y)(y)
oX oy oz
1 1 1
=6X—y—zZ y—-X—-Z Z-Yy-—X
X*—yz y*-xz 1°-xy
0 0 0
=6 2(x—y) 2(y-2) z—y—X [Applying C;—C;1-Czand Co—C,-Cs]

(X=y)(x+y+2) (y-2)(x+y+2) z° =Xy

X—=Yy y—-2

Co(u,v,w)
(X=y)X+y+z) (Y-2)(X+Yy+2)

o y,z)

1
X+y+2zZ X+y+z

=12(x-y)(y-2)

=12(x-y) (y-z) (0) [-.C1 and C; are identical]

Hence the functional relationship exists between u,v and w.

22
3. Prove thatu = X2 y2 V= 22xy > are functionally dependent and find the relation
X“+y

X“+y
between them.

x> —y? 2Xy
2 1 V=73 2
y X“+y

Sol : We are given u =

2

Jou (P +yR).2x=(X* —yi).2x _ 2x(XP+y = xP+y?)  4xy
o ax (X2+y2)2 (X2+y2)2 (X2+y2)2



u _ (Y20 - (x* —y*).2y _ (R2y)(x° +y* +xE—y®)  —4x’y
ay (X2+y2)2 (X2+y2)2 (X2+y2)2
o y (x®+y?.1-x2x | 2y(y’ -x%)

OX (x* +y?)? (x? +y?)?

2 2
4. Prove that u= x2 y2 V= 22xy > are functionally dependent and find the relation
X“—y X“+y

between them.

x> —y? v 2Xy

Sol : We are given u = —; 5V =— 5
X“+y X“+y

2

Jou (P +yR).2x=(X* —yi).2x _ 2x(XP+y - xP+y?) o 4xy

Y (X2+y2)2 (X2+y2)2 _(X2+y2)2
u _ (X +y)(2y) - (X —y*)2y _ (2 (P +yt+xP-y?)  —4xPy
ay (X2+y2)2 (X2+y2)2 (X2+y2)2
[ (2 1 y2 7 2 2
@:Zy (x +2y ).12—2x.2x _ 2y(2y —2x2) and
ox L (xT+y) ] (xT+y)
N _, [y l-y2y | 2x(x* - y?)
X X +y%)? | (xP+y?)?
uou 4xy’ —ax?y
Thus QUY) _ X OY| | (x*+yH)? (X +y?)?

o y) |avav| [2y(y*-x?) 2x(x*-y?)
oxoy| | (+yh)? (X +y?D)? |

8X7y*(X* —y*) , 8%y (y* —x*) _ 8x’y*(x* —y*) -8x’y*(x* —y?)
= NG 2 oe FNEY =0
(X“+y%) (X*+y%) (X“+y%)

~u,v are functionally dependent

) (X2+y2)2 4X2y2 (X2+y2)2
=72 e T o2 N2 g2 IV
(XT+y9)" (XT+y°)" (X+y7)

u+v

Hence u?+v?=1 is the functional relation between u and v.



5 Verifyifu=2x-y+3z,v=2x-y-z w=2x-Yy +zare functionally dependent and if
so , find the relation between them.

Sol :\We aregivenu=2x-y+3z,Vv=2X-y-Z,W=2X-y+2Z

The functions u,v,w are functionally dependent if and only if J(U’V' Wj =0

X, Y,Z

Qu du au

KON 15 1 3 11 3

Now g WY W IV VOVl g gt 1 1= (-2)(0) =0

X,Y,2Z OX 0y oa

2 —1 1 11 1
w ow ow
OX oy oz

~u,v,w are functionally dependent
Nowu+v-2w=(2x-y+3z) + (2Xx—-y-2) - 2(2x— y + 2)

=(4x-2y+2z2)-(4x-2y+22)=0

Hence u + v- 2w = 0 is the functional relationship between u,v and w.

EXERCISE

1.

Determine whether the following functions are functionally depedent or not. If they are
functionally dependent, find a relation between them. (i). u = e*sin y, v=e*cosy

. x x+y
mu=-,v=——-—-
(iju=2,v="—7

Ifu=-2 v=tan~lx + tan~1y. Find2®2 Hence prove thatu and v are
1-xy o(xy)

functionally dependent. Find the functional relation between them.
Show that the following functions are functionally dependent and hence find the

functional relationship between them: (i). U="2 ,V=—2—
x+y (x+y)

(ii)U=sin"tx+ sinly,V=x/1— y2+yJ/1— x?

(iii) U=xeYsinz,V =xeYcosz W =x2%e?,

Verify ifu=2x-y+3z,v=2x-y-2z,w=2x-Yy +z are functionally dependent and if
so, find the relation between them.

Show that the following functions are functionally dependent and hence find the
functional relationship between them.

(i). u=sin" x+sin'y,v= x\/l— y2 + yy1-%
(i) u=xe’sinz,v=xe’cosz,w= x’e?
(iii)u = xe Y coshz,v=x%"Ysinhz,w= x>+ y* + 2> — Xy — yz — zX

(Vu=x+y+z,v=x+y*+2°-3xyz,w=x>+y* + 2> — Xy — yz — 2X



VMu = X y,v—

ANSWERS

1. (1) U,V are functionally independent
(11) Uand V are functionally dependent, V = % is relationship.

V =tan1 U is relationship.

(i) u? + 4v=1.(ii)v=sinw. (iii)2w =uGBv —u?)

Functionally dependent with relationship u + v — 2w = 0.

() v=sinu (i) ¥2+v2=w (iii) 3 (u?-v?)=w (iV)uw=Vv. (V) u?+4v=1.

akrown

3.7 TAYLOR’S SERIES WITH TWO VARIABLES

Statement: Let f(x, y) be a function of two independent variables x and y. If h and k be small
increments in x and y then

2 2 2
f(x+hy+k)=f(xy)+ h@+ki S h2q+2hka f +k2q - (1)
x oyl 21 ox oy oy

Note:

1. The above Taylor’s expansion can also be written as

2
Focehyrk) = Fooy)+| h ek T L nd Y
x o) al &

2. Putx=a, and y=>b, Taylor’s expansion is given as

f(a+hb+k)= f(a,b)+(h of (a,b) +k8f(a,b)J+

OX oy
2 2 2
1 hza f(?’b)+2hka f(a,b)+k26 f(?,b)
2! OX OXoy oy
e

3. Puta+h=x,b+k=yinabove we have



f(x, y)_f(ab)+((x a)af(ab) (y—b)%}
1 , 8% (a,b) o2 f (a,b) , 8% (a,b)
5[@— ay o w2ty by T S (y )T} -----

