

SREENIVASA INSTITUTE of TECHNOLOGY and MANAGEMENT STUDIES (AUTONOMOUS)

(ALGEBRA & CALCULUS)

# **QUESTION BANK**

## I- B.TECH / I - SEMESTER

**REGULATION: R20** 



COMPILED BY DEPARTMENT OF MATHEMATICS

(Autonomous)

#### DEPARTMENT of SCIENCE AND HUMANITIES

#### QUESTION BANK

ALGEBRA & CALCULUS (20BSC111)

|          | ASSIGNMENT - I                                                                                                          |          |  |
|----------|-------------------------------------------------------------------------------------------------------------------------|----------|--|
| Question | Questions                                                                                                               | BLOOMS   |  |
| No.      | Questions                                                                                                               | TAXONOMY |  |
|          | UNIT – 1: MATRICES                                                                                                      |          |  |
|          | PART-A (Two Marks Questions)                                                                                            |          |  |
| 1.       | Define the rank of the matrix                                                                                           | L1       |  |
| 2.       | Define Echelon form matrix with suitable example                                                                        | L1       |  |
| 3.       | Define Normal form matrix with suitable example                                                                         | L1       |  |
| 4.       | Find the rank of the matrix $\begin{bmatrix} -1 & 0 & 6 \\ 3 & 6 & 1 \\ -5 & 1 & 3 \end{bmatrix}$                       | L1,L2,L3 |  |
| 5.       | Find the rank of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$                         | L1,L2,L3 |  |
| 6.       | Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$                         | L1,L2,L3 |  |
| 7.       | Write the process in Gauss Elimination method                                                                           | L1       |  |
| 8.       | Define Eigen values and Eigen vectors                                                                                   | L1       |  |
| 9.       | Write the Characteristic Equation of $\begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix}$                                     | L1,L2,L3 |  |
| 10.      | Write the Eigen values of $\begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$                                               | L1,L2,L3 |  |
| 11.      | Write the Characteristic Equation of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}$ | L1,L2,L3 |  |
| 12.      | What are the eigen values of A = $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{bmatrix}$                   | L1,L2,L3 |  |
| 13.      | If the Eigen values of A are 1,-2,3 then eigen values of A <sup>-1</sup> are?                                           | L1,L2,L3 |  |
| 14.      | If the Eigen values of A are 3,4 then Eigen values of A <sup>3</sup> are?                                               | L1,L2,L3 |  |
| 15.      | Find the eigen values of A <sup>-1</sup> Where A = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 7 \end{bmatrix}$ | L1,L2,L3 |  |
| 16.      | State the Cayley Hamilton Theorem                                                                                       | L1       |  |
| 17.      | If the Characteristic equation of A is $\lambda^3 - \lambda^2 + 3\lambda - 1 = 0$ then A <sup>-1</sup> is?              | L1,L2,L3 |  |
| 18.      | Find A <sup>-1</sup> , when the characteristic equation of the matrix A is $A^2 - 5A + 7I = 0$                          | L1,L2,L3 |  |
| 19.      | Define Diagonalisable matrix                                                                                            | L1       |  |
| 20.      | Define Modal matrix                                                                                                     | L1       |  |

(Autonomous)

