
 

 

 

    

SQL 

 Structured Query Language (SQL) is the set of statements with which all programs and 

users access data in    an Oracle database.  The language, Structured English Query 

Language ("SEQUEL") was developed by IBM Corporation, Inc.  SEQUEL later became 

SQL (still pronounced "sequel".   All major relational database management systems 

support SQL, so you can transfer all skills you have gained with SQL from one database 

to another.  In addition, all programs written in SQL are portable.  They can often be 

moved from one database to another with very little modification.  

SQL has the following advantages: 

 Efficient 

 Easy to learn and use 

 With SQL, you can define, retrieve, and manipulate data in the tables 

CHARACTERISTICS: 

 

1.  It is a non procedural query language.  

2.  SQL is common language for most RDBMS.  

 

SQL Standards:- 

   Oracle SQL complies with industry-accepted standards. .  Industry-accepted 

committees are the American National Standards Institute (ANSI).  And the International 

Standards Organization (ISO) .  Both ANSI and ISO have accepted SQL as the standard 

language for relational databases.  

Writing SQL Statements 

Using the following simple rules and guidelines, you can construct valid statements that 

are both easy to read and easy to edit: 

• SQL statements are not case sensitive.  

• SQL statements can be entered on one or many lines.  

• Keywords cannot be split across lines or abbreviated.  

• Clauses are usually placed on separate lines for readability and ease of editing.   

• Indents should be used to make code more readable.  

• Keywords typically are entered in uppercase; all other words, such as table 

names and columns, are entered in lowercase.  

 



 

 

 

 
 

 

Data types:- 

When you create a table or cluster, you must specify a data type for each of its columns.  

When you create a procedure or stored function, you must specify a data type for each of  

its arguments.  These data types define the domain of values that each column can 

contain or each argument can have.  For example, DATE columns cannot accept the 

value February 29 (except for a leap year.  or the values 2 or ’SHOE’.  Each value 

subsequently placed in a column assumes the column’s data type.  For example, if you 

insert ’01-JAN-98’ into a DATE column, Oracle treats the ’01-JAN-98’ character string 

as a DATE value after verifying that it translates to a valid date.  

CHAR(size) :- 

 Fixed-length character data of length size bytes.  Maximum size is 2000 bytes.  Default 

and minimum size is 1 byte.   

VARCHAR2(size) :- 

 Variable-length character string having maximum length size bytes or characters.  

Maximum size is 4000 bytes, and minimum is 1 byte or 1 character.  You must specify 

size for VARCHAR2.  

NCHAR(size):- 

 Fixed-length character data of length size characters or bytes, depending on the choice of 

national character set.  Maximum size is determined by the number of bytes required to 

store each character, with an upper limit of 2000 bytes.  Default and minimum size is 1 

character or 1 byte, depending on the character set.  



 

 

 

 NVARCHAR2(size)  :-  

Variable-length character string having maximum length size characters or bytes, 

depending on the choice of national character set.  Maximum size is determined by the 

number of bytes required to store each character, with an upper limit of 4000 bytes.  You 

must specify size for NVARCHAR2.  

 NUMBER(p,s) :-  

 Number having precision p and scale s.  The precision p can range from 1 to 38.  The 

scale s can range from -84 to 127 

 LONG :- 

Character data of variable length up to 2 gigabytes, or 231 -1 bytes.   

DATE :- 

Allows date & time but Time is optional if not entered by user then oracle inserts 

12:00AM. Valid date range from January 1, 4712 BC to December 31, 9999 AD. a Date 

field occupies 7 bytes of memory 

RAW(size) :- 

Raw binary data of length size bytes.  Maximum size is 2000 bytes.  You must specify 

size for a RAW value.  

 LONG RAW :- 

Raw binary data of variable length up to 2 gigabytes.   

 ROWID :- 

 Hexadecimal string representing the unique address of a row in its table.  This datatype 

is primarily for values returned by the ROWID pseudocolumn.   

UROWID [(size)] :-  

Hexadecimal string representing the logical address of a row of an index-organized table.  

The optional size is the size of a column of type UROWID.  The maximum size and 

default is 4000 bytes.  

CLOB  :-  

A character large object containing single-byte characters.  Both fixed-width and 

variable-width character sets are supported, both using the CHAR database character set.  

Maximum size is 4 gigabytes.   

NCLOB :-  

 A character large object containing unicode characters.  Both fixed-width and variable-

width character sets are supported, both using the NCHAR database character set.  

Maximum size is 4 gigabytes.  Stores national  character set data.  

BLOB :-  

A binary large object.  Maximum size is 4 gigabytes.  

BFILE :-  

Contains a locator to a large binary file stored outside the database.  Enables byte stream 

I/O access to external LOBs residing on the database server.  Maximum size is 4 

gigabytes.  



 

 

 

BINARY_FLOAT :-  

 32-bit single precision floating point number datatype.  Binary float equires 5 bytes 

including a length byte.  

 

BINARY_DOUBLE:- 

 64-bit double precision floating point number datatype.  Binary double  requires 9 bytes 

including a length byte.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

OPERATORS IN SQL :- 

Operators in ORACLE categorized into following categories 

ARTHMETIC OPERATORS :-  

+     -       *    / 

Operator precedence:- 

 Operators   * , /  having higher precedence than operators + , - 

 Operators of the same priority are evaluated from left to right.  

 Use parenthesis to control the precedence.  

 

RELATIONAL OPERATORS :- 

Used for comparision , different relational operators supported by oracle 

Operator    Description 

>       Greater than 

>=       greater than or equal 

<         Less than 

<=      less than or equals 

=       equal 

< >       not equal  

 

LOGICAL OPERATORS :- 

AND     used to combine two conditions 

OR       used to combine two conditions 

NOT     negate condition 

 

SPECIAL OPERATORS :- 

|| 

BETWEEN 

IN 

LIKE 

IS NULL 

ANY 

ALL 

EXISTS 

 

 

 

 

 

 



 

 

 

Creating table:-  

Different types of tables can be created in ORACLE.  

 Standard tables 

 Partitioned tables 

 Clustered tables 

 Index organized tables 

 External tables 

 Global temporary tables  

Standard Table:-  

Syntax:-    

SQL> CREATE TABLE <Table Name> 

(Colname datatype (size), 

 Colname datatype (size), 

 --------------------. ) ; 

 

 

 

Rules for creating a table :- 

 

 tablename should start with alphabet 

 tablename should not contain spaces or special symbols , but allows _ , $ , 

# 

 tablename should not be a oracle reserved word 

 tablename can contain max 30 chars 

 a table can contain max of 1000 columns 

 

 Example:-    

SQL> CREATE TABLE emp 

   (empno NUMBER(4) , ename VARCHAR2(20) , 

              job VARCHAR2(10) ,  hiredate DATE, 

             sal      NUMBER(6,2) , comm NUMBER(6,2)  , 

             deptno  NUMBER(2) ) ; 

 

Inserting Data into a  Table:- 

INSERT command is used to insert record into a table.  

Syntax:- 

INSERT INTO <table name>  VALUES(list of values) 

Note :-  Strings and Dates must be enclosed in single quotes.  

Example :- 



 

 

 

SQL>INSERT INTO emp  VALUES(1000,‟BLAKE‟,‟MANAGER‟,  ‟10-JAN-

10‟,5000,500,10); 

NOTE:- 

Order of values in the INSERT command should match with order of columns declared 

in table. to insert values in different order then we need to specify the order.  

Inserting NULL values:-  

NULL values are inserted when value is       

 Absent   

 Unknown  

 Not Applicable 

NULL is not equal to 0 and not equal to space  

NULL values can be inserted in two ways.  

 EXPLICITLY 

 IMPLICITLY 

 

Inserting NULL values EXPLICITLY: 

 to insert Null values into Numeric columns use NULL keyword.  

 To insert Null values into character & date columns use ‘’ .  

Example :-  

SQL>INSERT INTO  emp   VALUES(1002,‟JAMES‟,‟‟,5000,NULL,10); 

Inserting NULL values IMPLICITLY :- 

Example :- 

SQL>  INSERT INTO emp(EMPNO,ENAME,SAL,DEPTNO.  

          VALUES(1005,‟SMITH‟,2000,10) ; 

 

  Remaining columns are automatically filled with NULL values.  

 

Inserting  MULTIPLE records :-  

The same INSERT command can be executed number of times with different values by 

using substitution variables.  Substitution variables can be declared by using  

   Single ampersand ( &.  

      Double ampersand (&&.  

 

These variables stores data temporarily  

Using Single ampersand :-  

These variables are prefixed with &.  Values assigned to these variables exists upto the 

command , once command execution is completed values assigned to these variables are 

erased.  

Example:- 



 

 

 

SQL>INSERT INTO emp VALUES(&empno,‟&ename‟,‟&job‟,                              

‟&hiredate‟,&sal,&comm,&deptno) ; 

Using Double Ampersand :-  

These variables are prefixed with &&.  Values assigned to these variables even after 

execution of INSERT command  upto the end of session.  

Example :- 

SQL>INSERT INTO emp VALUES 

(&empno,‟&ename‟,‟&&job‟,&&sal,‟&&hiredate‟,&deptno); 

 

 

SQL>SELECT * FROM employees; 

 

        ID FIRST_NAME   LAST_NAME      SALARY      COMM   HRA 

---------- ---------- ---------- ---------- ---------- ---------- ---------- ------------------- 

         1   JOHN        DOE                   1000            500         300 

 

 

Data Retrieval :- 

 SELECT statement can be used to retrieve data from database.  

Capabilities of  SELECT Statement:- 

Using a SELECT statement, you can do the following : 

• Projection :-  You can use the projection capability in SQL to choose the 

columns in a table that you want . You can choose as few or as many columns 

of the table as you require.  