1. Expand x’y +3y —2in powers of (x - 1) and (y + 2) up to the terms of 3" degree.
Sol : We know that the Taylor’s series expansion of f(X, y) in power of (x - a) and (y - b) is

f(x, y) =f(a b) + (x-a) f, (& b) + (y-b) f,(ab)

+%[(X —a)* f(ab) +2(x—a)(y -b) f ,,(a,b) + (y —b)*f, (a,b)] +

%[(X —a)’ f (a,b) +3(x—a)*(y —b) f, (a,b) +3(x —a)(y —b)* f,,, (a,b) + (y —b)* f,,, (a,b)]

Herea=1land b=-2
Let f(x,y)=x?y+3y—2
Now f(L2)=(1)?(-2)+3(-2)—2=-10

of

f =—=2xy @12 =20)(-2)=-4
OX
of
f,=—=x"+3 S f,02) =% +3=4
oy
o f
f.= e =2y S (@1-2)=2(-2)=-
0% f
= 2X S f o (0,-2)=201)=2
Y=oy 5 (1-2) = 2(1)
o* f
f, = Y =0 o f,@-2)=0
3
af — (x*+3)=2 S fy -2 =2

™ " oxZoy az



= =0 A f(12)=0
3

P, :%:o fy,(1,2)=0
3

fYW = gyz = O . fyyy(l,_Z) :O

Since all the third order partial derivatives are constant, therefore, all partial derivates of further
higher order vanishes.

Substituting these values in (2), we get

f(x,y)=x’y+3y-2

=—-10+[-4(x-1) +4(y-2)] + %[(X —1)% (=4 +2(x=1)(y - 2)(2) + (y +2)* (0)]

+%[O+3(x—1)2(y +2)(2) +3(x =D (y +2)?(0) + 0]

=—10-4(x-D)+4(y+2)-2(x-D* +2(x -D(y + 2) + (x-D*(y + 2)
2. Expand x3+ y*+ xy? in power of (x - 1) and (y - 2) using Taylor’s series.
Sol: Herea=1,b=2

Let f(x,y) =x° +y®+xy?Thenf (1,2) =1+8+4 =13.

Now f, =3x*+y? L f.1,2) =302 +(2)2 =7
f, =3y* +2xy - f,12) =3(2)° +2(1)(2) =12+4 =16
f. =6x o f.(1,2)=6(6)=6
f, =2y cf,12)=2(2) =4
f,, =6y +2x o f,(1L2)=6(2)+2() =14
f, =6 L (12)=6

£, =2 oy, 12)=2



f =2 o fy(12)=2
f =6 o f,,(L2)=6

The Taylor’s series expansion of f(X, y) in powers of (x - 1) and (y - 2) is

fxy) = 1LY +[(x-Df L) +(y-2) fy(1,2)]+%[(><—1)2 fo(d2) +
2(x=1)(y-2)f,,(12) + (y-2)* fyy(1,2)]+$[(><—1)3 Foo (1,2) +

3(X-D2(y ~2) L2 +3(x -1y ~2)? , 02 +(y~2° T, L]+
:13+[(x—1)7+(y—2)16]+%[(X—1)26+2(X—1)(y—2)4+(y—2)214]
+%[(x—1)36+3(x—1)2(y—2)2+3(x—1)(y—2)22+(y—2)36]+...

=13+ 7(X-1)+16(y-2) +3(X- 12+ 4(x-1) (y-2) + 7(y - 2)*+ (x - 1)* + (x-1)?’(y-2) +

(x-1)(y-2)*+ (y-2)°

3. Expand e*siny in power of x and y.

Sol :Let f(x, y) = e*sin y.then (0,0)=0

Now f,(x,y) =e*siny; £(0,0)=0
fy(x,y) = e*cosy; £,(0,0)=1
fex (X, ¥) = e*siny; fex (0,0)=0
fey(x,y) = e¥ cosy; fiy (0,0)=1
fyy(x,y) = e siny; £,,(0,0)=0
frxx (X, ¥) = e*siny; fexx(0,0)=0
fexy(X,y) = e*cosy; frxy (0,0)=1
feyy(x,¥) = e*siny; fryy(0,0)=0

And  fyyy(x,y) = e*cosy; £yyy (0,0)= -1

~By Taylor’s theorem,



1
fGoy) = £(0,0) + x£,(0,0) +y£,(0,0) + = [x*£2:(0,0) + y2 £, (0,0)]
1
+ 5 [ngxxx (OIO)szyf;ny(OJO) + Sxyzfxyy(o;o) + y3filyy(0:0)] + e

=0+0+ y%[0+2xy+0]+%[0+3x2+O—y3]+....

2 3

= y+xy+X—2y—y—+....

6
4. Expand e in the neighborhood of (1,1).

Sol:f(x,y) = e* = f(1,1) = e. then
i, y)=ye®” =f,(1,1)=e
f,(xy)=xe* = f (L) =e
fu(Xy)=y’e” = f, (1) =e
fo (% y)=xye” +e¥ = f (11)=2e
f,(xy)=xe"=f (11)=e
From Taylor’s series, we get

fx,y)=fLY+x-HDf L) +(y-)f, Q1)

4—%[(X—1)2 fo @D +2(x-1)(y -1 f, L1 +(y-1?2 f,, Q] +..
ie., e :e+e(x—1)+e(y—1)+%[e(x—1)2 +4e(x-1(y-De(y -1)?]+...

=e[l+(x-D+(y-1 +(X;—|1)2+ 2(x-1)(y-1) +(y;—|1)2+....]

5. If f(x,y)=tan"xycompute f(0.9, -1.2) approx.
Sol :Given f (x,y)=tan™ xy

Now Taylor’s expansion of f(x +h ,y +k)gives



2 2 2
f(x+hy+k)=f(x, y)+hq+kq h? O :+ of 1k 2 I +... (1)
ox oy 20 ox oxoy oy

- f(09,-1.2)=f(1-0.1,-1-0.2) = f(x+h,y+k)
=f@-1)+ (—0.1)q + (—0.2)i
OoX

oy

1 0* f o°f | 62f
+—|(-0.17 +2(-0.1)(-0.2 -0.2)2— |+.... L 2
Here f(x,y)=tan"(xy) - f(1-1) = tan (-1 :_%
a__y gy
ox  1+x%y? B 141 2
of X 1 1
2 - Sy ===
oy 1+x%y? ay( ) 1+1 2
0% f 2xy % f (D _2_1

