

Basic operations:

– Selection () Selects a subset of rows from relation.

–

Projection ()

Deletes unwanted columns from relation.

–

Cross-pr oduct (

) Allows us to combine two relations.

–

Set-difference (

) Tuples in reln. 1, but not in reln. 2.

– Union () Tuples in reln. 1 and in reln. 2.

Additional operations:

– Intersection, join, division, renaming: Not essential, but (very!) useful.

Since each operation returns a relation, operations can be composed! (Algebra is

“closed”.)

Deletes attributes that are not in projection list.

Schema of result contains exactly the fields in the projection list, with the same names that

they had in the (only) input relation.

Projection operator has to eliminate duplicates! (Why??)

– Note: real systems typically don‟t do duplicate elimination unless the user

explicitly asks for it. (Why not?)

Selects rows that satisfy selection condition.

No duplicates in result! (Why?)

Schema of result identical to schema of (only) input relation.

Result relation can be the input for another relational algebra operation! (Operator

composition.)

Set Operations:

Union, Intersection, Set-Difference

All of these operations take two input relations, which must be union-compatible:

– Same number of fields.

– `Corresponding‟ fields have the same type.

What is the schema of result?

Cross-Product

Each row of S1 is paired with each row of R1.

Result schema has one field per field of S1 and R1, with field names `inherited‟ if

possible.

– Conflict: Both S1 and R1 have a field called sid.

Condition Join:

Result schema same as that of cross-product.

Fewer tuples than cross-product, might be able to compute more efficiently

Sometimes called a theta-join.

Equi-Join: A special case of condition join where the condition c contains only

equalities.

Result schema similar to cross-product, but only one copy of fields for which equality is

specified.

Natural Join: Equijoin on all common fields.

Find names of sailors who’ve reserved boat #103

Solution 1:

Find names of sailors who‟ve reserved a red boat

Information about boat color only available in Boats; so need an extra join:

Find sailors who’ve reserved a red or a green boat

Can identify all red or green boats, then find sailors who‟ve reserved one of these boats:

Find sailors who’ve reserved a red and a green boat

Previous approach won‟t work! Must identify sailors who‟ve reserved red boats, sailors

who‟ve reserved green boats, then find the intersection (note that sid is a key for Sailors):

Relational Calculus:

Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus

(DRC).

Calculus has variables, constants, comparison ops, logical connectives and quantifiers.

– TRC: Variables range over (i.e., get bound to) tuples.

– DRC: Variables range over domain elements (= field values).

– Both TRC and DRC are simple subsets of first-order logic.

Expressions in the calculus are called formulas. An answer tuple is essentially an assignment

of constants to variables that make the formula evaluate to true.

Tuple Relational Calculus:

TRC – a declarative query language

TRC Formulas

Atomic expressions are the following:

r (t) -- true if t is a tuple in the relation instance r

t1. Ai t2 .Aj compOp is one of {, ≥, =, ≠ }

t.Ai c c is a constant of appropriate type

Composite expressions:

Any atomic expression
F1 ∧ F2 ,, F1 ∨ F2 , ¬ F1 where F 1 and F2 are expressio ns

(∀t) (F), (∃t) (F) where F is an expression and t is a tuple variable Free Variables

Bound Variables – quantified variables

Obtain the rollNo, name of all girl students in the Maths Dept

{s.rollNo,s.name | student(s) ̂ s.sex=„F‟ ̂ (∃ d)(department(d) ̂ d. name=„Maths‟ ̂ d.deptId = s.deptNo)}

s: free tuple variable

d: existentially bound tuple variable

Determine the departments that do not have any girl students

student (rollNo, name, degree, year, sex, deptNo, advisor) department (deptId, name,

hod, phone)

{d.na me| department(d) ^ ¬(∃ s)(stude nt(s) ^ s.sex =„F‟ ^ s.de ptN o = d.deptId)

Obtain the names of courses enrolled by student named Mahesh

{c.name | course(c) ̂ (∃s) (∃e) (student(s) ̂ enrollment(e) ̂ s.name = “Mahes h” ^ s.rollNo = e.rollNo ^ c.courseId = e.courseId }

Get the names of students who have scored ‘S’ in all subjects they have enrolled.

Assume that every student is enrolled in at le ast one course.
{s.name | stude nt(s) ^ (∀e)((enr ollment(e) ^ e.rollN o = s.r ollN o) → e.gra de =„S‟) }

Get the names of students who have taken at least one course taught by their advisor

{s.name | student(s) ^ (∃e)(∃t)(enrollment(e) ̂ teaching(t) ̂ e.courseId = t.courseId ^ e.rollNo = s.rollNo ^ t.empId = s.advisor}

Domain Relational Calculus:

Query has the form:

DRC Formulas

Atomic formula:

– , or X op Y, or X op constant

– op is one of

Formula:

– an atomic formula, or

– , where p and q are formulas, or

– , where variable X is free in p(X), or

– , where variable X is free in p(X)

• The use of quantifiers and is said to bind X.

– A variable that is not bound is free.

Free and Bound Variables

• The use of quantifiers and in a formula is said to bind X.

– A variable that is not bound is free.

Let us revisit the definition of a query:

Find all sailors with a rating above 7

The condition ensures that the domain variables I, N, T and A are bound to fields of the same

Sailors tuple.

• The term to the left of `|‟ (which should be read as such that) says that every tuple

that satisfies T>7 is in the answer.

Modify this query to answer:

– Find sailors who are older than 18 or have a rating under 9, and are called „Joe‟.

Find sailors rated > 7 who have reserved boat #103

We have used as a shorthand for

Note the use of to find a tuple in Reserves that `joins with‟ the Sailors tuple under

consideration.

Find sailors rated > 7 who’ve reserved a red boat

Observe how the parentheses control the scope of each quantifier‟s binding.

This may look cumbersome, but with a good user interface, it is very intuitive. (MS

Access, QBE)

Find sailors who’ve reserved all boats

• Find all sailors I such that for each 3-tuple either it is not a tuple in Boats or there

is a tuple in Reserves showing that sailor I has reserved it.

Find sailors who’ve reserved all boats

(again!) Simpler notation, same query.

(Much clearer!) To find sailors who‟ve

reserved all red boats:

Expressive Power of Algebra and Calculus

It is possible to write syntactically correct calculus queries that have an infinite number

of answers! Such queries are called unsafe.

– e.g.,

It is known that every query that can be expressed in relational algebra can be expressed

as a safe query in DRC / TRC; the converse is also true.

Relational Completeness: Query language (e.g., SQL) can express every query that is

expressible in relational algebra/calculus.