#### DEPARTMENT of SCIENCE AND HUMANITIES

QUESTION BANK

#### ALGEBRA & CALCULUS (20BSC111)

| Question<br>No. | Questions                                                                                                                                                                        | BLOOMS<br>TAXONOMY |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1100            | UNIT – 1 MATRICES                                                                                                                                                                |                    |
|                 | PART-B (Ten Marks Questions)                                                                                                                                                     |                    |
| 1.              | Find the rank of the following matrix, by reducing into the echelon form $\begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$     | L1,L2,L3           |
| 2.              | Find the rank of the following matrix, by reducing into the echelon form $\begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$ | L1,L2,L3           |
| 3.              | Reduce the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 2 & 6 & 5 \end{bmatrix}$ to normal form and hence find the rank.                                                    | L1,L2,L3           |
| 4.              | Reduce the matrix $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ to normal form and hence find the rank.                       | L1,L2,L3           |
| 5.              | Solve $x + 2y + z = 4$ , $2x - y + 3z = 9$ , $3x - y - z = 2$<br>by Gauss-Elimination method                                                                                     | L1,L2,L3           |
| 6.              | Solve the system $x - y + z = 2$ , $3x - y + 2z = -6$ , $3x + y + z = -18$<br>by Gauss-Elimination method                                                                        | L1,L2,L3           |
| 7.              | Show that the system $x + y + z = 6$ , $x + 2y + 3z = 14$ , $x + 4y + 7z = 30$ is consistent and solve them                                                                      | L1,L2,L3           |
| 8.              | Solve $4x+2y+z+3w=0$ , $6x+3y+4z+7w=0$ , $2x+y+w=0$<br>by Gauss-Elimination method                                                                                               | L1,L2,L3           |
| 9.              | Investigate for what values of a & b the equations $x + y + z = 6$ ,<br>x + 2y + 3z = 10, $x + 2y + az = b$ have i) Unique solution ii) Infinite solutions iii) No solution      | L1,L2,L3           |
| 10.             | Find the Eigen values & Eigen vectors of the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$                                                      | L1,L2,L3           |

(Autonomous)

| QUEST | ION BANK                                                                                        | ALGEBRA & CALCULU                                                                                                  | JS (20BSC111) |
|-------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|
| 11.   | Find the Eigen values & Eigen vectors of the matrix                                             | $\begin{bmatrix} 3 & -4 & 3 \\ 1 & 0 & 1 \\ 1 & 2 & -1 \end{bmatrix}$                                              | L1,L2,L3      |
| 12.   | Find the Eigen values & Eigen vectors of the matrix                                             | $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$                                           | L1,L2,L3      |
| 13.   | Verify Cayley – Hamilton theorem and hence find the A                                           | $A^{-1}$ and $A^{4}$ where $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$              | L1,L2,L3      |
| 14.   | Verify Cayley – Hamilton theorem and hence find the A                                           | A <sup>1</sup> and A <sup>4</sup> where $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ | L1,L2,L3      |
| 15.   | Diagonalize the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ | ΛΛΛ                                                                                                                | L1,L2,L3      |
|       |                                                                                                 |                                                                                                                    |               |

| Question<br>No. | Questions                                                                 | BLOOMS<br>TAXONOMY |
|-----------------|---------------------------------------------------------------------------|--------------------|
|                 | UNIT – 2: DIFFERENTIAL CALCULUS AND ITS APPLICATIONS                      |                    |
|                 | PART-A (Two Marks Questions)                                              |                    |
| 1.              | State Rolle's theorem                                                     | L1                 |
| 2.              | State Lagrange's mean value theorem                                       | L1                 |
| 3.              | Discuss the applicability of Rolle's theorem for $f(x) = 1/x^3$ on [-3,3] | L1,L2              |
| 4.              | What is c value in Rolle's theorem for $f(x) = x^2$ on [-1,1]             | L1,L2              |
| 5.              | Discuss the applicability of Role's theorem for $f(x)=x^2$ on $\{0,2\}$   | L1,L2              |
| 6.              | State Meclaurin's series for f(x)                                         | L1                 |
| 7.              | State Taylor's series for $f(x)$ about $x=a$                              | L1                 |
| 8.              | Find Meclaurin's series for $f(x) = e^x$                                  | L1,L2              |
| 9.              | Find Meclaurin's series for $f(x) = \cos x$                               | L1,L2              |
| 10.             | Find Meclaurin's series for $f(x) = \sin x$                               | L1,L2              |
| 11.             | Find Meclaurin's series for $f(x) = \sinh x$                              | L1,L2              |
| 12.             | Find Meclaurin's series for $f(x) = \cosh x$                              | L1,L2              |
| 13.             | Find Meclaurin's series for $f(x) = \log (1+x)$                           | L1,L2              |
| 14.             | Obtain the Taylors Series Expansion of $e^x$ about x= -1                  | L1,L2              |