2~ 2212 Lo )= ==
OX L+x7y9) OX 1+1)? 4 2

o*f  1+x’y*-2x’y?
OXoy (L+x%y?)2

_1-x%y? Lot T S

L+ x2y?)? oxoy (1+1)?
o°f _ —x(2x%y) ".azf 11— 2 _2_1
oy?  (@+x%y?)? oy 1+)? 4 2

Substituting these values in(2), we get
Vs -1 1

f(0.9,-1.2) =—=+(-0.2)| — |+(-0.2)| =

( ) 4+( )(2j+( )(Zj

1 , 1 o1
+=1(-0.)° =+ 2(-0.1))(-0.2)(0) + (-0.2)°| = |+

2 2 2

:—%+o.05—o.1+%(o.005+0.02)

= —% +0.05-0.1+00.0125 =-0.823

EXERCISE

1. Expand x?y + 3y — 2 in powers of (x - 1) and (y + 2) using Taylor’s theorem.
2. Expande® cosy near (1, 127) .



3. Expand the function f(x, y) = e*log(1 + y) in terms of x and y upto the terms of 3" degree
using Taylor’s theorem.

4. Expand f(x,y) = x3 + y3 + xy? in powers of (x-1) and (y-2) using Taylor’s theorem.

5. Expand f(x,y) =x2 + xy + y?.

6. Expand f(x,y)= tanl(%j in powers of (x - 1) and (y — 1) upto third degree terms. Hence

compute (1.1, 0.9) approximately.
1

7. Expand (1+x+y?)? at (1, 0).
ANSWERS

1. —10-4(x—-1D+@+2)-2x—-1D?*+x—-DH+2)+(x—-1)*(y-2).

2

2. %[1+(x—l)—(y—%)+%—(x‘l)(y‘%)‘@J’ -]

1 1 1 1
3. e'log(l = 2y Xy = xyt Sy
e’ log(+y)=y+xy 2y +2xy 2xy +3y

4,
13+7(Xx=D) +16(y —2) +3(x=1D? +4(x-1)(y-2) + 7(y - 2)* + (x=D)* + (x=D(y-2)° + (y=2)% +.......
5. 7+4(x—1)+5(y—2)+%[2(x—1)2 +2(x=D(y-2)+2(y-2)* |+.....

6. f(1.1, 0.9) = 0.6857.

x-1 (x=17 y?
7. 2|1+ —— e
\/_{ 4 32 4

3.8 MAXIMA AND MINIMA OF FUNCTIONS OF TWO VARIABLES

Definition:
A function f(x, y) is said to have a maximum value at x =a, y = b if
f(a, b) > f (a + h, b + k) for small and independent values of h and k, positive or negative.
A function f(x, y) is said to have a maximum value at x =a, y = b if
f(a, b) <f(a+ h, b+ k) for small and independent values of h and k, positive or negative.

Stationary point :The point (a,b) is called a stationary point if g-i (a,b) =0, % (a, b) =0.



Statoniary value : f(a, b) is said to be stationary of f(x, y) if % (a,b)=0 &%fy (a, b) =0,

i.e., thefunction is stationary at (a, b).

Extreme Value: A maximum or minimum value of a function is called its extreme value.
Saddle Point : The point (a, b) at which f(x, y) has neither a maximum nor minimum, i.e.,
f(a, b) is not an extreme value is called a saddle point.

Note: It may be noted that every extreme value is a stationary value but the converse may not
be true.

Working Procedure to find Maxima or Minima of f(x, y) :

Given f(x, y) a function of two variables.

Step 1: Find Z—i and Z—; and equate each of them to zero and solve these as simultaneous

equationin x and y. Let (a, b), (c, d)..... be the pair of values.
2 2 2

Step 2: Findrzlzq,s:m: ot ,t:n:a :
OX oXoy oy

these at each pair of values (a, b), (c, d) ......... obtain in step 1.

Step 3:1) If 3> 0 and r> 0 at an extreme point (a, b), then we conclude that f(x, y) is

maximum at (a, b) and maximum value is given by f(a, b).

ii) If 6> 0and r <0 at an extreme point (a, b), then we conclude that f(x, y) is

minimumat (a, b) and minimum value is given by f(a, b).

iii) If & = 0 then the case is doubtful and needs further investigation.

iv) If 8< 0, at an extreme point (a, b), then f(a, b) is neither maximum nor

minimum, i.e., f(a, b) is not an extreme value. In this case (a, b) is called saddle

point.

and & =r t - s = n— m?and evaluate

1. Find the maximum and minimum values of x3 + y3- 3axy.

Sol :Let z = x3+ y®- 3axy we have

0z

— 2.2 _ -
Pl 3x% — 3ay=0 ...(1)
0z _ 2 _
P 3y —3ay=0 ... 2
_ 2 _ -3x2 _ x?
From (1),-3ay =—3x* =y = T T e 3)

Substituting this value of y in (2) , we have

4
3.2 _3ax=0=3x* -3a°x=0=3x(x’ —a’) =0
a

~X=0,x=a



Corresponding values of yarey =0,y = a.

2 2 2
Nowlzﬂ—Gx;mz 0z =—3a;n:ﬂ:6y.
OXoy oy

X2
At the point (0,0), In - m?= 36xy - 9a< 0

At(a, a), In—-m?=36a%- 9a?=27a?>0and |=6a>0ifa>0and I<0ifa<O0.
Thus ifa <0, z = -a% is the maximum value and if a > 0, z = -a° is the minimum value.
At(0,0), z does not have any extreme value.

2. Find the maximum and minimum, values of f(x, y) = x3+ 3xy?- 3x?- 3y?+ 4,

Sol :We have g =3x"+3y*-6x=0 ...(1)
X
and§:6xy—6y=0 ..... @)
oy

Solving (1) & (2) ,we get x=0,1,2andy=0; +1

2 2 2
0 : :6x—6;a f :6y;g:6x—6
OX oxoy oy

At (0, 0), In—m?= (6x - 6)?- 36y?> = 36 > 0and | = 6x — 6 < 0.

Now

~f(0,0) = 4 is the maximum value.

At(2, 0), In - m?= (6x - 6)>- 36y?°=36>0and | =6x-6 >0
~f(2,0) = 0 is the minimum value

At(1,£1), In - m?= (6x - 6)>- 36y°=-36 <0

~f(1,£1) is not an extreme value.

3. Examine the function for extreme value f(x, y) = x*+ y*- 2x% + 4xy - 2y?(x >0,y > 0).

Sol :We have a_ 4x® —4x+4yand a_ 4y® 4+ 4x —4y.
OX oy

For f(X, y) to be maximum or minimum, % =0and — =0

a
oy



= 4(3-x+y)=0and 4(y*+x-y) =0

Solving these two equations, we get
X= \/5 - \/E, 0 and corresponding values for y are —\/Z\/E,O.