   • Selection:-  You can use the selection capability in SQL to choose the 

rows in a table that you .  You can use various criteria to restrict the rows that 

you see.   

   • Joining: You can use the join capability in SQL to bring together data 

that is stored in different tables by creating a link between them.  

Syntax :-  

 SELECT     * /  {column|expression [alias],. . . }  FROM  

table; 

In the syntax :- 

• A SELECT clause, which specifies the columns to be displayed 

• A FROM clause, which specifies the table containing the columns listed in the SELECT 

clause 

Selecting All Columns :- 

SQL>SELECT * FROM dept; 



 

 

 

 
Selecting Specific Columns :- 

Display only empno,ename,job,sal from emp table ? 

SQL>SELECT empno, ename, job, sal, FROM emp; 

NOTE:- 

Date and Character data aligned to LEFT 

Numeric data  aligned to RIGHT 

 

Arthmetic Expressions :- 

   an arithmetic expression contain column names,constant numeric values and athmetic 

operator.  

Example :- 

Display ename ,sal, annual salaries ? 

SQL>SELECT ename, sal, sal*12 FROM emp; 

Operator precedence :-   

 • Multiplication and division take priority over   addition and subtraction.  

 • Operators of the same priority are evaluated from   left to right.  

 • Parentheses are used to force prioritized   evaluation and to clarify statements 

Example :- 

SQL>SELECT ename, sal, 12*sal+100 FROM emp; 

The above example  displays the ename, sal, and annual sal of employees.  It calculates 

the annual sal as 12 multiplied by the monthly salary, plus a one-time bonus of  100.  

Notice that multiplication is performed before addition.  

 

You can override the rules of precedence by using parentheses.  

SQL>SELECT ename, sal, 12*(sal+100)  FROM emp; 

Concatenation Operator:- 

This operator concatenates two strings  represented by two vertical bars || .  

Example :-  

 SQL>SELECT ename||‟ working as „||job  FROM emp; 

 SQL>SELECT ename||‟ joined on „||hiredate FROM emp; 

Literals in ORACLE:- 

A Literal is a Constant  

Typesof Literals :- 

 String constant 

 Numeric constant 



 

 

 

 Date constant 

 

NOTE :- String constant and Date constants must be enclosed in ‘ ‘.  

 

Example :- 

 SQL>SELECT ename || „ EARNS „|| sal*12 ||‟ PER YEAR‟      FROM emp; 

 

Declaring Alias:- 

An Alias is an another name or alternative name, aliases in Oracle are of two types.  

 Column Alias 

 Table Alias 

Column Alias :- 

Alias declared for column is called column alias.  

Syntax :- 

COLNAME  /  EXPR   [AS]  ALIAS 

If alias contains spaces or special characters then alias must be enclosed 

in  “  “ 

The scope of the alias is upto that query.  

Example :-  

Display ename,sal,comm and in report display sal as basic and comm as bonus ? 

SQL>SELECT ename,sal AS basic,comm AS bonus FROM emp; 

Display ename , annual salary ? 

SQL>SELECT ename,sal*12 AS “ANNUAL SALARY” FROM emp; 

Display ename,sal,hra,da,tax,totsal ? 

SQL>SELECT ename,sal,sal*0) 3 AS hra,sal*0) 2 AS da, sal*0) 1 AS tax ,  

         sal+(sal*0) 3) +(sal*0) 2) -(sal*0) 1)  AS totsal FROM emp; 

 

Clauses in ORACLE :- 

 WHERE 

 ORDER BY 

 DISTINCT 

 GROUP BY 

 HAVING 

 ON 

 USING 

 START WITH 

 CONNECT BY 

 WITH 

 RETURNING 

 FOLLOWS 



 

 

 

 MODEL 

 

Data Filtering using WHERE clause:- 

You can restrict the rows returned from the query by using the WHERE clause)  A 

WHERE clause contains a condition that must be met, and it directly follows the FROM 

clause)  If the condition is true, the row meeting the condition is returned)  

syntax: 

 

WHERE   restricts the  rows that meet a condition)  

condition  is composed of column names, expressions,constants, and a 

comparison operator 

It consists of three elements: 

• Column name 

• Comparison operator 

• Column name, constant, or list of values 

Examples :- 

Display  employee record whose empno=7844 ? 

SQL>SELECT * FROM emp WHERE empno=7844 ; 

 

Display employee records whose job=’CLERK’ ? 

SQL>SELECT * FROM emp WHERE job=‟CLERK‟ ; 

Display employee records working for 10 dept and working as CLERK ? 

SQL>SELECT * FROM emp WHERE deptno=10 AND job=‟CLERK‟; 

Display employee records working as CLERK OR MANAGER ? 

SQL>SELECT * FROM emp WHERE job=‟CLERK‟ OR job=‟MANAGER‟ ; 

Display employee records earning between 2000 and 5000 ? 

SQL>SELECT * FROM emp WHERE sal>=2000 AND sal<=5000; 

Display employee records joined after 1981 ? 

SQL>SELECT * FROM emp WHERE hiredate > ‟31-DEC-1981‟ ;  

Expect the output of the following Query ? 

SQL>SELECT * FROM emp  

     WHERE  job=‟CLERK‟ OR  job=‟MANAGER‟ AND   sal>2000 ; 

 

 

 

 

 



 

 

 

BETWEEN operator:- 

    You can display rows based on a range of values using the BETWEEN operator)  The 

range that you specify contains a lowerlimit and an upperlimit )  Values specified with 

the BETWEEN condition are inclusive)  You must specify the lower limit first)  

Syntax:-    BETWEEN  value1 and value2 

Example :- 

Display employee records  earning between 2000 and 5000 ? 

SQL>SELECT * FROM emp WHERE sal BETWEEN 2000 AND 5000; 

Note:- 

BETWEEN … AND … is actually translated by Oracle server to a pair of AND 

conditions: (a >=lower limit)  AND (a <= higher limit) )  So using BETWEEN … AND 

… has no performance benefits, and it is used for logical simplicity)  

Example :- 

Display employee records who are joined between 1981 year? 

SQL>SELECT * FROM emp  

 WHERE hiredate BETWEEN  ‟01-JAN-1981‟ AND ‟31-DEC-1981‟ ; 

 

Display employee records who are not joined  in 2000 year ? 

SQL>SELECT * FROM emp 

           WHERE hiredate NOT BETWEEN    ‟01-JAN-2000‟ AND ‟31-DEC-2000‟ ; 

OCA question :- 

Expect the output of the following query ? 

SQL>SELECT * FROM emp WHERE sal BETWEEN 5000 AND 2000 ; 

A  error B  returns records  C  returns no rows D  none  

IN operator :-  

To test for values in a specified list of values, use  IN operator)  The IN operator can be 

used with any data type)  If characters or dates are used in the list, they must be enclosed 

in single quotation marks (’’) )  

Syntax:- 

IN (V1,V2,V3------------) ;  

Example :- 

Display employee records working as CLERK OR MANAGER ? 

SQL>SELECT * FROM emp   WHERE  job  IN  („CLERK‟,‟MANAGER‟)  ; 

Display employee records not working for dept 10 or 20 ? 

SQL>SELECT * FROM emp WHERE deptno NOT IN (10,20)  

Note :- 

IN ( )   is actually translated by Oracle server to a set of OR conditions: a =value1 OR a = 

value2 OR a = value3) so using IN ( ) has no performance benefits, and it is used for 

logical simplicity)  

 



 

 

 

LIKE operator:- 

You may not always know the exact value to search for) You can select rows that match 

a character pattern by using the LIKE operator) The character pattern-matching operation 

is referred as wildcard search)   

Syntax:- 

 LIKE   ‘pattern’ 

 NOT LIKE  ‘pattern’ 

 

Pattern consists of  alphabets,digits and metacharacters)   The different meta characters 

in ORACLE  

 %  denotes zero or many characters)  

 _  denotes one character)  

Display employee records whose name starts with S ? 

SQL>SELECT * FROM emp WHERE ename LIKE „S%‟; 

 

Display employee records whose name ends with S ? 

SQL>SELECT * FROM emp WHERE ename LIKE „%S‟; 

Display employee records whose name doesn’t contain S ? 

SQL>SELECT * FROM emp WHERE ename NOT LIKE „%S%‟; 

Display employee records where A is the second char in their name? 

SQL>SELECT * FROM emp WHERE ename LIKE „_A%‟; 

Display employee records who are joined in JAN month? 

SQL>SELECT * FROM emp WHERE hiredate LIKE „%JAN%‟ ; 

Display employee records who are joined in 1981 year ? 

SQL>SELECT * FROM emp WHERE hiredate LIKE „%81‟; 

Display employee records who are joined in 1
st
 9 days ? 

SQL>SELECT * FROM emp WHERE hiredate LIKE „0%‟ ; 

Display employee records who are earning 5 digits salary ? 

SQL>SELECT * FROM emp WHERE sal LIKE „_____‟ ; 

Display employee records whose name contains _ ? 

SQL>SELECT * FROM EMP WHERE ENAME LIKE „%\_%‟ ESCAPE „\‟ ; 

Expect the output of the following query 

SQL>SELECT * FROM EMP   WHERE JOB IN („CLERK‟,‟%MAN%‟) ; 

OCA question :- 

You need to extract details of those products in the SALES table where the PROD_ID 

column contains  the string '_D123')   ? 

 

 

 

 



 

 

 

IS operator :  

The IS operator  tests for nulls.  A null value means the value is unavailable, 

unassigned,unknown, or inapplicable.  Therefore, you cannot test with = because a null 

cannot be equal or unequal to any value.  

Syntax :- 

  IS NULL 

 IS NOT NULL 

Example:- 

Display employee records whose comm)  Is null ? 