(Autonomous)

| QUESTION BANK ALGEBRA & CALCULUS (20BS |                                                                                                         | & CALCULUS (20BSC111) |
|----------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------|
| 15.                                    | Define Jacobian function                                                                                | L1                    |
| 16.                                    | <i>if</i> $x = r \cos \theta$ , $y = r \sin \theta$ , find $\frac{\partial(x, y)}{\partial(r, \theta)}$ | L1,L2                 |
| 17.                                    | Define Mecalurins series for $f(x,y)$                                                                   | L1                    |
| 18.                                    | Define Taylor series for $f(x,y)$                                                                       | L1                    |
| 19.                                    | Find the Stationary points of $x^2 + y^2 + 6x + 12$                                                     | L1,L2                 |
| 20.                                    | What is the process in Lagrange's method of undetermined multipliers                                    | L1                    |

| Question        | Questions                                                                                                                                                                                                                                                                                                      | BLOOMS             |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| No.             |                                                                                                                                                                                                                                                                                                                | TAXONOMY           |  |
|                 | UNIT – 2: DIFFERENTIAL CALCULUS AND ITS APPLICATIONS<br>PART-B (Ten Marks Questions)                                                                                                                                                                                                                           |                    |  |
| 1.              | Verify Roll's theorem for $f(x) = e^x(\sin x - \cos x)$ on $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$                                                                                                                                                                                                        | L1,L2,L3           |  |
| 2.              | Verify Roll's theorem for $f(x) = (x - a)^m (x - b)^n on [a, b] b > a; m&n \in Z^+$                                                                                                                                                                                                                            | L1,L2,L3           |  |
| 3.              | Verify Roll's theorem for $f(x) = x(x+3)e^{-\frac{x}{2}}$ on[-3,0]                                                                                                                                                                                                                                             | L1,L2,L3           |  |
| 4.              | Show that $\frac{b-a}{1+b^2} < tan^{-1}b - tan^{-1}a < \frac{b-a}{1+a^2}$ , a<br>a and deduce $\frac{\pi}{4} + \frac{3}{25} < tan^{-1}(4/3) < \frac{\pi}{4} + \frac{1}{6}$<br>Show that $\frac{b-a}{\sqrt{1-a^2}} < sin^{-1}b - sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$ , a <b<1< th=""><th>L1,L2,L3</th></b<1<> | L1,L2,L3           |  |
| 5.              | Show that $\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$ , $a < b < 1$                                                                                                                                                                                                        | L1,L2,L3           |  |
| 6.              | Expand $\log(1 + e^x)$ is ascending powers of x                                                                                                                                                                                                                                                                | L1,L2,L3           |  |
| 7.              | Obtain the Taylor's series expansion of sin x in powers of $x - \frac{\pi}{4}$                                                                                                                                                                                                                                 | L1,L2,L3           |  |
| 8.              | Expand $f(x, y) = x^2 + xy + y^2$ in powers of (x-1) and (y-2) using Taylor's series                                                                                                                                                                                                                           | L1,L2,L3           |  |
| 9.              | If $x + y + z = u$ , $y + z = uv$ , $z = uv$ w then evaluate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ .                                                                                                                                                                                                   | L1,L2,L3           |  |
| 10.             | If $u = \frac{yz}{x}$ ; $v = \frac{zx}{y}$ ; $w = \frac{xy}{z}$ , show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$<br>Prove that $u = x + y + z$ , $v = xy + yz + zx$ , $w = x^2 + y^2 + z^2$ are functionally                                                                                      | L1,L2,L3           |  |
| 11.             | dependent and find the relation between them.                                                                                                                                                                                                                                                                  | L1,L2,L3           |  |
| 12.             | Find the maximum and minimum values of $x^3 + y^3 - 3axy$ , $a > 0$                                                                                                                                                                                                                                            | L1,L2,L3           |  |
| 13.             | A rectangular box open at the top has a capacity of 32 cubic feet. Find the dimensions of the box requiring least material for its construction                                                                                                                                                                | L1,L2,L3           |  |
| 14.             | Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$                                                                                                                                                     | L1,L2,L3           |  |
| 15.             | Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$                                                                                                                                                                                                                              | L1,L2,L3           |  |
| Question<br>No. | Questions                                                                                                                                                                                                                                                                                                      | BLOOMS<br>TAXONOMY |  |
|                 | UNIT – 3: MULTIPLE INTEGRALS                                                                                                                                                                                                                                                                                   |                    |  |
|                 | PART-A (Two Marks Questions)                                                                                                                                                                                                                                                                                   |                    |  |
| 1.              | Evaluate $\int_{0}^{3} \int_{0}^{5} (x+y) dy dx$                                                                                                                                                                                                                                                               | L1,L2,L3           |  |
| 2.              | Evaluate $\int_{0}^{3} \int_{0}^{2} (x+y)^2 dx dy$                                                                                                                                                                                                                                                             | L1,L2,L3           |  |