0% f 0% f

2
ot =4,n=—r=12y* -4
Xy oy

Now |=—-=12x* —4,m =
OX

7 =

At(x/2,—2)(In-m?) = 20.20-4% > 0
At(\2,—2),1=20>0

~The function has a minimum at (~/2,—2).
Also at (—/2,4/2)., In-m?>0and | =20 >0
~The function is minimum at (—v/2,+/2).

At (0,0),In?- m?= 0 and therefore we cannot say anything. It needs further investigation we can
find points in the neighborhood of f(0,0) for which function assumes values greater than f(0,0)
and values less than f(0,0).

~f(0,0) is not an extreme value.
4. Find the maximum and minimum values of x3 + 3xy? - 15x? - 15y% + 72x.

Sol : Let f(x, y) = x3+ 3xy?- 15x2- 15y? + 72x.

Than ? =3x? +3y? —15x* —15y* + 72,% = 6xy—30y =6Yy(x—5)
X

2

Now r = of =6X—-30=6(x-5)

X2
2 2
t= 0 I =6Xx—-30=6(x—-5)ands = of :3(6xy—30y) =6y
oy oxoy  oX
The critical points of f are given byq = O,q =0
OX oy

i.e,. 3x2+3y?-30x+ 72=0and 6y (x-5) =0

e, X2+ y?-10x+24=0and (y=0o0rx=05)



=(y=0and x?+ y?- 10x + 24 = 0) or (x = 5 and x*>+ y?- 10X + 24 = 0)
=(y =0,x>10x+24=0)or (x=5,25+y>*~50 + 24 = 0)
=>(y=0andx=6,4)or (x=bandy==1)

~The critical points of fare A(4,0),B(6,0), C(5,1) and D(5,-1)

Now, & = rt - s2=36[(x - 5)- y?]

At A (4,0),5 =36 [(4 - 5)2-0] =36 >0

At B(6, 0),5 =36 [(6-5)%- 0] =36 >0

At C(5, 1),5=36(0-1)=-36<0

At D(5,-1),5 = 36 (0-1) =-36 < 0

Thus A and B are points of extremum for f, while C and D are saddle points.
Butr=6(x-5)=6(4-5)=-6<0at A(4,0)

= A is the point of maximum for f
andr=6(x-5)=6(6-5)=6>0at B(6,0)

= B is the point of minimum for f

Minimum value of f=4%+3(4)(0) -15(4)?- 15(0) + 72(4) = 112
Maximum value of f = 63+ 3(6)(0) - 15(6)?-15(0) + 72(6) = 108

3 3

. . - a~ a

5. Find the maximum and minimum values of xy+—+—.
Xy

a® a’
Sol :Given function is f(x, y)= xy+—+— ...(1)
X

3 3

:x—a—zand
y

a
oy

><N| V)

A,
T OX

o*f 2a® o*f 2a° 0% f
T T and =1.
OX X oy y OXoy

The condition for f(x,y) to have min (or) max. is% =0=

a
oy



andx:% (3

Substituting (3) in (2), we get

=y(y*-a%)=0

=y=0 ory=a

Nowy=0=X=o

=~ It is not possible.

Now y=a = X=a

~The extremum point is (a, a)

f(x, y) will have max. (or) min at (a, a)

2
At(a,a), |:6 f =2,m=1,n=2
OX

2

Now In-m?=4-13>0,1=2>0
~f(x, y)has minimum at (a, a)

3 a4

. : a
The minimum value is f(a, a) = a* + — +— =3a°
a a

6. Find the Maximum and minimum value of f =3x* —2x®> —6x% +6x+1
Sol :We have f(x)=3x"-2x%-6x*+6x+1

df

T =12x° —6x* —12x+6 = 6(2x> — x* - 2x +1)
X
. o df
For maxima or minima, —= = 0

e, 2x3-x2-2x+1=0 e, (x-1)(2x*+x-1)=0



e, (x-1)(x+1)(2x-1)=0

SoX = 1,—1,1
2

These are the possible extreme points.

2
Nowd f =6(6x> —2x —2) =12(x* —x-1)

X2

o df
Whenx=1, —-=-12<0
dx

~f(x) is minimum at x=1

d?f

When x = -1, > =12>0
X

~f(x) is maximumat x =
Hence Maximum values are given by f(1)and f (%)

e, f(1)=3-2-6+6+1=2and

f 1 =§—3—§+§+1=i(3—4—24+48+l6)=§
2) 6 8 4 2 16 16

Minimum value of f=f(-1) =3+2-6-6+1=-6
7. Examine for minimum and maximum values ifsin x + siny + sin(x + y)

Sol :Given u(x,y) = sinx + siny + sin(x + y)....(1)

.'.a—u=cosx+cos(x+y) ...(2)
OX
ou
and — = cos y + cos(X + Y) ...(3)
oy
Consider an =0and au =0.
OX

From these we, get COSX=CcoSy = X =Y



~From (2),
a_u = cosx + cos 2x

OX
a—u:0=>cosx + cos 2x=0= 2 cos 3—X COSEZO
OX 2 2
N S . S SNV v
2 2 3

And x==7z,y=*x ie., (+7,+7)

) 2
Now a—l: =—sin x—sin(x+ Y); ou = _Sin( X+ y)
X OXay

2

And a—L::—sin y—sin( X+y)
OX
At (%%)I =—\/§,m:_—;/§andn=—\/§

.°.In-m2:% >0, and | < 0= u has maximum at (%%)

At (Mj, =2
3 3 2

. 33
~ Maximum value of u:T‘/_.

We can prove that In - m? is positive and | is positive at (%%)

U= has a minimum at (iij
3 3

.. —-3+/3
Minimum value of u:T\/_

At (£m, = m), In - m?= 0. There is a need for further investigation.



8. Find the positive numbers whose sum is 100 and whose product is maximum.
Sol :Let X, vy, z be the required three numbers

Then x +y + z = k(=100) ..(1)

And f(x,y,z) =xyz ... 2

Eliminating z form (2) with the help of(1),we get

f(x, y) =xy (k—x-y)

Z_f = YIX(-1) + (k= x— y).1] = y(k - 2x - y)
X

of

v X[y(=D) + (kK —x - y).1] = x(k — x - 2)

For f(X, y) to be maximum,

a = Oand a =0gives
OX oy

=2x+y=kand x+2y=k

Solving these , we get x =y = %

Now r—azf =-2Y,S= o't =X(-D)+(k—-x-2y)l=k-2x-2y
2 " oxoy '

o* f

2

And t = =-2X

Now rt - s> = 4xy - (K - 2X - 2y)?