SQL>SELECT * FROM emp WHERE comm IS NULL ; 

Display employee records whose comm)  Is not null ? 

SQL>SELECT * FROM emp WHERE comm IS NOT NULL ; 

Operator Precedence :- 

     Order Evaluated     Operator 

 1     Arithmetic Operator 

 2     Concatenation Operator 

 3     Comparison Operator 

 4     IS [NOT] NULL ,LIKE , [NOT] IN 

 5     [NOT] BETWEEN 

 6     NOT logical condition 

 7     AND logical condition 

 8     OR logical condition 

 

NOTE:-  we can override rules  of precedence by using parentheses). 

ORDER BY Clause :- 

The order of rows returned in a query result is undefined.  The ORDER BY clause can be 

used to sort the rows.  If you use the ORDER BY clause, it must be the last clause of the 

SQL statement.  You can specify an expression, or an alias, or column position in 

ORDER BY clause.  

Syntax:- 

SELECT expr FROM table 

 [WHERE condition(s) ] 

 [ORDER BY {column, expr} [ASC|DESC]]; 

 

Examples :- 

Arrange employee records in ascending order of their sal ? 

SQL>SELECT * FROM emp ORDER BY sal ; 

Arrange employee records in descending order of their sal ? 

SQL>SELECT * FROM emp ORDER BY sal DESC; 



 

 

 

Display employee records working for 10
th

 dept and arrange the result in ascending order 

of their sal ? 

 SQL>SELECT * FROM emp WHERE deptno=10 ORDER BY sal ; 

 Arrange employee records in ascending of their deptno and with in dept arrange records 

in descending      order of their sal ? 

 SQL>SELECT * FROM emp ORDER BY deptno,sal DESC ; 

 In ORDER BY clause we can use column name or column position , for example  

 SQL>SELECT * FROM emp ORDER BY 5 DESC ; 

  In the above example records are sorted based on the fifth column in EMP table)  

Arrange employee records in descending order of their comm)  If comm)  Is null then 

arrange those records last ? 

 SQL>SELECT * FROM emp ORDER BY comm DESC NULLS LAST ;  

 

   DML commands :- 

 INSERT 

 UPDATE 

 DELETE 

 INSERT ALL 

 MERGE 

 

Copying Data from one table to another table :- 

Syntax:- 

INSERT INTO <TARGETTABLE> 

SELECT <COLLIST> FROM <SOURCE TABLE> 

 

Example :-   

SQL>INSERT INTO  emp_temp 

        SELECT * FROM emp; 

 

In the above example first SELECT statement gets data from EMP  table and inserts data 

into EMP_TEMP table and command will be successful only if both tables structure is 

same. 

 

UPDATE command:-  

Update command is used to modify data in a table)  

Syntax:- 

UPDATE table   SET column = value[, column = value,……]    [WHERE        

condition]; 

 

Examples :- 



 

 

 

Update all  employees commission to 500 ? 

SQL>UPDATE EMP SET comm=500 ; 

Update employee comm to 500 whose comm)  Is null ? 

SQL>UPDATE EMP SET comm=500 WHERE comm IS NULL ; 

Increment employee salary by 10% and comm)  By 20% Those who are working as 

SALESMAN ? 

SQL>UPDATE EMP SET sal=sal*1) 1 , comm=comm*1) 2 WHERE 

job=‟SALESMAN‟ ; 

Update different employees comm)  With different values ? 

SQL>UPDATE EMP SET comm = &comm WHERE empno=&empno; 

Update the column value with DEFAULT value ? 

SQL>UPDATE EMP SET hiredate=DEFAULT WHERE empno=7844; 

Returning Clause:- 

returning clause is used to return values into variables after update )  

To use returning clause declare bind variable (session-level variables)  

Bind variables are declared at SQL prompt , and accessed using : operator)  

SQL>variable sumsal number ; 

SQL>UPDATE emp  SET sal=sal*1) 2 Where deptno=10 

             RETURNING SUM(sal)  INTO :sumsal; 

 SQL> print :sumsal  

DELETE command :- 

DELETE command is used to delete record or records from a table)  

Syntax:- 

DELETE FROM <TABNAME> [WHERE <cond> ----] ; 

Delete all employee records ? 

SQL>DELETE FROM emp ; 

Delete employee records whose empno=7844 ? 

SQL>DELETE FROM emp WHERE empno=7844 ; 

Delete employee records having  more than 30 yrs expr ? 

SQL>DELETE FROM emp WHERE (SYSDATE-hiredate) /365 >= 3 ; 

 

DDL commands :- 

 CREATE  

 ALTER 

 DROP 

 TRUNCATE 

 RENAME 

 

Creating a table from another table:- 

Syntax :- 



 

 

 

CREATE TABLE <TABNAME>   

AS   SELECT STATEMENT [WHERE <cond>]; 

 

Example :- 

 Create table emp11 from table emp ? 

SQL>CREATE TABLE emp11    

           AS 

         SELECT * FROM emp; 

 

After executing above command a new table is created called emp11 from the result of 

SELECT  Statement. 

 

Copying only structure:- 

Create new table emp12 from emp and into the new table copy only structure but do not 

copy data? 

 

SQL>CREATE TABLE emp12 

AS 

SELECT * FROM emp WHERE 1=2; 

 

Because no record in emp table satisfies condition 1=2  , so no record is copied to 

EMP12  only the structure is copied. 

 

ALTER command:- 

ALTER command is used to modify data definition of  a table.  ALTER command is 

used to do following operations.  

 ADD A COLUMN(S)  

 DROP A COLUMN(S)  

 TO RENAME A COLUMN 

 MODIFY A COLUMN 

 INCR/DECR FIELD SIZE 

 CHANGING DATATYPE 

 CHANGING FROM NULL TO NOT NULL 

 CHANGING FROM NOT NULL TO NULL)  

 TO MAKE TABLE READ ONLY 

 

Adding a Column:- 

Syntax :-  

ALTER TABLE <tabname> ADD (colname DATATYPE(SIZE)  [ , colname  -------

])  



 

 

 

 

Example:- 

SQL>ALTER TABLE emp ADD (dob DATE) ; 

Droping a Column:- 

Syntax :-  

ALTER TABLE <TABNAME> DROP COLUMN COLNAME ; 

 

Example :- 

SQL>ALTER TABLE emp DROP COLUMN dob; 

SQL>ALTER TABLE emp DROP (ename,sal) ; 

NOTE :-   all columns in a table cannot be dropped , because the table should contain 

atleast one column)  

Renaming a Column :- 

Syntax:- 

ALTER TABLE <tabname> RENAME COLUMN <oldname> to <newname> ; 

SQL>ALTER TABLE emp RENAME COLUMN sal TO salary ; 

Modifying a  Column:- 

Syntax :- 

ALTER TABLE <TABNAME> 

 MODIFY(COLNAME  DATATYPE(SIZE)  ,-----------)  

Increasing / Decreasing Field Size:- 

Increase  size of ENAME field to 20 ? 

SQL> ALTER TABLE emp MODIFY (ename VARCHAR2(20) )  ; 

 

NOTE :- 1 char field size can be decremented upto max length)  

    2  to decrement precision or scale of a numeric field , field must be empty)  

Changing Datatype:- 

SQL>ALTER TABLE emp MODIFY (ename CHAR(20) )  ; 

NOTE :- 

To change datatype of  a column the column should be empty)  

Changing Column from NULL to NOT NULL 

  SQL>ALTER TABLE emp MODIFY (ename  NOT NULL)  ; 

Changing column from NOT NULL to NULL:- 

  SQL>ALTER TABLE emp  MODIFY(ename NULL)  ; 

Read only Tables :- 

From ORACLE 11g  we can make the table as read only , prior to ORACLE 11g  we can 

do this through view)  A read only table doesn’t allow DML operations)  

SQL>ALTER TABLE emp READ ONLY ; 

To make table read , write  

SQL>ALTER TABLE emp READ WRITE ; 



 

 

 

DROP command :- 

 DROP command drops a table from database)  

Syntax :- 

 DROP TABLE <TABNAME> ; 

Example :-  

SQL>DROP TABLE customer; 

TRUNCATE command :- 

 TRUNCATE command releases memory allocated for a table)  

 TRUNCATE deletes all the data from a table)  

Syntax :- 

TRUNCATE TABLE <TABNAME> 

Example :- 

SQL>TRUNCATE TABLE EMP ; 

Difference between DELETE and TRUNCATE :- 

DELETE     TRUNCATE 

DML command     DDL command 

Deletes all or particular records              deletes only all records 

Data can be restored      Data cannot be restored 

Deletes row by row     doesn’t read record before deleting 

Used by developer     used by DBA  

Triggers can be created    triggers cannot be created 

 

Note :-  TRUNCATE is faster than DELETE  

RENAME command :- 

Used to change name of the table)  

Syntax :- 

RENAME <OLDNAME> TO <NEWNAME> ; 

Example :- 

SQL>RENAME  emp TO employee; 

 

 

 

 

 

 

 

 

 

 



 

 

 

Integrity Constraints 

     Integrity constraints are the rules in real life, which are to be imposed on the data.  If 

the data is not satisfying the constraints then it is considered as inconsistent.  These rules 

are to be enforced on data because of the presence of these rules in real life.  These rules 

are called integrity constraints.  Every DBMS software must enforce integrity constraints, 

otherwise inconsistent data is generated.   

 

You can use constraints to do the following: 

 

 to prevent invalid data entry into tables.  

 Enforce rules on the data in a table whenever a row is inserted, updated, or 

deleted from that table.  The constraint must be satisfied for the operation to 

succeed.  

 Prevent the deletion of a record from a table if there are dependencies.  