(Autonomous)

| QUESTIC |                                                                                                                          | .US ( <mark>20BSC111</mark> ) |
|---------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 3.      | Evaluate $\int_{0}^{2} \int_{0}^{3} dy dx$                                                                               | L1,L2,L3                      |
| 4.      | Evaluate $\int_{0}^{3} \int_{0}^{-2} xy dx dy$                                                                           | L1,L2,L3                      |
| 5.      | Evaluate $\int_{0}^{1} \int_{0}^{1} x^{2} y^{3} dx dy$<br>Evaluate $\int_{0}^{1} \int_{0}^{x} e^{x+y} dy dx$             | L1,L2,L3                      |
| 6.      | Evaluate $\int_0^1 \int_0^x e^{x+y} dy dx$                                                                               | L1,L2,L3                      |
| 7.      | Evaluate $\int_{0}^{\pi/2} \int_{-1}^{1} x^2 y^2  dx  dy$                                                                | L1,L2,L3                      |
| 8.      | Evaluate $\int_0^{\pi/2} \int_{-1}^1 x^2 y^2 dx dy$<br>Evaluate $\int_{-1}^2 \int_{x^2}^{x+2} dy dx$                     | L1,L2,L3                      |
| 9.      | Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} (x^{2} + y^{2}) dy dx$                                                           | L1,L2,L3                      |
| 10.     | Evaluate $\int_0^5 \int_0^{x^2} (x^2 + y^2) dy dx$<br>Evaluate $\int_0^1 \int_0^1 \frac{dxdy}{\sqrt{1-x^2}\sqrt{1-y^2}}$ | L1,L2,L3                      |
| 11.     | Evaluate $\int_{0}^{\pi} \int_{0}^{asin\theta} r dr d\theta$                                                             | L1,L2,L3                      |
| 12.     | Evaluate $\int_0^\infty \int_0^{\pi/2} e^{-r} d\theta dr$                                                                | L1,L2,L3                      |
| 13.     | Find the limits of integration of $\iint xy$ dydx over the region in first<br>Quadrant bounded by circle $x^2+y^2=1$     | L1,L2,L3                      |
| 14.     | What is the process for evaluation of double integral by Changing the order of integration                               | L1,L2,L3                      |
| 15.     | What is the process for evaluation of double integral Changing of Cartesian to polar system                              | L1,L2,L3                      |
| 16.     | Evaluate $\int_{-1-2-3}^{1} \int_{-3}^{2} \int_{-3}^{3} dx dy dz$                                                        | L1,L2,L3                      |
| 17.     | Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} y dx dy dz$                                                             | L1,L2,L3                      |
| 18.     | Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x dx dy dz$                                                             | L1,L2,L3                      |
| 19.     | Evaluate $\iint_{0}^{1} \iint_{1}^{2} \iint_{1}^{3} xyz dx dy dz$                                                        | L1,L2,L3                      |
| 20.     | Evaluate $\int_0^1 \int_1^2 \int_2^3 (x+y+z) dx dy dz$                                                                   | L1,L2,L3                      |
|         | PART-B (Ten Marks Questions)                                                                                             |                               |
| 1.      | Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy$                                                          | L1,L2,L3                      |
| 2.      | Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} \sqrt{a^2 - x^2 - y^2} dx.dy$                                         | L1,L2,L3                      |
| 3.      | Evaluate $\int_{a}^{2a} \int_{0}^{\sqrt{2ax-x^2}} xy  dy  dx$                                                            | L1,L2,L3                      |