_ﬁ_(k 2k 2kj2_4k2_5_3k2_k2
3 3

Atx:y:E,rt—SZ_ — =—>0
3 9 9 9 9 3

Alsoatx=y= S,r:-Zy:T<0

Hence f(x, y) has a maximum at (ggj



From (1),z=k- (x+y) = k_z_;zg

%@% (+- k=100).Thus the product is maximum

The required numbers are 3

w|x

k k .
—,— i.8.,
33
when all the three numbers are equal.
9. Find the maximum and minimum values of the function f(x) = x®- 3x* + 5.
Sol : Given f(x) =x*>-3x*+5
o F/(X) =5x* —12x3, f"(x) = 20x® —36x* = 4x*(5x —9)
For f(x) to be maximum or minimum f'(x) =0

i.e., x’(5x—-12)=0= x = O,.%

When x=0, f"(x)=0
~f(x) has neither maximum nor minimum at x = 0

When x:%, f”(x)=%(12—9)>0

~f(x) has minimum atx = %

5 4
Minimum value = f(gj = [Ej —3(2] +5
5 5 5

=(2.4)%- 3(2.4)* + 5 = -14.91

10. A rectangular box open at the top is to have volume of 32 cubic ft. Find the dimensions
of the box requiring least material for its construction.

Sol :Let x ft, yft and z ft be the dimensions of the box and let S be the surface of the box. Then
we have

S= xy + 2yz + 2zx (since open at the top) ..(1)
Given that its volume, x. y.z=32 ..(2)

_ 32
From (2), z =Y

Substituting the value of Z in (1) , we get



S=xy+ 2y(§J+Z(ng = xy+%+%
Xy Xy

Xy
Now ﬁzy—G—j':Oand@:x—(s—?:O
OX X

Solving these , we get x = 4; y = 4.

0°S 128m 0°S 1 0’S 128

Also | = === m= =In= ==
ox? X X0y oy’ y?
Atx=4 & y=4, IN-m="2 X > —1=2X2-1=3>0andl =5 =2>0
x y

Thus, S is minimum when x = 4,y = 4,

From (2) ,wegetz =2

~The dimension of the box for least material for its construction are 4, 4, 2.

11. Find the minimum value ofx? + y? + z? given that xyz =a®
Sol: Let f(x, y, z) = X2+ y?+ 72

Given xyz =a®
From (2), z = o

Substituting in (1), we get

6
a
f=x+y*+——

x2y2
6
'-‘i:ZX_ZL
OX x%y?
6
and i=2x—%
X"y

Making a = Oand a =0 and solving them, we get x =y = a.
OX oy

0% f 6a’ 0*f  4a° 0% f 6a’
e =2+ = = = =2+

Now | = ,m= = n= =
X4y2 axay X3y3 ayZ X2y4

x3

()
-2



At (a,a),In-m?=64-16=48>0.Also >0

6

R . a
We have f is minimum at (a, a) and minimum value =a* + a* t T 3a’
a’Xa

12. Find the stationary points of u(x, y) = sinx sin y sin(x + y) where O<x<z,0<y<x
and find the maximum u.

Sol :u= sinxsinysin(x+y),0<x<m and0<y< =x
ou . . L
x = COS XSin ysin( X+ y) +sin xsin ycos(x + Y)
X
= sin y[cosx sin(x +y) + sinx cos x(x + y)] = siny.sin(2x + y)

a—u:0:>y:00r2x+y=;z
OX

ou . . L
5 =sin Xcos ysin( X + y) + sin xsin y cos(X + y)

=sin x [sin(x + y) cos y + cos(x + y)sin y]=sin x sin (x + 2y)

a—u:0:>x=0(or)x+2y:7r
oy

S X=xl3,y=n/3

Now | = @ =2sin ycos(2x +y) = Z.E(—l) =3
OX 2

m = sxzu = C0oS ysin( 2X + y) +sin ycos(2x + y) =sin( 2x + 2y) = —?
0’ V3

And n=

u : 3
7 = 2sin xcos(x—y) =2~ (-1) = /3

2

Also In—m? :3—%>Oandl <0

. . T T
~u will be maximumat x= 3 y= 3



Hence the maximum value of u =

NP
S
Wps
| &

Stationary points are x = % y= %

13. Find the points on the surface z2= xy + 1 that are nearest to the origin.

Sol :Let P(x,y,z) be any point on the surface

D(x,y,z)=z>- xy — 1=0

Let OP =P = /x> +y* +12°

We have to find the minimum values of (2) subject to the condition (1).
From (1) and (2), we have

P2=x?+ Y2+ 22= X2+ Y2+ xy + 1.

Differentiating (3) partially w.r.t ‘x” and ‘y’ we get

Zp@:2x+y
OX

op
and2p—=2y+x
oy

The critical points are given bya—p =0 and P =0
OX oy

=2x +y=0and 2y + x = 0= x=0,y=0

(D) = z=+/xy+1 =41 (~ x=0,y=0)
~P(0,0,1) and Q (0,0,-1) are the critical points of p.

Differentiating (4) partially w.r.t ‘x” and ‘y’ ,we get

2
2pr + Z(G—pj =2=r= 2 =latPandQ ( p =1land P _ Oatpande
OX 2p OX

And 2ps+2?.@:1:>s=i=1atPand Q (.-.pzl,@z%:Oatpand Q)
X

oy 2p 2 oX

(D)

(2)

(3

(4

(5



Diff (5) partially w.r.t ‘y’, we get

2
op 2

2pt+ 2(—} =2 =t =—=1atpandQ
oy 2p

~At P andQ rt-32:1-i = z >0
Hence P has minimum at P andQ.

~Required points are (0,0,1) and (0,0,-1).

14. Find the shortest distance form origin to the surface xyz?=2.

Sol :Let P(x, y, z) be any point on the surface xyz?=2....(1)
Then OP=d=,/x2 + y? + z2

Let f(x, y)=d* =x* +y* +2° =x* + y? 2 [using (1)]
Xy

Now fX:ZX—%; f, =2y—i2
X"y Xy

Solving fx= 0 and f, = 0 weget

3 _ 3_
x;; 1:0andxy 1:

0
X2y Xy’

e, x®y=1and xy®=1
orx’y =xy* = xy(x* —y*)=0=x==y(. x=0,y #0)

The stationary points are P1(1,1) and P2(1,-1).