 

Example for Integrity Constraints :- 

 

 
 

 

 

 

 



 

 

 

Types of Integrity Constraints:-  

Entity Integrity:-  

Entity Integrity constraints are two types 

 

Unique Constraint  

Primary Constraint 

Refrential Integrity:- 

A  refrential integrity constraint states that the values of the foreign key value should 

match with values of primary key/unique Column of another or same table.  Foreign key 

constraint establishes relationship between tables.   

 The table holding primary key is called parent  /master  table.  

  The table holding foreign key is called child /detail table.  

Self  Refrential Integrity :-  

If  a foreign key in one table refers primary key/unique column of the same table then it is 

called self refrential Integrity.  

Domain constraints:- 

 A domain means a set of  values assigned to a column.   Domain constraints are handled 

by                                         

                                        defining proper data type  

          specifying not null constraint  

          specifying check constraint.  

Types of Constraints in ORACLE:- 

The above said constraints are implemented in oracle with the help of  

NOT  NULL  

UNIQUE 

PRIMARY KEY 

CHECK 

FOREIGN KEY 

The above constraints can be declared at  

                            Column level 

                             Table level  

Column level :- 

 

   Constraint is declared immediately declaring column. 

   Use column level to declare constraint for single column. 

 

Table level :- 

 use table level to declare constraint for combination of columns. 

 constraint is declared after declaring all columns. 

NOT NULL constraint :-  



 

 

 

  It ensures that a table column cannot be left empty. 

  Column declared with NOT NULL is a mandatory column. 

  The NOT NULL constraint can only be applied at column level.  

 
Syntax :-  

Columnname   Datatype(size)  NOT NULL 

Example :-  

  SQL> CREATE TABLE emp( 

                                                Empno       NUMBER(4) , 

                                                Ename       VARCHAR2(20)  NOT NULL, 

                                                Job             VARCHAR2(20)  , 

                                                Mgr            NUMBER(4) , 

                                                Hiredate    DATE, 

                                                Sal              NUMBER(7,2) , 

                                                Comm        NUMBER(7,2) , 

                                                Deptno      NUMBER(2)  ) ; 

 

 SQL>INSERT INTO emp VALUES(7329,‟SMITH‟,‟CEO‟,NULL,‟17-DEC-

85‟,9000,NULL,20) ; 

 

     1 row created 

 

SQL>INSERT INTO emp VALUES(7499,‟‟, „VP_SALES‟,7329,‟20-FEB-

90‟,7,500,100,30) ; 

 

    ERROR  ORA-1400 :- cannot insert null into (scott) dept) dname)  

 

UNIQUE constraint :-  

  A column declared with UNIQUE constraint does not accept duplicate values. 

           One table can have a number of unique keys. 

  By default UNIQUE columns accept null values unless  declared with NOT 

NULL constraint   



 

 

 

  Oracle automatically creates UNIQUE index on the column declared with 

UNIQUE constraint 

  UNIQUE constraint can be declared at column level and table level.  

 

Declaring UNIQUE constraint at Column Level :-  

Syntax :-  

Columnname  Datatype(size)  UNIQUE 

   
Example :-  

SQL> CREATE TABLE dept 

                  (deptno NUMBER(4)      

                   dname VARCHAR2(20)   CONSTRAINT uq_dname_dept UNIQUE , 

                    loc VARCHAR2(20)  )  ; 

 

SQL>INSERT INTO dept VALUES(10,‟ACCOUNTING‟,‟HYDERABAD‟) ; 

1 row created 

SQL>INSERT INTO dept VALUES(20,‟ACCOUNTING‟,‟MUMBAI‟) ; 

ERROR  ORA-00001 :- unique constraint (uq_dname_dept)  violated  

 

Declaring UNIQUE constraint Table Level :-        

 
 

SQL>CREATE TABLE customer(custno          NUMBER(4) , 

                                                   custname     VARCHAR2(20) , 

                                                   area              NUMBER(3) , 

                                                   phone            VARCHAR2(8)  , 



 

 

 

                                                   CONSTRAINT uq_area_ph_cust  

UNIQUE(area,phone) ) ; 

                                                      

PRIMARY KEY constraint :-  

 PRIMARY KEY is the candidate key which uniquely identifies a record in a table)  

 characterstics of PRIMARY KEY :- 

 There should be at the most one PK per  table.  

 PK column do not accept null values.  

 PK coumn do not accept duplicate values.  

 RAW,LONG RAW,VARRAY,NESTED TABLE,BFILE columns cannot be 

declared with PK 

 If PK is composite then uniqueness is determined by the combination of columns.  

 A composite primary key cannot have more than 32 columns 

 It is recommended that PK column should be short and numeric.  

 Oracle automatically creates Unique Index on PK column 

 

Declaring PRIMARY KEY at Column Level :-  

 
 Syntax :-  

 Colname Datatype(size)  PRIMARY KEY 

Example :-  

SQL> CREATE TABLE dept(deptno    NUMBER(4)   CONSTRAINT pk_dept 

PRIMARY KEY,  dname     VARCHAR2(20)   ,   loc           VARCHAR2(20)  ) ; 

 

Declaring PRIMARY KEY at Table Level :-  

Example :-  

 consider the following ORDER_DETAILS table  

OrderId ProdId Quantity 

1000 10 100 

1000 11 50 

1001 10 20 

1001 11 50 

In the above example values of OrderId are repeated, so it cannot be taken as primary 

key.  And the values of ProdId are also repeated , so it cannot be taken as primary key . 



 

 

 

when it is not possible with single column to uniquely identify the records then take 

combination of columns.  In the above example combination or OrdId & ProdId is not 

repeated so this combination can be taken as PRIMARY KEY. if combination uniquely 

identifies the records then it is called composite primary key.  

 SQL>CREATE TABLE order_details 

                         (ordid    NUMBER(4)  , 

                          prodid  NUMBER(4)  , 

                           qty      NUMBER(2)  , 

                          CONSTRAINT pk_ordid_prodid  PRIMARY KEY(ordid,prodid) )  

; 

 

CHECK Constraint :-  

 Check constraint validates data based on a condition .  

 Value entered in the column should not violate the condition.  

 Check constraint allows null values.  

 Check constraint can be declared at table level or column level.  

Limitations :-  

 Conditions should not contain pseudo columns like 

ROWNUM,SYSDATE etc. 

 Condition should not access columns of another table 

Declaring Check Constraint Column level :-  

Syntax :-  

COLNAME DATATYPE(SIZE)       [CONSTRAINT <NAME>] 

CHECK(CONDITION)  

Example :- 

SQL>CREATE TABLE accounts_master( 

                      accno NUMBER(4)  PRIMARY KEY, 

                      acname VARCHAR2(20)  NOT NULL , 

                      balance NUMER(11,2)    CONSTRAINT 

                                  ck_bal_accts  CHECK(bal>1000) )  ; 

 

SQL>INSERT INTO accounts_master VALUES(1,‟A‟,500) ; 

ERROR  ORA-02293 :- cannot validate  (SCOTT) CK_BAL_ACCTS)  check constraint 

violated 

 

Declaring CHECK constraint at Table level :- 

 

Table :- Managers  

 

Mgrno  Mgrname Start_date  End_date 



 

 

 

    

 

Rule :-  End_date should be greater than Start_date  

 

 

SQL>CREATE TABLE managers 

      (mgrno          NUMBER(4)  PRIMARY KEY, 

         mname        VARCHAR2(20)   NOT NULL, 

                  start_date   DATE, 

                  end_date     DATE , 

                 CONSTRAINT ck_mgr  CHECK(end_date > start_date) ) ; 

 

SQL>INSERT INTO manager VALUES(1,‟A‟,‟01-JAN-2011‟,‟01-JAN-2010‟) ; 

ERROR :-  ORA-02290 :- check constraint violated  

 

FOREIGN KEY Constraint:- 

 Foreign key is used to establish relationship between tables.  

 Foreign key is a column in one table that refers primary key/unique 

columns of another or same table.  

 Values of foreign key should match with values of primary 

key/unique or foreign key can be null.  

 Foreign key column allows null values unless it is declared with 

NOT NULL.  

 Foreign key column allows duplicates unless it is declared with 

UNIQUE 

 By default oracle establish 1: M relationship between two tables.  

 To establish 1:1 relationship between two tables declare foreign 

key with unique constraint 

 Foreign key can be declared at column level or table level.  

 Composite foreign key must refer composite primary key or 

Composite unique key.  

 

 

 



 

 

 

 

 

 

 

 

Declaring foreign key at column level  :-  

 
 

Syntax :-  

 Colname datatype(size)   [constraint <name>]    REFERENCES tabname(colname)  

 

 

Example :- 

Creating Parent table :- 

SQL> CREATE TABLE dept 

                      (deptno NUMBER(2)     CONSTRAINT pk_dept PRIMARY KEY, 

                        dname VARCHAR2(20)  ,  

                        loc  VARCHAR2(20) )  ; 

 

insert records into DEPT table as follows 

 

Deptno Dname Loc 

10 Accounting Hyderabad 

20 Research Mumbai 

 



 

 

 

Creating child table :- 

SQL> CREATE TABLE emp 

    (empno        NUMBER(4)        CONSTRAINT pk_emp PRIMARY KEY, 

     ename        VARCHAR2(20)    NOT NULL , 

      sal                NUMBER(7,2)     CONSTRAINT ck_sal_emp CHECK(sal>3000) , 

      deptno      NUMBER(2)          CONSTRAINT fk_deptno_emp    REFERENCES 

dept(deptno) ) ; 

 

insert records into EMP table as follows  

 

Empno Ename Salary Deptno Result 

1 Smith 5000 10 Record is inserted because fk value  is matching 

with pk value 

2 Allen 4000 Null Record is inserted because fk allows NULL 

values 

3 Blake 6000 90 Oracle returns error because fk value is not 

matching with pk value 

4 King 7000 10 Record is inserted because fk allows duplicates 

 

Declaring Foreign Key constraint at Table Level :-  

SQL>CREATE TABLE stud_course 

            (sid NUMBER(2)  , 

             cid NUMBER(2)  , 

             doc DATE , 

             CONSTRAINT pk_stud_course  PRIMARY KEY(sid,cid) ) ; 

 

SQL>CREATE TABLE certificates 

              (certno NUMBER(4)  PRIMARY KEY, 

                doi  DATE , 

                 sid NUMBER(2) , 

                cid NUMBER(2)  , 

                 CONSTRAINT fk_sid_cid  FOREIGN KEY(sid,cid)  

                                                                REFERENCES  stud_course(sid,cid) ) ; 

DEFAULT Option :-  

If column Declared with DEFAULT option then oracle inserts  DEFAULT  value 

when value is not provided. 