(Autonomous)

| QUESTIO  | N BANK ALGEBRA & CALCULU                                                                                                                                                     | JS ( <mark>20BSC111</mark> ) |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 4.       | Evaluate $\int_0^1 \int_0^{\sqrt{1+X^2}} \frac{dydx}{1+x^2+y^2}$                                                                                                             | L1,L2,L3                     |
| 5.       | Find $\iint (x+y)^2 dx dy$ over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$                                                                      | L1,L2,L3                     |
| 6.       | Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$                                                                                                      | L1,L2,L3                     |
| 7.       | $\frac{\int \int \int (x-y) dy dy dy}{\int (x-y)^2}$ Evaluate $\int \int \int \int \int (x-y) dy dy dy dy dy$ $\int \int \int (x-y) dy $ | L1,L2,L3                     |
| 8.       | Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r  dr  d\theta$                                                                                                          | L1,L2,L3                     |
| 9.       | Evaluate $\int_{0}^{\frac{\pi}{4}} \int_{0}^{a \sin \theta} \frac{r dr d\theta}{\sqrt{a^2 - r^2}}$                                                                           | L1,L2,L3                     |
| 10.      | Evaluate $\iint_R xy  dx  dy$ where R is the region bounded by X-axis, x=2a and the curve x <sup>2</sup><br>= 4ay                                                            | L1,L2,L3                     |
| 11.      | Change the order of integration and solve $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} dy dx$                                                                               | L1,L2,L3                     |
| 12.      | Evaluate the following integral by transforming into polar coordinates<br>$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$                                         | L1,L2,L3                     |
| 13.      | Change the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dx dy$ and hence evaluate the double integral                                                            | L1,L2,L3                     |
| 14.      | Change the order of integration and solve $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2a-x} xy^{2} dx dy$                                                                          | L1,L2,L3                     |
| 15.      | Evaluate $\iiint_V (x^2 + y^2 + z^2) dz dy dx$ where V is the volume of the cube bounded by<br>x=0,y=0,z=0,x=a,y=b,z=c                                                       | L1,L2,L3                     |
| Question | Questions                                                                                                                                                                    | BLOOMS                       |
| No.      | UNIT – 4: VECTOR DIFFERENTIATION                                                                                                                                             | TAXONOMY                     |
|          | PART-A (Two Marks Questions)                                                                                                                                                 |                              |
| 1.       | Find grad f of the function $f = x^2 - y^2 + 2z^2$                                                                                                                           | L1,L2,L3                     |
| 2.       | Find grad f of the function $f = xy^2 + yz^2 + zx^2$                                                                                                                         | L1,L2,L3                     |
| 3.       | Find a normal vector to the surface $x^2 + y^2 + 2z^2 = 26$ at the point (2, 2, 3)                                                                                           | L1,L2,L3                     |
| 4.       | What is Solenoidal vector?                                                                                                                                                   | L1                           |
| 5.       | What is divergence of a vector?                                                                                                                                              | L1                           |