:2+i3and fy=
Xy X"y

vy

Also f =2+é,f
X7y

At@1),1=f,=6>0n=f =6m="f =2andn-m’=f .f —f

Now z° = % =2 [using(1)]

~z = ++/2 . So minimum occurs at (1, 1,v/2)

2
Xy

= (6)(6)-(2)2=32>0



Hence the shortest distance from the origin isv1+ 1+ 2 or 2.

15. Find the minimum value of x?+ y?+ z2 when ax + by + ¢z = p.
Sol: We have ax+by+cz=p=1z =%(p—ax—by)

Let f(x, y)= X2+ y? + 72

:x2+y2+ci2(p—ax—by)2 (1)
.'.i=2x—2—?(p—ax—by)

X C
of 2b
—=2y—-——(p—-ax-b
Yt (P y)

2 2 2 2 2
Now r=a I =2+Za2 ,s=a f =2azbandt=a I :2+%
c oxoy ¢ oy c

2 2 2
And rt —s? :(2+2a2 j(2+2b2 J_(Zazb)
c c c

i=0andi:0 implies
OX oy
a
x=—(p—ax—by) o
c
b
and Y=C—2(p—ax—by) 3
i . X a bX
(2) + (3) gives, — =" = y=—
y b a



2
Putting in (1), xz%(p—ax—uj
c a
a’+b*) ap ap
=X/ 1+ =—0X=—7>—-
( c? J c? a’ +b? +c?
.y bx bp
B a a’+b?+c’

Substituting these values in ax + by + ¢z = p, we get

a’p , b'p
a’+b*+c® a’+b?+c?

+cz=p

H p 2 2
e, ————(a“+b°)+cz=
a2+b2+c2( ) P
: p(a® +b*) a® +b?
e cz=p——2 T2 g2 TF
P a’+b%+c? P a’+b?+c?
_ pc?
a’+b®+c?
cp
Oorz=————
a’+b®+c’
o ap bp cp
Hence f is minimum at , ,
(a2+b2+c2 a’+b?+c? a2+b2+c2j
2 A2 2 A2 2 A2 2
:Minimumvalueoff:a p2+b2p +202p =— p2 -
(@ +b“+c%) a‘+b“+c

16. Find the rectangular parallelepiped of maximum volume that can be inscribed in a
sphere.

Sol : Let ‘a’ (constant ) be the radius of the given sphere. Also let x, Y, z be the length breadth
and height of a rectangular parallelopied inscribed in the given sphere.

The equation of the sphere is x? + y? + z? = a2 ..(D)

Volume of the rectangular parallelopiped is V = xyz

(2)



From (1), z =\/a? — x? — y?

Substituting (3) in (2), we get

V=xy,a® —x* —y?

SV =xy?(@® —x? —y®) = x*y*a® —x'y? —x*y*...(4)
Let f(x,y)=V? =x%y%a® —x'y* —x*y*

(;i =2xy’a® —4x°y? —2xy* = 2xy?*(a® - 2x* -
X

of
oy

For V to be maximum,

i:0:>2xy2(a2—2x2—y2)20
OX

=a’-2x*—y*=0(-.x#0,y #0)

ﬂ=0:>a2—x2—2y2=0
oy

(6) - (5) gives
X2-y?=0=X=y

. —y=2%
~From (5),x-y—\/§

From (3), we get

7= la242 2 _ @
3 3 3
x—y—z—i
J3

— =x?(2y)a® —2x'y —4x*y® = 2x?y(a® — x* - 2y?)

(3)

.(5)

..(6)



2 2
Nowr = I =2a’y® —12x* -2y*;S = of = 4a’xy—8x’y —8xy’
Ooxoy
2
t=—0r=2a’x"-2x" —12x%y’
ay
2 2 .2 4
AL & lr=2a? 8 122 8 2
J3'J3 3 3 3 9
—8a*

<0(-.a>0)

a a a’ a® a a a
At | —,— ,S=4a2 — |-8. —.—8.—.
(\/5 \/5} (BJ 33 3 3 3/3

4a* 8a' 8a' -4a’
3 9 9 9

a a a’ a’ a’ a
And at| —,— ,t=2a2 — |-2—-12.— . — =
(Jﬁ ﬁ] [3) 9 3'3 9

, _64a° 16a° 48a° 16a°
81 81 81 27

>0

Now rt—s

Sincer<0and (rt-s? >0,

~f(x, y) i.e., V2 and hence V is maximum at i,ij
o 5%

i.e., Volume is maximum forx =y=a= (ij

~Inscribed rectangular parallelopiped is a cube.

Maximum volume of the rectangular parallellopiped.

:xyz—(iJ _a_3 cu.units
J3) 33

17. Divide 24 into three parts such that the continued product of the first square of the
second and cube of the third is maximum.



Sol: Let 24 is divided into three parts x, v, z.
Thenx+y+z=24

Take f(x,y,z)=x°y? suchthatx +y+z =24
f(x, y) = x}y?(24 — x - y) from (1)

= f(x,y)=24x>y* —x*y? —x°y®

P :Z—f =T72x%y* —4x°y? - 3x%y?
X

2

a f 2 2.,2 3
r= =144xy° —-12X —b6X
- y y y

;=

q=%=48x3y—2x4y—3x3y2
azf 3 4 3
t=—-=48x"-2x" -6X7y
aZf 2 3 24,2
Ands = =144x° -8x> —9x°y

OXxoy

For f(x,y) to be maximum , we have
of

=72-4x-3y=0,x=0y=0

And %= 0= 48x’y —2x*'y-3x’y* =0

= x’y(48-2x-3y)=0
=48-2x-3y=0,x=0,y=0
Solving (3) and (4), we get x=12 and y=8.

At(12, 8), we have
r =14412(8)* —12(12)*(8)* —6(12)(8)°

8—:0:> 72x°y? —4x%y? —3x’y® =0 = x*y*(72-4x-3y) =0
X

(3



=12(8)%(144 — 144 - 48) = 12(8)4(-48) < 0
t =48(12)° —2(12)* —-6(12)°.8
=(12)3(48-24-48) = 123(-24)
S =144(12)%8 - 8 (12).8 — 9 (12)4(8)?
=(12)2.8(144 — 96-72)=(12)>.8(-24)
1t - s = [12.(8)%(-48).(12)3(-24)]-[(12).8.(24)]?
= (12)*.82.24(48-24)
=(12)*.82.242> 0
Since rt - s2> 0 and r < 0,f(x,y) is maximum at (12,8)
Putting x =12, and y = 8 in(1), we get z = 4.
The values of x, y ,z are 12, 8, 4 respectively.
This is the division of 24 for maximum of f(x, y, z).

18. Find a point within a triangle such that the sum of the squares of its distances from the
three vertices is a minimum.