DEFAULT option prevents entering NULL values into the column. 

Example :-  

SQL>CREATE TABLE emp 

           (empno NUMBER(4)  , 



 

 

 

            ename VARCHAR2(20) , 

             hiredate DATE DEFAULT SYSDATE) ; 

 

 SQL> INSERT INTO emp(empno,ename)   VALUES(1,‟x‟)  ; 

   After executing the above command oracle inserts sysdate into Hiredate column.  

Adding constraints to an existing table :- 

Constraints can be also be added to an existing table with the help of ALTER command 

Syntax :- 

     ALTER TABLE <TABNAME>  ADD [CONSTRAINT <NAME>]   

                                                              CONSTRAINT_TYPE(COL1 [,COL2])   

Example :- 

Create a table without constraints later add constraints  

SQL>CREATE TABLE emp55 

                     (empno NUMBER(4) , 

                       ename VARCHAR2(20) , 

                       sal  NUMBER(7,2) , 

                       dno NUMBER(2) ) ; 

 

Adding PRIMARY KEY :- 

 

SQL>ALTER TABLE emp55 

               ADD CONSTRAINT  pk_emp55  PRIMARY KEY(empno) ; 

 

Note:- primary key constraint cannot be added to a column that already contains 

duplicates or NULL values. 

 

Adding FOREIGN KEY :- 

 

SQL>ALTER TABLE emp55 

           ADD CONSTRAINT fk_dno_emp55 

                  FOREIGN KEY(dno)  REFERENCES  dept(deptno) ; 

 

 

Adding CHECK constraint :- 

 

SQL> ALTER TABLE emp55 

ADD  CONSTRAINT ck_sal_emp55 CHECK(sal>3000)    NOVALIDATE ; 

 

NOVALIDATE option :-    



 

 

 

If constraint added with NOVALIDATE option then oracle doesn’t validate existing data 

and validates only future DML operations.  

 

Dropping Constraints:-  

Syntax :- 

 ALTER TABLE <TABNAME> DROP CONSTRAINT <NAME> 

Example :-  

SQL>ALTER TABLE emp55 DROP CONSTRAINT pk_emp55; 

SQL>ALTER TABLE emp55 DROP CONSTRAINT ck_sal_emp55 

Note :-  

 PRIMARY KEY cannot be dropped if it referenced by any FOREIGN KEY 

constraint.  

If PRIMARY KEY is dropped with CASCADE option then along with PRIMARY 

KEY referencing FOREING KEY is also dropped.  

PRIMARY KEY column cannot be dropped if it is referenced by some FOREIGN 

KEY.  

PRIMARY KEY table cannot be dropped if it is referenced by some FOREIGN KEY.  

PRIMARY KEY table cannot be truncated if it is referenced by some FOREIGN KEY.  

 

Enabling/Disabling a Constraint: 

If the constraints are present, then for each DML operation constraints are checked by 

executing certain codes internally.  It may slow down the DML operation marginally.  

For massive DML operations, such as transferring data from one table to another because 

of the presence of constraint, the speed will be considered slower.  To improve the speed 

in such cases, the following methods are adopted: 

Disable constraint 

Performing the DML operation DML operation 

Enable constraint 

 

Disabling Constraint:- 

Syntax :-  

ALTER TABLE <tabname>    DISABLE CONSTRAINT <constraint_name> ; 

Example :-  

SQL>ALTER TABLE emp DISABLE CONSTRAINT  ck_sal_emp ; 

SQL>ALTER TABLE dept DISABLE PRIMARY KEY CASCADE; 

 

NOTE:- 

If constraint is disabled with CASCADE then PK is disabled with FK. 

Enabling  Constraint :- 

Syntax :-  



 

 

 

ALTER TABLE <TABNAME> ENABLE CONSTRAINT <NAME> 

Example :-   

SQL>ALTER TABLE emp ENABLE CONSTRAINT ck_sal_emp; 

 

 

ON DELETE NO ACTION :-  

If foreign key declared with ON DELETE NO ACTION then parent record cannot be 

deleted if any child records exists. 

 

ON DELETE CASCADE :-   

If foreign key declared with ON DELETE CASCADE then if any parent record is deleted 

then dependent child records also deleted automatically. 

 

SQL>CREATE TABLE dept 

               (deptno NUMBER(2)   PRIMARY KEY, 

                dname  VARCHAR2(20)  NOT NULL , 

                loc  VARCHAR2(20)  ) ; 

 

SQL>CREATE TABLE emp ( 

          empno NUMBER(4)  PRIMARY KEY, 

          ename VARCHAR2(20)  NOT NULL, 

          sal NUMBER(7,2)  CHECK(sal>3000)  , 

          dno NUMBER(2)  REFERENCES  dept(deptno)  ON DELETE CASCADE) ; 

 

ON DELETE SET NULL :-  

if foreign key declared with ON DELETE SET NULL then  foreign key value in child 

table is set to NULL  if user deletes record from parent table. 

 

 

SQL>CREATE TABLE dept 

               (deptno NUMBER(2)   PRIMARY KEY, 

                dname  VARCHAR2(20)  NOT NULL , 

                loc  VARCHAR2(20)  ) ; 

SQL>CREATE TABLE emp ( 

          empno NUMBER(4)  PRIMARY KEY, 

          ename VARCHAR2(20)  NOT NULL, 

          sal NUMBER(7,2)  CHECK(sal>3000)  , 

          dno NUMBER(2)  REFERENCES  dept(deptno)  ON DELETE SET NULL) ; 

 

Example :- 



 

 

 

Display list of constraints declared in EMP table ? 

SQL>SELECT constraint_name,constraint_type FROM user_constraints WHERE 

table_name=‟EMP‟; 

 CONSTRAINT_NAME          CONSTRAINT_TYPE 

  PK_EMP                                    P   

  SYS_C004455                           C 

 CK_SAL_EMP                            C 

 FK_DNO_EMP                          R 

Oracle gives same code for CHECK and NOT NULL constraint , to know whether 

constraint is CHECK or NOT NULL  use SEARCH_CONDITION as given below. 

SQL>SELECT constraint_name ,constraint_type ,search_condition  

         FROM user_constraints   

         WHERE table_name=‟EMP‟ ; 

 

Display which columns are declared with what constraints in EMP table ? 

SQL>SELECT constraint_name , column_name FROM user_constraints   WHERE 

table_name=‟EMP‟; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

SQL Functions 

Functions are a very powerful feature of SQL and can be used to do the following:- 

 Perform calculations on data 

 Modify individual data items 

 Manipulate output for groups of rows 

 Format dates and numbers for display 

 Convert column data types 

 
SINGLE ROW FUNCTIONS :- 

These functions operate on single rows only and return one result per row.  The single 

row functions are categorized as follows.  

 Character functions 

 Date functions 

 Mathematical functions 

 Conversion functions 

 Special functions 

 OLAP functions  

 

Character functions:- 

These functions mainly operate on character data)   

UPPER :-  converts string to uppercase  

Syntax:-  UPPER(string)  

Example:- 

SQL>SELECT UPPER(„hello‟)  FROM DUAL; 

 HELLO  

LOWER :- converts string to lower  case 



 

 

 

Syntax:-  LOWER(string)  

Example:- 

SQL>SELECT LOWER(„HELLO‟)  FROM DUAL; 

hello 

Display ename,salaries and display names in lower case ? 

SQL>SELECT LOWER(ename) ,sal FROM emp; 

Convert all ename from uppercase to lowercase in table ? 

SQL>UPDATE emp SET ename=LOWER(ename) ; 

INITCAP:-  first character is capitalized  

Syntax:-  INITCAP(string)  

Example :- 

SQL>SELECT INITCAP(„hello welcome‟)  FROM DUAL ; 

Hello Welcome 

LENGTH :-  returns string length 

Syntax :-  LENGTH(string)  

Example :- 

SQL> SELECT LENGTH(„hello‟)  FROM DUAL; 

5 

Display employee records whose name contains 5 characters ? 

SQL>SELECT * FROM emp WHERE LENGTH(ename) =5; 

SUBSTR:- used to extract part of the string 

Syntax:-  SUBSTR(string1,start [, length])  

Example:-  

SQL>SELECT SUBSTR(„hello‟,2,4)  FROM DUAL; 

ello 

SQL>SELECT SUBSTR(„hello welcome‟,-5,4)  FROM DUAL; 

lcom 

Display employee records whose name starts with and ends with same character ? 

SQL>SELECT * FROM emp WHERE SUBSTR(ename,1,1) =SUBSTR(ename,-1,1) 

; 

Display employee records whose name starts between ‘A’ AND ‘P’ ? 