(Autonomous)

| QUESTIC     | ON BANK ALGEBRA & CALCULUS                                                                                                                                                 | ( <b>20BSC111</b> ) |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 6.          | What is Curl of a vector?                                                                                                                                                  | L1                  |
| 7.          | What is Irrotational vector?                                                                                                                                               | L1                  |
| 8.          | Find $div \bar{f}$ where $\bar{f} = x^2 i + y^2 j + z^2 k$                                                                                                                 | L1,L2,L3            |
| 9.          | Find $\operatorname{curl} \bar{f}$ for $\bar{f} = 2xz^2 \bar{i} - yz \bar{j} + 3xz^3 \bar{k}$                                                                              | L1,L2,L3            |
| 10.         | Find $\operatorname{curl} \bar{f}$ for $\bar{f} = z \overline{i} + x \overline{j} + y \overline{k}$                                                                        | L1,L2,L3            |
| 11.         | Show that $curl \bar{r} = 0$ where $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$                                                                                              | L1,L2,L3            |
| 12.         | Show that $\overline{f} = 3y^4z^2i + z^3x^2j - 3x^2y^2k$ is solenoidal                                                                                                     | L1,L2,L3            |
| 13.         | Find p when $\overline{f} = (x + 3y)i + (y - 2z)j + (x + pz)k$ is solenoidal                                                                                               | L1,L2,L3            |
| 14.         | Show that $f = (y+z)i + (z+x)j + (x+y)k$ is irrotational.                                                                                                                  | L1,L2,L3            |
| 15.         | Find div $\bar{r}$ where $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$                                                                                                        | L1,L2,L3            |
| 16.         | Find the greatest value of the directional derivative of the function $f = x^2 yz^3$ at $(2, 1, -1)$                                                                       | L1,L2,L3            |
| 17.         | If $\phi = 2xz^4 - x^2y$ , find $ \nabla \phi $ at the point $(2, -2, -1)$                                                                                                 | L1,L2,L3            |
| 18.         | Find $div \bar{f}$ where $\bar{f} = xyi + yzj + zxk$                                                                                                                       | L1,L2,L3            |
| 19.         | Find $\operatorname{curl} \overline{f}$ for $\overline{f} = xyi + yzj + zxk$                                                                                               | L1,L2,L3            |
| 20.         |                                                                                                                                                                            |                     |
|             | PART-B (Ten Marks Questions)                                                                                                                                               |                     |
| 1.          | Find a unit normal vector to the surface $z = x^2 + y^2$ at $(-1, -2, 5)$                                                                                                  | L1,L2,L3            |
| 2.          | If $\phi = 2x^3y^2z^4$ , then find div(grad $\phi$ )                                                                                                                       | L1,L2,L3            |
| 3.          | Find div $\overline{f}$ and curl $\overline{f}$ where $\overline{f} = grad (x^3 + y^3 + z^3 - 3xyz)$                                                                       | L1,L2,L3            |
| 4.          | If $\overline{f} = xy^2i + 2x^2yzj - 3yz^2k$ then find div $\overline{f}$ at (1,-1,1)                                                                                      | L1,L2,L3            |
| 5.          | Find the greatest value of the directional derivative of the function $f = x^2 yz^3$ at (2,1,-1)                                                                           | L1,L2,L3            |
| 6.          | Find the directional derivative of $f = xy + yz + zx$ in the direction of the vector $\overline{i} + 2\overline{j} + 2\overline{k}$ at the point (1,2,0).                  | L1,L2,L3            |
|             | Find the directional derivative of $f = 2xy + z^2$ at $(1, -1, 3)$ in the direction                                                                                        |                     |
| 7.          | of the vector $i + 2j + 3k$ .                                                                                                                                              | L1,L2,L3            |
| 7.       8. | of the vector $i+2j+3k$ .<br>Find the directional derivative of $f = x^2 - y^2 + 2z^2$ at the point P = (1, 2, 3)<br>in the direction of the line PQ where $Q = (5, 0, 4)$ | L1,L2,L3            |