Sol :Let A(x1, y1),B(X2, y2)and C(xs, y3) be the vertices of A ABC

Also let P(x, y) be a point in the A ABC.

A(x1,y1)
Then we have f(x, y) = AP?+ BP?+ CP?
3 ) )
:Z[X_Xi) +(y-v))1]
i=1
of 3 of 3 P(x,y)
Now —=2» (x—x;)and—=2» (y-vy,)
OX ,Zzl: oy .Z_—;' 1
C(xs,
For f(X, y) to be minimum % =0and % =0 B(xz, y2) (%3, y3)

=Y (x=x) = 0and Y (y-y,) =0

:>(X_X1)+(X+X2)+(X_X3):Oand(y_y1)+(y_y2)+(y_y3):o



=3X— (X + X, +X;)=0and3y—(y, +Vy, +V,)=0

=X1+X2+X3 andy: yl+y2+y3

=X
3 3
2 2 2
Now | =8 I =2(3)=6,m= ot :Oandnza I =6
OX OX
At P(x, y),In - m?= 36 = +ve and | is also +ve
Hence f is minimum for x = 222 %5 gnq yzw

~The required points is(xl il X32 % : Y1t y32 il y3j which is the centroid of A ABC.

3.8 EXERCISE

1. Investigate the maximum and minimum for x3y?(1 - x - y).
2. Discuss the maximum and minimum of x2y + xy?— axy.

3. Examine the extrema of f(x,y)=x*+Xxy+Yy? +1+£.
Xy

4. Find the maxima and minima of the function f(x) =2(x*-y?)—x*+y*.

5. Find the maximum and minimum values of ax®y? — x*y? — x3y®.

6. Show that the function f(x, y) = x3 + y*- 63(x + y) +12xy is maximum at (-7,-7) and
minimum at (3,3).

7. Find the extreme values of u = x?y? — 5x>~ 8xy — 5y?.

Discuss the maximum and minimum of x? + y? + 6x +12.

oo

9. Arrectangular box open at the top is to have a given capacity. Find the dimensions of the

box requiring least material for its construction.

10. Find the dimensions of the rectangular box open at the top of maximum capacity whose

surface area 108 sg.inches.

ANSWERS

1 1
1. Max(3,1]=i. 2. Min at (E,EJ s.minat |[1]° (1] | 4 Maxat (-1,0),(1,0) and
432 3'3 3) (3

Minat (0,-1),(0,1) 5. Maxat (%%) 7. Max at (0, 0) 8. Minat (-3, 0) = 3

1
9. x=y=z=(2v)® 10.x=6,y=6,z=3,



3.9 LAGRANGE’S METHOD OF UNDETERMINEDMULTIPLIERS

Sometimes it is necessary to find the stationary values of a function of several variables which
are not all independent but are connected by some given conditions. Such type of problems can
be solved by using the method of Lagrange’s undetermined mutlipers.

Working Rule:

Suppose it is required to find the extremum for the function f(x, y, z) subject to the condition ¢(x,
y, z) =0 (D)

Step 1. : Form Lagrangean function F(x, y, z) = f(x, Y, z) + AMd(X, , 2)....(2)
where) is called the Lagrange multiplier, which is determined by the following conditions.

Step 2: Obtain the equations

F _0=M 2% o
OX OX OX ..3)
oF ou

0N, 92 g
oy A N )

oF _ au

— =0 +/16—(0=0
0z

a ..(3)
Step 3: Solving the equations (1), (3), (4) & (5).
The values of x, y, z so obtained will give the stationary point of f(x, vy, z).
Examples:
1. Find the minimum value of x?+ y? + 7%, given that xyz = a°.
Sol :Let u=x2+y*+z2 (1)
andp=xyz-a®=0 ..(2)
Consider the Lagrangean function
F(X, Y, 2) =u(x Y, 2) + 1. d(x, Y, 2)
e, FX, y, 2) =+ y?+ 25 + A (xyz-a% (3)

Nowﬁzo:sa—“m%:zxmyz:o (4)
OX OX OX



oF _,_ou 0

0= —+A1—=2y+Axz=0
oy oy
and a—F=0:>6—u+/”t%:22+/1yx:0
oz oz oz
X 'y z A
From (4),(5) and(6) , we have — =—=—=——
yz X Xy 2
From the first two members , we have — =~ = x? = y? .
yz X
From the last two members , we have 2 = = = y? =12°
X Xy

From (8) and (9), we have X>’=y?=7’=>x=y=12
Solving (2) and (10), we getx=y=z=a

~Minimum value of u = a®+ a® + a = 3a?

2. Find the minimum value of f = x?+ y?+ zZgiven x + y + z = 3a.

Sol :Let f=x2+ y? + 72
andp=x+y+2z-3a

.'.i=2x,%:1,q :1andi=22,% =1
OX OX oy 0z 0z

By Lagrange’s method of multiplier , we have

i+/16—§0:0:>2x+/1:0(or)x:—i
OX OX 2

q+/Ia—¢)=0:>2y+/1=0(or)y=—i
o oy 2

i+/18—(0:0:>22+ﬂp:0(0r)z:—i
0z 0z 2

Substituting these values of X, y, z in d(x, Y, z) = 0, we get

.(5)

..(6)

w(7)

.(8)

.(9)

..(10)



~X=ay=az=a
The possible extreme points is (a, a, a)
Thus , the minimum value of f = a® + a? + a° = 3a?

. . .. . ., 10101
3.Find the maximum and minimum values of X +y + z subject to constraint—+—+—=1

X y z

Sol : This is a constrained extremum problem where the function f(X, y, z) = x + y + z subjected

to the constraint1 +1 + 1 =1
X y z
. - . _ 1 1 1
So, consider the auxiliary function F(x, y,z) =x+y+z+ A| =+ —+=-1 ...(1)
X y z

Differentiating(1) partially w.r.t X, y, z and equating to zero , we get

oF A

Z —1-Z -0 (2

oX x? (2)

%:1-%:0. .3
y

oF A

521_2_220 (4)

Solving (2),(3) and (4) for x, y, z we get x = +JA,y=+JA,2=4J2
Substituting these values of X, y, z in the given constraint , we have

1,1 1
Ji AV

Using this A we get x = 3,y = +3,z = 3

=1=3=+/10rA=9

Thus the maximum and minimum values are 9 and -9.