SQL>SELECT * FROM emp WHERE SUBSTR(ename,1,1)  BETWEEN  „A‟ AND 

„P‟ ; 

INSTR :-   returns occurrence of one string in another string 

Syntax:-  INSTR(str1,str2 [,start , occurrence])  

If str2 exists in str1 returns position 

If not exists returns 0. 

Example:-  

SQL> SELECT INSTR(„HELLO WELCOME‟,‟O‟)  FROM DUAL: 

5 



 

 

 

SQL> SELECT INSTR(„HELLO WELCOME‟,‟O‟,1,2)  FROM DUAL: 

11 

SQL>SELECT INSTR(„HELLO WELCOME‟,‟O‟,-1,2)  FROM DUAL ; 

5 

Display employee records whose name contains ‘S’ ? 

SQL>SELECT * FROM EMP WHERE INSTR(ENAME,‟S‟)  <> 0 ; 

Scenario :- 

1  CUSTOMER TABLE :- 

email 

sachin@gmail) com 

sourav@gmail) com 

from the above email addresses display only the first part ? 

SQL>SELECT SUBSTR(EMAIL,1,INSTR(EMAIL,‟@‟) -1)  FROM  customer; 

2  CUSTOMER_TABLE :-  

 CNAME 

 Rahuld dravid 

   Virendra sehwag 

 Sachin ramesh tendulkar 

 Sourav ganguly 

 Mahindra singh dhoni 

 

From the above customer names display only those names that contains 3 parts ? 

SQL>SELECT * FROM customer WHERE INSTR(cname,‟ „,1,2)  > 0; 

LTRIM :-  trims white spaces and unwanted characters on left side 

Syntax:-  LTRIM(string1 [, string2])  

Example:- 

SQL>SELECT LTRIM(„                HELLO‟)   FROM DUAL; 

HELLO 

SQL>SELECT LTRIM(„XXXXXHELLO‟,‟X‟)   FROM DUAL; 

HELLO 

RTRIM :-  trims whitespaces and unwanted characters on right side)  

Syntax:- RTRIM(string1 [,string2])  

Example:- 

SQL>SELECT RTRIM(„HELLO        „)  FROM DUAL; 

HELLO 

SQL>SELECT RTRIM(„HELLOXXXX‟,‟X‟)  FROM DUAL; 

HELLO 

TRIM :-  trims whitespaces and unwanted characters on both left and right side 

SQL>SELECT TRIM(„     HELLO   „)  FROM DUAL; 

HELLO 

mailto:sachin@gmail.com
mailto:sourav@gmail.com


 

 

 

SQL>SELECT TRIM(LEADING „X‟ FROM „XXXXHELLO‟)  FROM DUAL; 

HELLO 

SQL>SELECT TRIM(TRAILING „X‟ FROM „HELLOXXXXX‟)  FROM DUAL; 

HELLO 

SQL>SELECT TRIM(BOTH „X‟ FROM „XXXXHELLOXXXX‟)  FROM DUAL; 

HELLO 

LPAD :-   one string is filled with another string on left side 

Syntax :-   LPAD(string1,length,string2)  

SQL>SELECT LPAD(„hello‟,10,‟*‟)  FROM DUAL; 

*****hello 

RPAD :- fills one string with another string on right side 

Syntax:-  RPAD(string1,length,string2)  

Example :- 

SQL>SELECT RPAD(„HELLO‟,10,‟*‟)   FROM DUAL; 

Display ename , salaries and in salary column display **** instead of actual  values , for 

example if salary is 4000 display **** ? 

SQL> SELECT ename,RPAD(„*‟,sal/1000,‟*‟)  as salary FROM emp ; 

REPLACE :-  to replace one string with another string 

Syntax:-  REPLACE(string1,string2,string3)  

Example:- 

SQL>SELECT REPLACE(„UTI BANK‟,‟UTI‟,‟AXIS‟)   FROM DUAL; 

AXIS BANK 

Display employee records whose name contains exactly one ‘A’ ? 

SQL> SELECT * FROM emp 

                      WHERE  LENGTH(ename)  – LENGTH(REPLACE(ename,‟A‟,‟‟) ) 

=1 ; 

Scenario :- 

Examine the data in the ENAME and HIREDATE columns of the EMPLOYEES table: 

 

ENAME  HIREDATE 

SMITH   17-DEC-80 

ALLEN   20-FEB-81 

WARD   22-FEB-81 

 

 

SQL>SELECT SUBSTR(INITCAP(ename) ,1,3)  || REPLACE(hiredate,'-',‟‟)  

"USERID"  FROM emp; 

TRANSLATE:- translates one char to another character 

Syntax:- TRANSLATE(string1,string2,string3)  

Example:- 



 

 

 

SQL> SELECT TRANSLATE(„HELLO‟,‟ELL‟,‟ABC‟)  FROM DUAL; 

HABBO 

 

SQL>SELECT ename, TRANSLATE(sal,‟0123456789‟,‟$qT*K#PjH@‟)  FROM 

emp; 

CONCAT :-  concatenates two strings 

Syntax :- CONCAT(str1,str2)  

Example :- 

SQL> SELECT CONCAT(„HELLO „, „ WELCOME‟)  FROM DUAL; 

HELLO WELCOME  

SOUNDEX:-   A character value representing the sound Of a word, using this we can 

find strings that sounds same)  

Syntax:- SOUNDEX(string)  

Example :-  

SQL>SELECT * FROM EMP  

          WHERE   SOUNDEX(„SMITH‟) =SOUNDEX(„SMYTH‟)  ; 

 

ASCII :-      returns   ASCII value of first character 

Syntax: ASCII(string)  

Example :-  

SQL>SELECT ASCII(„A‟)  FROM DUAL ; 

65 

CHR :-   returns character for a given ASCII value  

Syntax :-  CHR(ascii value)  

Example :- 

SQL>SELECT CHR(65)  FROM DUAL ; 

A 

Date Functions:- 

EXTRACT :-  used to extract part of the date)  

Syntax:-   EXTRACT(FMT FROM DATE)  

Extracting year from date:- 

SQL>SELECT EXTRACT(YEAR FROM SYSDATE)  FROM DUAL; 

2012 

Extracting month from date:- 

SQL>SELECT EXTRACT(MONTH FROM SYSDATE)  FROM DUAL; 

5 

Extracting day from date :- 

SQL> SELECT EXTRACT(DAY FROM SYSDATE)  FROM DUAL; 

23 



 

 

 

Display employee records joined in first 15 days in the month APR,DEC in the year 

between  

   1980 and 1987 ? 

 SQL> SELECT * FROM emp 

             WHERE  EXTRACT(DAY FROM hiredate)  BETWEEN 1 AND 15 

   AND 

                            EXTRACT(MONTH FROM hiredate)  IN (4,12)  

   AND 

  EXTRACT(YEAR FROM hiredate)  BETWEEN 1980 AND 1987; 

 

ADD_MONTHS:- adds no of months to a date)  

Syntax:- ADD_MONTHS(DATE,MONTHS)  

Example:- 

SQL>SELECT ADD_MONTHS(SYSDATE,2)   FROM DUAL; 

23-JUN-12 

SQL>SELECT ADD_MONTHS(SYSDATE,-2)  FROM DUAL; 

23-MAR-12 

Display ename,sal,hiredate and date of retirement  , assume  that date of retiment is 30 

years after date of join ? 

SQL>SELECT ename,sal,hiredate,ADD_MONTHS(hiredate,30*12)  AS DOR 

FROM emp ; 

LAST_DAY:-  returns last day of the month 

Example:- 

SQL>SELECT LAST_DAY(sysdate)  FROM DUAL; 

31-MAY-12 

Display first day of the current month ? 

SQL>SELECT  ADD_MONTHS(LAST_DAY(SYSDATE) +1,-1)  FROM DUAL ? 

MONTHS_BETWEEN :- returns no of months between two dates)  

Syntax:- MONTHS_BETWEEN(date1,date2)  

Example:- 

SQL>SELECT MONTHS_BETWEEN(Sysdate,‟20-APR-11‟)   FROM DUAL 

12 

 

NEXT_DAY :- returns next specified day starting from given date)  

Syntax:-  NEXT_DAY(DATE ,DAY)  

Example :- 

SQL>SELECT NEXT_DAY(SYSDATE,‟SUNDAY‟)  FROM DUAL; 

27-MAY-12 

Mathematical  Functions:- 

 ABS:-  returns absolute value   



 

 

 

Syntax:-  ABS(number)  

Example:-   

SQL>SELECT ABS(-10)  FROM DUAL; 

10 

SIGN :-     

Syntax :-  SIGN(expr)  

                   If expr >0 then  returns   1 

                   If expr <0 then returns   -1 

                   If expr=0 then returns     0                                          

Example :- 

SQL>SELECT SIGN(100)  FROM DUAL ; 

1 

POWER:- returns power 

Syntax :-  POWER(M,N)  

Example :- 

SQL>SELECT POWER(3,2)  FROM DUAL; 

9 

SQRT:-  returns square root)  

Syntax :-  SQRT(N)  

Example:- 

SQL>SELECT SQRT(25)  FROM DUAL ; 

5 

MOD:- returns remainder 

Syntax:-  MOD(m,n)  

Example:- 

SQL>SELECT MOD(10,2)  FROM DUAL; 

0 

Display employee records earning multiple of 50)  

SQL>SELECT * FROM emp WHERE MOD(sal,50) =0; 

CEIL:-  returns  integer greater than or equal  to given number)  

Syntax:-  CEIL (number)  

Example:-   

SQL>SELECT CEIL(9) 5)  FROM DUAL 

10 

FLOOR:-    returns integer less than or equal to given number)  

Syntax:-  FLOOR(number)  

Example:- 

SQL>SELECT FLOOR(9) 5)  FROM DUAL 

9 

ROUND:-    rounds number to given number of decimal places)  