(Autonomous)

| QUESTION BANK ALGEBRA |                                                                                                                                                      | LUS ( <mark>20BSC111</mark> ) |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                       | the point $(2, -1, 2)$ .                                                                                                                             |                               |
| 10.                   | Evaluate the angle between the normal to the surface $xy = z^2$ at the points (4, 1, 2) at (3, 3, -3).                                               | nd <b>L1,L2,L3</b>            |
| 11.                   | Evaluate $\nabla \cdot \left(\frac{\bar{r}}{r^3}\right)$ where $\bar{r} = xi + yj + zk$ and $r =  \bar{r} $                                          | L1,L2,L3                      |
| 12.                   | Show that $\nabla(r^n) = nr^{n-2} r$                                                                                                                 |                               |
| 13.                   | Show that $curl(r^n r) = 0$                                                                                                                          | L1,L2,L3                      |
| 14.                   | Find the constants a, b and c if the vector<br>$\overline{f} = (2x+3y+az)\overline{i}+(bx+2y+3z)\overline{j}+(2x+cy+3z)\overline{k}$ is Irrotational | L1,L2,L3                      |
| 15.                   | Find $\nabla^2(\log r)$                                                                                                                              | L1,L2,L3                      |

| Question<br>No. | Questions                                                                                                                                                       | BLOOMS<br>TAXONOMY |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
|                 | UNIT – 5: VECTOR INTEGRATION                                                                                                                                    |                    |  |
|                 | PART-A (Two Marks Questions)                                                                                                                                    |                    |  |
| 1.              | Define Line integral?                                                                                                                                           | L1                 |  |
| 2.              | Define Surface integral?                                                                                                                                        | L1                 |  |
| 3.              | Define Volume integral?                                                                                                                                         | L1                 |  |
| 4.              | If $\overline{F} = x i - y j$ then evaluate $\int_C \overline{F} dr$ where C is the line $y = x$ in the xy plane from (0,0) to (1,2)                            | L1,L2,L3           |  |
| 5.              | If $\overline{F} = x i + y j$ then evaluate $\int_C \overline{F} dr$ where C is the line $y = x^2$ in the xy plane from (0,0) to (1,1)                          | L1,L2,L3           |  |
| 6.              | If $\overline{F} = x^2 i - y^2 j$ then evaluate $\int_C \overline{F} dr$ where C is the curve x=t, y=t in the xy plane from t=0 to t=1.                         | L1,L2,L3           |  |
| 7.              | What are the limits of x &y in the integral $\iint_R xy  dx  dy$ where R is the region bounded by x=0,y=0 and x+y=1                                             | L1,L2,L3           |  |
| 8.              | What are the limits of x, y &z in the integral $\iiint_V xyz  dxdydz$ where v is the volume of the cube x=0, y=0, z=0, x=a, y=a, z=a                            | L1,L2,L3           |  |
| 9.              | For any closed surface $S$ , $\iint_{S} curl \bar{F} \cdot \bar{n}  dS$ by Gauss divergence theorem is?                                                         | L1,L2,L3           |  |
| 10.             | State Stoke's theorem.                                                                                                                                          | L1                 |  |
| 11.             | State Gauss Divergence theorem.                                                                                                                                 | L1                 |  |
| 12.             | State Green's theorem.                                                                                                                                          | L1                 |  |
| 13.             | Convert $\int_C (2xy - x^2)dx + (x^2 + y^2)dy$ into double integral over a region R by Green's theorem, where C is a simple closed curve bounded by a region R. | L1,L2,L3           |  |
| 14.             | Convert $\int_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$ into double integral over a                                                                                     | L1,L2,L3           |  |

(Autonomous)