4. Find the volume of the largest rectangular parallelopiped that can be inscribed in the
2 2 2

Lo XT Yyt oz
ellipsoid ¥+b_2+c_2:1'



Sol :Let 2x, 2y, 2z be the length ,breadth and height of the rectangular parallelopiped that can be
2 2 2

inscribed in the ellipsoid. X—2+y—+z——1: 0
a

b* ¢ (1)

Then the centroid of the paralleopiped coincides with the centre O(0,0,0) of the ellipsoid and the
corners of the parallelopiped lie on the surface of the ellipsoid(1).

If (X, Y, z) is any corner of the parallelopied then it satisfies condition(1).

Let V be the volume of the parallelopiped i.e., V = 8xyz. We have to find the maximum value of
V subject to the condition(1).

Consider the Lagrangean function.
X2 y 2

F(X, Y, z)=V+7{—+—+—2—1J -(2)
a

Where Ais the multiplier to be determined such that

oOF _oF _oF

—=0,—=0,—=0

OX oy 0z

:>8yz+2—z(ﬂ:0, ..... (3)
a

:>8yz+%/1:0, ()

and8yz+%i=0, ...(B)

Now (3),(4),(5) are combined as:

a’yz b’zx _cixy A

- ...(6
X y Z 4 ( )
From first two fractions , we have
azy b2x x2 yz
ey_2 2 (7
X a’ b? ()
2 2

Similarly ;’—zzz— ..(8)



Substituting (7) and (8) in (1), we get
a b c

=—, y = —, L =——

J3'T 3T 3

Hence the possible extreme points is P( b ¢ )

J3'3'V3

First we note that for fixed x and y, V=8xyz is an increasing functions of z.
Ifz =0, the parallelopiped reduces into a two dimensional lamina for which V=0.

As z increases , V also increases.

C
the maximum value of z satisfying the condition (1) is z= —.

V3

But for x =

5 f

Thus V is maximum at P( 8abc

J3'3'V3 3V3

5. Find a point on the plane 3x + 2y + z— 12 = 0, which is nearest to the origin.
Sol :Let P(x, y, z) be a point on the given plane .then

OP = /x? +y? + 2% ,where O is the origin.

Letu= x*+y?+ 7

Now we have to minimize (1) subject to the condition
D(x,Yy,2)=3x+2y+z-12=0

Consider the Lagrangean function

F(X, ¥, 2) =u(x Y, 2) + L d(x, Y, 2)

e, F(X, Y, 2) =x2+y?+ 22+ A (3x + 2y + 2 - 12)

For F to be minima,

F_o0F _oF _g
OX oy 0z

.'.ﬁ:0:>2x+3/1:0:>x:_—3/1
OX 2

j and its maximum value is V=8xyz=——.c.u.

(D)

(2)

(3)



S 0moyi21=0=y=-2
oy

and.'.a—F=O:>22+/1:O:>z=i
0z 2

Substituting (3),(4) and (5)in(2), we get
3(_—3/1j+ 2(-2) +(ij—12 —0= =22
2 2 7

Putting this value of A in (3),(4) and(5), we get

18 12
X="— z

18 12
77

2 2 2
Note: Minimum value of OP = (gj +(£j J{ﬁ = /@ = /B
7 7 7 X7 7

6. Find the maximum value of u=x?y®z* if 2x+3y +4z=a.

.. Hence (

~N| o

) is the point on the given plane which is nearest to the origin.

Sol : Given u = x*y®z*

Let p(x,y,z)=2x+3y+4z—-a=0

Consider the Lagrangean function F(x, y, 2) = u(x, Y, 2) + L d(x, Y, 2)
i.e., F(X, Y, 2) = x33z*+ L (2x + 3y + 4z - a)

For maxima or minima a—F = O,a—F = 0,6—F =0

OX oy 0z
Now aa—F =0=2xy°2" +24=0= xy’z* =-1
X

%:=0:>3x2y224 +31=0=>x’y%*z" =2

and %=0:>4x2y323 +41=0=>x°y*7* =-1

(4

.(5)

..(6)



From (4) and (5), we have x =y
From (5) and (6), we have y =z

Hence combining (7) and (8) , we getx =y =1z

Solving (2) and (9) ,we get x=y=2z=

2 3 4 9
~Maximum value of u = (EJ (Ej (Ej = (Ej
9)(9)\9 9

oo

7. Find the point on the plane x + 2y + 3z = 4 that is closest to the origin.

Sol :Let P(X, y, z) be a point on the given plane .

Then OP,/x2 + y2 + 22

Let u=x? + y? + z2

Now we have to minimize (1) subject to the condition
d(x,y,2)=x+2y+3z-4=0 ... 2
Consider the Lagrangian function F(x,y,z)=u(x,y,z)+A .d(X,y,z)

ie, Fxy,2)=x2+y? +z2 + A(x + 2y + 3z — 4)

From F to be minima,a—F=O,8—F=0,a—F:O
OX oy oz

ﬁ:0:>2x+ﬂp:0 .'.x=—i ...... 3)
OX 2
a—F:O:>2y+2/1=0 Ly=-4 .. 4)
oy
ﬁ:O:>22+3/1:0 .'.z:—% ..... (5)
oz 2

I : 91
Substituting (3),(4) and (5) in(2) we get ———2/1—7—4 =0=141+8=0
CA=-2

(D)



Putting this value of A in (3),(4) and (5) , we get x = %, y= gandz = g :

Hence (%;gj is the point on the given plane which is nearest to the origin.

EXERCISE
1. Find the minimum of u = x* + y* + z’when x+y+z=a.
2. Find the minimum of x2+ y?+ z% when ax + by + ¢z = p.
3. Find the maximum and minimum of x2+ y?+ z? subject to Ix + my + nz = 0.
4. Find the shortest and the longest distances from the point (1, 2, -1) to the sphere
X2 +y? +72=24.
5. Find the volume of the largest rectangular parallelepiped that can be inscribed in the
ellipsoid 4x? + 4y? +972 =36.
6. Divide 24 into three points such that the continued product of the first, square of the
second and cube of the third is maximum.
7. Find the points on the sphere x?+ y? + z2= 4 that are closest and farthest from the point
(3, 1, -1).
8. Giventhat x+y+z=a, find the maximum vlaue of x™y" zP.
9. Find the minimum value of u = x* + y* + z* subject to xyz = a®.
10. In a plane triangle ABC find the maximum value of cos A cos B cos C.
ANSWERS
2
1' 2 p2 2
a“+b°+c
(5 15 —_5j
71414
3. J6:36
4. 1643c.u.
5 4,812
6 (6 2 —2)(—6 -2 2)
- Vir Vi) (Vi
am+n+p mm nn p p
7. Maxis (m in4+ p)m+n+p )
8. 3a* 0. j(7 77y 111 1
'3 222 8