 

 

 

Syntax:- ROUND(number [,decimal places])  

Example:-  

SQL>SELECT ROUND(3) 456,2)  FROM DUAL ; 

  3) 46 

 

SQL> SELECT ROUND(3) 453,2)  FROM DUAL;  

 3) 45 

SQL>SELECT ROUND(3) 456)   FROM DUAL ; 

3 

SQL>SELECT ROUND(3) 65)  FROM DUAL ; 

 4 

SQL>SELECT ROUND(383) 456,-2)  FROM DUAL ; 

 400 

SQL>SELECT ROUND(383) 456,-1)  FROM DUAL  

 380 

SQL>SELECT ROUND(383) 456,-3)   FROM DUAL ; 

 0 

Note :- ROUND function can also be used to round dates)  Date can be rounded to 

YEAR / MONTH/DAY part)  

 Assume SYSDATE = 20-apr-2012 

SQL>SELECT ROUND(SYSDATE,‟YEAR‟)   FROM DUAL; 

01-JAN-2012 

SQL>SELECT ROUND(SYSDATE,‟MONTH‟)  FROM DUAL; 

01-may-2012 

SQL>SELECT ROUND(SYSDATE,‟DAY‟)  FROM DUAL; 

22-APR-2012 

 TRUNC :-   truncated  the number to specified number of decimal places 

 Syntax:-    TRUN(m,n)   

Example :-  

SQL>SELECT TRUNC(3) 456,2)  FROM DUAL ; 

3) 45 

SQL>SELECT TRUN(SYSDATE,‟YEAR‟)  FROM DUAL; 

01-JAN-2012 

Conversion Functions :- 

These functions are used to convert from one datatype to another datatype 

 

Conversion of two types :-  

 

  implicit conversion 

  explicit conversion 



 

 

 

Implicit Conversion:- 

if conversion is performed by ORACLE then it is called implicit conversion.  

For assignments, the oracle server can automatically convert the following.  

 

FROM       TO 

VARCHAR2      NUMBER 

VARCHAR2      DATE 

NUMBER      VARCHAR2 

DATE       VARCHAR2 

 

For expression evaluation , the oracle server can automatically convert the following . 

FROM       TO 

VARCHAR2      NUMBER 

VARCHAR2      DATE 

 

Example for implicit conversion :- 

SQL>SELECT  1000 + „1000‟ FROM DUAL ; 

2000 

Explicit Conversion:- 

if conversion is performed by user then it is called explicit conversion. The following 

functions are used to do explicit conversion 

1 TO_CHAR 

2 TO_DATE 

3 TO_NUMBER 

 TO_CHAR :- 

This function is used to convert  DATE / NUMBER  to CHAR type  

Converting DATE to CHAR type :- 

 DATEs are converted to CHAR type to display DATEs in different format. 

Syntax:-    TO_CHAR(DATE [,FORMAT])  

The different formats supported by ORACLE listed below 

Century formats :-  

CC                                 Two Digits Century   

 21 

Scc                               Two Digits Century with a  negative sign for Bc              

 -10 

 

Year Formats :- 

YYYY                            All four Digits of the Year   

 2012 



 

 

 

IYYY                             All four Digits of the ISO year   

 2012 

SYYYY                         All four Digits of the Year with a negative sign for Bc  

 -1001 

YY                              Last Two Digits of the Year     

12 

YEAR                          Name of the Year  Two 

Thousand Twelve 

 

 

 

Example :- 

Display employee records joined between  JANUARY and APRIL ? 

SQL>SELECT * FROM emp  WHERE TO_CHAR(hiredate,‟mm‟)  BETWEEN 1 

AND 4 ; 

Day :- 

DD                             Day of the Month 26 

DDD                          Day of the Year 103 

DAY                          Name of the Week Day SATURDAY 

DY                             First Three letter from Week Day SAT 

D                               Day of the Week 7 

Example :- 

Display employee records joined  on SUNDAY ? 

SQL>SELECT *  FROM emp WHERE TO_CHAR(hiredate,‟DAY‟)  = „SUNDAY‟; 

Display on which day employee joined ? 

SQL>SELECT  ENAME || „ joined on „ || TO_CHAR(hiredate,‟DAY‟)   FROM 

emp; 

Week :- 

WW                                           week of the year   24 

W                                               week of the month   4 

 

Time :- 

HH                                             hour in 12-format   12 

HH24                                         hour in 24-format   23 

MI                                             minute   20 

SS                                             second   30 

AM/PM                                    AM/PM as appropriate    

 

Example :- 

Display  sysdate as follows ? 



 

 

 

      25  january 2012 , Monday  10:00:00 AM 

 

SQL>SELECT  TO_CHAR(SYSDATE,‟DD month YYYY , Day  HH:MI:SS PM‟)   

FROM DUAL; 

Other Formats :- 

AD/BC                                      AD/BC date as appropriate                

TH                                            th,rd,nd,st  

SP                                             Number is spelled out. 

J                                                Date is displayed in Julian format  

 

Example :- 

SQL>SELECT TO_CHAR(SYSDATE,‟J‟)  FROM DUAL; 

2439892 

The above number representes number of days passed since  01 JAN 4712BC  to 

SYSDATE)  

SQL>SELECT TO_CHAR(SYSDATE,‟DDSPTH  MON YYYY‟)  FROM DUAL; 

 To change default DATE format during the session execute following command  

SQL>ALTER SESSION SET NLS_DATE_FORMAT=‟MM/DD/YY‟ ;   

then execute the following command 

SQL>SELECT ENAME , HIREDATE FROM EMP ; 

When above query is executed then HIREDATEs are displayed in  MM/DD/YY format)  

OCA question :- 

You need to display the date 11-oct-2007 in words as 'Eleventh of October, Two 

Thousand Seven')  

Which SQL statement would give the required result? 

 

 

A. SELECT TO_CHAR('11-oct-2007', 'fmDdspth "of" Month, Year')  FROM 

DUAL; 

 

B. SELECT TO_CHAR(TO_DATE('11-oct-2007') , 'fmDdspth of month, year')  

FROM DUAL; 

 

C. SELECT TO_CHAR(TO_DATE('11-oct-2007') , 'fmDdthsp "of" Month, Year')  

FROM DUAL; 

 

      D)  SELECT TO_DATE(TO_CHAR('11-oct-2007','fmDdspth ''of'' Month, Year') )  

FROM DUAL; 

 Converting number to character type :-  

Syntax :-  TO_CHAR(NUMBER [,FORMAT])  



 

 

 

Format   Description 

sS999  Returns Digit with a leading  - sign 

for negative number 

0999  returns number with a leading zeros 

9900  returns number with trailing zeros.  

999. 99  returns decimal point in the specified 

position.  

9,999  returns comma in the specified 

position.  

$999  returns a leading Dollar Sign.  

C999  returns ISO currency symbol in the 

specified position 

9. 99EE  returns number in scientific notation.  

RN                                                                      returns  number in roman format.  

L999   retuns number with local currency 

symbol.  

 

Example :- 

SQL>SELECT  ename, TO_CHAR(sal,‟L9,999‟)  AS sal  FROM emp ; 

To set local currency symbol execute the following command)  

SQL>ALTER SESSION SET NLS_TERRITORY=America; 

SQL>ALTER SESSION SET NLS_TERRITORY=Germany; 

TO_DATE :- 

Used to convert string to datetime)  You can provide an optional format to indicate the 

format of string) if you omit format , the date must be in the default format usually (DD-

MON-YYYY ,DD-MON-YY) )  

Syntax:-   TO_DATE(string [,format])   

Example :-  

  SQL>SELECT  ‟26-AUG-2012‟ + 10  FROM DUAL ; 

The above statement returns ORACLE error  INVALID NUMBER , because 26-AUG-

2012 is treated as string , so to do the calculation conversion is required)  

SQL>SELECT TO_DATE(‟26-AUG-2012‟)  + 10 FROM DUAL ; 

SQL>SELECT TO_DATE(‟08/26/12‟,‟MM/DD/YY‟)  + 10 FROM DUAL; 

Display on which day india has got independenc ? 

SQL>SELECT  TO_CHAR(TO_DATE(‟15-AUG-1947‟) ,‟DAY‟)  FROM DUAL; 

Display employee names , salaries and display salaries in words ? 

SQL>SELECT ename , TO_CHAR(TO_DATE(sal,‟J‟) ,‟JSP‟)  AS SAL FROM 

emp; 

Example :- 

SQL>CREATE TABLE emp (empno NUMBER(4) , dob DATE)  ; 



 

 

 

 You need to insert date & time into dob column , but by default DATE data type accepts 

only DATE but not time.  To insert date along with time conversion is required. 

SQL>INSERT INTO emp VALUES (1, TO_DATE(‟26-AUG-2012 10:20:30‟,‟DD-

MON-YYYY HH:MI:SS‟) )  ; 

But TIMESTAMP datatype allows both date and time without conversion)  

SQL>CREATE TABLE emp (empno NUMBER(4) ,  dob TIMESTAMP) ; 

SQL>INSERT INTO emp VALUES(1,‟26-AUG-2012 10:20:30‟)  ; 

 

Multi-Row functions:- 

These functions will process group of rows and Returns one value from that group. 

These functions are also called  AGGREGATE functions or GROUP functions 

MAX :- 

Returns maximum value of a given expression  

Syntax:-  MAX(expr)  

Example :-  

SQL>SELECT MAX(sal)  FROM emp; 

Display maximum salary of 30
th

 DEPT ? 

SQL>SELECT MAX(sal)  FROM EMP WHERE deptno=20; 

MIN:- 

Returns minimum value of a given expression)  

Syntax :-   MIN(EXPR)  

Example:- 

SQL>SELECT MIN(sal)  FROM emp; 

 

SUM :- 

Returns sum of  a given expression. 