| OUEST | TON BANK ALGEBRA & CALCULUS                                                                                                                                                                                                              | (20BSC111)  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ~     | region R by Green's theorem, where C is a simple closed curve bounded by a region R.                                                                                                                                                     | · · · · · · |
| 15.   | Convert $\int_{S} \overline{F} \cdot \overline{n}  dS$ where $\overline{F} = xyi + z^2j + 2yzk$ , into triple integrals over V by Gauss divergence theorem, where S is the closed surface bounded a region V.                            | L1,L2,L3    |
|       | PART-B (Ten Marks Questions)                                                                                                                                                                                                             |             |
| 1.    | If $\overline{F} = 3xy  i - y^2  j$ then evaluate $\int_C \overline{F}  dr$ where C is the curve $y = 2x^2$ in the xy plane from (0,0) to (1,2)                                                                                          | L1,L2,L3    |
| 2.    | If $\overline{F} = (5xy - 6x^2)i + (2y - 4x)j$ then evaluate $\int_C \overline{F} dr$ where C is the curve $y = x^3$ in the xy plane from (1,1) to (2,8)                                                                                 | L1,L2,L3    |
| 3.    | Find the work done in moving a particle in the force field $\bar{F} = 3x^2 \bar{i} + (2xz - y) \bar{j} + z \bar{k}$<br>along the straight line from (0,0,0) to (2,1,3).                                                                  | L1,L2,L3    |
| 4.    | Find the work done by the force $\overline{F} = (2y+3)i + (zx)j + (yz-x)k$ when it moves a particle from the point (0, 0, 0) to (2, 1, 1) along the curve $x = 2t^2$ , $y = t$ , $z = t^3$ .                                             | L1,L2,L3    |
| 5.    | If $\overline{F} = xy \overline{i} - z \overline{j} + x^2 \overline{k}$ and $C$ is the curve $x = t^2$ , $y = 2t$ , $z = t^3$ from $t = 0$ to $t = 1$ .<br>Evaluate $\int_C \overline{F} \cdot d \overline{r}$ .                         | L1,L2,L3    |
| 6.    | Evaluate $\int_{S} \overline{F} \cdot \overline{n}  dS$ , where $\overline{F} = 18zi - 12j + 3yk$ , and S is the part of the surface of the plane $2x+3y+6z=12$ located in the first octant.                                             | L1,L2,L3    |
| 7.    | Evaluate $\iint_C [(3x^2 - 8y^2)dx + (4y - 6xy)dy]$ where C is the region bounded by $x = 0, y = 0$ and $x + y = 1$ by Green's Theorem.                                                                                                  | L1,L2,L3    |
| 8.    | Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy]$ where C is bounded by $y = x$ and $y = x^2$ .                                                                                                                                 | L1,L2,L3    |
| 9.    | Evaluate by Green's theorem $\int_C (y - \sin x) dx + \cos x dy$ where C is the triangle enclosed by the lines $y=0, x=\frac{\pi}{2}, \pi y = 2x$                                                                                        | L1,L2,L3    |
| 10.   | Using Divergence theorem, evaluate<br>$\iint_{S} (x  dy  dz + y  dz  dx + z  dx  dy), \text{ where } x^2 + y^2 + z^2 = a^2.$                                                                                                             | L1,L2,L3    |
| 11.   | Verify Stoke's theorem for the function $\overline{F} = x^2 i + xyj$ integrated round the square in the plan z=0 whose sides are along the lines x=0,y=0,x=a,y=a.                                                                        | L1,L2,L3    |
| 12.   | Verify Stokes Theorem for $\overline{F} = (2x - y)\overline{i} - yz^2\overline{j} - y^2z\overline{k}$ over the upper half-surface of the sphere $x^2 + y^2 + z^2 = 1$ bounded by the projection of the <i>xy</i> - plane.                | L1,L2,L3    |
| 13.   | Verify Gauss divergence theorem for $\overline{F} = x^2 i + y^2 j + z^2 k$ , over the cube formed by the planes x=0,x=a, y=0,y=b, z=0, z=c.                                                                                              | L1,L2,L3    |
| 14.   | If $\overline{F} = (2x^2 - 3z)i - 2xyj - 4xk$ then evaluate $\int_V \nabla \overline{F}  dv$ where $\nabla$ is the closed region bounded by x=0, y=0, z=0, 2x+2y+z=4                                                                     | L1,L2,L3    |
| 15.   | Evaluate $\int_{S} \overline{F} \cdot \overline{n}  dS$ where $\overline{F} = z  \overline{i} + x  \overline{j} - 3y^2 z  \overline{k}$ and S is the surface $x^2 + y^2 = 16$ included in the first octant between $z = 0$ and $z = 5$ . | L1,L2,L3    |