This function cannot be applied on strings and dates.  

 

Syntax:-     SUM(expr)   

Example:- 

SQL>SELECT SUM(sal)  FROM emp; 

Display total salary paid to MANAGERS ? 

SQL>SELECT SUM(sal)  FROM emp WHERE job = „MANAGER‟ ; 

Scenario :- 

Calculate total salaries paid to each dept as follows ? 

DEPT_10 DEPT_20 DEPT_30 

 ?  ?  ? 

SQL>SELECT  SUM(DECODE(deptno,10,sal) )  as DEPT_10 ,  

      SUM(DECODE(deptno,20,sal) )  as DEPT_20, 

     SUM(DECODE(deptno,30,sal) )  as DEPT_30 



 

 

 

     FROM emp; 

 

AVG :-  

Returns avg value of a given expression. 

Syntax:-  AVG(expr)  

Example:- 

SQL>SELECT AVG(sal)  FROM emp; 

COUNT :- 

Returns no of values present in a column.  

COUNT function ignores NULL values. 

 

Syntax :- COUNT(expr)  

Example:- 

SQL>SELECT COUNT(empno)  FROM emp; 

SQL>SELECT COUNT(DISTINCT deptno)  FROM emp; 

COUNT(*) :- 

Returns no of records  

Example :- 

SQL>SELECT COUNT(*)  FROM emp; 

Display number of employees joined in 1981 year ? 

SQL>SELECT COUNT(*)  FROM emp WHER TO_CHAR(hiredate,‟yyyy‟) 

=1981; 

Display number of employees joined as follows ? 

1981 1982 1983 

? ? ? 

SQL>SELECT  COUNT(DECODE(TO_CHAR(hiredate,‟YYYY‟) ,1981,empno) )  

AS Y1981 , 

     COUNT(DECODE(TO_CHAR(hiredate,‟YYYY‟) ,1982,empno) )  

AS Y1982, 

                           COUNT(DECODE(TO_CHAR(hiredate,‟YYYY‟) ,1983,empno) )  

AS Y1983  FROM emp; 

 

CASE Statement :- 

The CASE expression performs  if-then –else logic .  

 introduced in ORACLE 9i 

 The CASE expression works in a similar manner to DECODE, but use CASE because 

it is ANSI-compliant .  

 the CASE expression is easier to read.  

 

  There are two types of CASE Statements  



 

 

 

 

Simple case.  

Searched case .  

 

Simple CASE Statement :-  

Simple CASE expressions use expressions to determine the value to return)   

Syntax :-  

CASE search_expression 

WHEN expression1 THEN result1 

WHEN expression2 THEN result2 

……………………)  

WHEN expression THEN result 

ELSE default_result 

END ; 

 

Search_expression is the expression to be evaluated.  

expression1, expression2, …………,expression are the expressions to be evaluated 

against search_expression.  

result1, result2,…………. . , result are the returned results(one for each possible 

expression. .  If expression1 evaluates to search_expression, results is returned, and 

similarly for the other expressions.  

default_result is returned when no matching expression is found.  

Example :-  

SQL>SELECT ename,sal,  CASE job 

      WHEN „CLERK‟ THEN „WORKER‟ 

                                      WHEN „MANAGER‟ THEN „BOSS‟ 

                WHEN „PRESIDENT‟ THEN „BIG BOSS‟ 

                ELSE 

   „EMPLOYEE‟  

                      END  AS JOB 

FROM emp ; 

 

Searched CASE Statement :_ 

Searched CASE expressions use conditions to determine the returned value. 

Syntax :-  

CASE  

  WHEN condition1 THEN result1 

   WHEN condition2 THEN result2 

         ………………) )  

    WHEN condition THEN result 



 

 

 

     ELSE  

default_result 

  END; 

    

Where, 

condition1, condition2,……. .  conditionN are expressions to be evaluated.  

result1, result2,…………resultN are the returned results(one for each possible 

condition. .  If condition is true, result1 is returned, and similarly for the other 

expressions.  

default_result is returned when there is no condition  returns true 

Example :- 

SQL>SELECT ename,sal, CASE 

         WHEN sal>3000 THEN „HISAL‟ 

                         WHEN sal<3000 THEN „LOSAL‟ 

       ELSE 

                                „MODERATE SAL‟          

                         END AS SALRANGE   

FROM emp ;   

 

 

 

GROUP BY clause:- 

You can use  GROUP BY clause to divide the rows in a table into smaller groups.  You 

can then use the group functions to return summary information for each group.  

Syntax :- 

SELECT column, group_function(column.  

FROM table 

[WHERE condition] 

[GROUP BY group_by_expression] 

[HAVING condition]  [ORDER BY column]; 

 

Guidelines :-  

 only GROUP BY columns and AGGREGATE functions should appear in 

SELECT list other than these two if any column appears then oracle returns error.  

 Using  WHERE clause, you can exclude rows before dividing them into groups.  

 You cannot use a column alias in the GROUP BY clause.  

 By default, rows are sorted by ascending order of the columns included in the 

GROUP BY list.  You can override this by using the ORDER BY clause.  



 

 

 

Examples :- 

Display total salaries paid to each department ? 

SQL>SELECT deptno,SUM(sal)   FROM emp   GROUP BY deptno ; 

 
Display no of employees joined each year ? 

SQL>SELECT    

         EXTRACT(YEAR FROM hiredate) AS YEAR,  COUNT(*)  AS EMPS 

FROM emp 

GROUP BY EXTRACT(YEAR FROM hiredate) ; 

 

Display total salaries paid to each department where deptno in (10,20)  ? 

 

SQL>SELECT deptno,SUM(sal)  FROM emp  

          WHERE deptno IN (10,20)  

 GROUP BY deptno ; 

 
HAVING clause :- 

In the same way that you use the WHERE clause to restrict the rows that you select, you 

can use the HAVING clause to restrict groups.   

 find the maximum salary of each department, but show only the depts.  that have a 

maximum salary  more than 10,000, you need to do the following: 

1 Find the maximum salary for each department by grouping by deptno 

2.  Restrict the groups to those departments with a maximum salary greater than 10,000.  

The Oracle server performs the following steps when you use the HAVING clause: 

1.  Rows are grouped.  

2.  The group function is applied to the group.  

3.  The groups that match the criteria in the HAVING clause are displayed.  

Example :- 

SQL>SELECT deptno, SUM(sal) 

 FROM emp      

 GROUP BY deptno  

HAVING SUM(sal) >10000; 

 

Deptno SUM(SAL) 



 

 

 

20  10875 

WHERE Vs HAVING :- 

WHERE      HAVING 

Filter rows       filter groups 

Filter data before group by     filter data after group by 

 

 

 

NOTE:- in condition if there is no group function then use WHERE clause , if condition 

contains group function use HAVING clause.  

Using WHERE , GROUP BY ,HAVING clauses Together :- 

You can use WHERE,GROUP BY, and HAVING clauses together in the same query.  

When you do this the WHERE clause first filters the rows, the GROUP BY clause then 

groups the remaining rows and finally HAVING clause filters the groups.  

 

Example :- 

SQL>SELECT   deptno,sum(sal)   FROM emp 

          WHERE deptno IN (10,20)   

           GROUP BY deptno 

           HAVING SUM(sal)  > 10000 ; 

 

 
Grouping Rows Based on more than one Column :- 

You can GROUP rows based on more than one column.  

Calcuate total salaries department wise and within department job wise ? 

Example :- 

SQL>SELECT deptno,job,SUM(sal)   

          FROM emp 

           GROUP BY deptno,job; 

 
SQL>BREAK ON deptno 



 

 

 

SQL> / 

 
SQL>SELECT  TO_CHAR(hiredate,‟YYYY‟) AS Year , 

       TO_CHAR(hiredate,‟Mon‟)  AS Month, 

                             TO_CHAR(hiredate,‟Dy‟)  AS Day , COUNT(*.  AS Emps 

      FROM emp  

      GROUP BY TO_CHAR (hiredate,‟YYYY‟), 

       TO_CHAR (hiredate,‟Mon‟) , 

                             TO_CHAR (hiredate,‟Dy‟)  

     ORDER BY Year, Month, Day; 

 

Cross Tabulation:- 

An example of cross tabulation shown below :- 

DEPTNO       CLERK       MANAGER SALESMAN 

10                  1300           2450                    

20                  1900           2975  

30                  95               2850                     5600 

 

To produce the above result the following query should be run 

SQL>SELECT    deptno,  SUM( DECODE(job,‟CLERK‟,sal. .  AS CLERK , 

    SUM(DECODE(job,‟MANAGER‟,sal. .  AS 

MANAGER, 

                                  SUM(DECODE(job,‟SALESMAN‟,sal. 

) AS SALESMAN 

 FROM emp  

 GROUP BY deptno; 

 

Using PIVOT operator :- 

 

Cross tabulation is simplified in ORACLE 11g with the help of PIVOT operator.  

SQL>SELECT * FROM  

   (SELECT DEPTNO,SAL,JOB FROM EMP.  

PIVOT 



 

 

 

  (   SUM(SAL.  FOR JOB IN („CLERK‟,‟MANAGER‟,‟SALESMAN‟) 

     

ORDER BY DEPTNO; 

UNPIVOT operator :- 

The UNPIVOT operator converts column-based data into separate rows.  To see the 

UNPIVOT operator in action we need to create a test table.  

SQL>CREATE TABLE unpivot_test ( 

  id              NUMBER, 

  customer_id     NUMBER, 

  product_code_a  NUMBER, 

  product_code_b  NUMBER, 

  product_code_c  NUMBER, 

  product_code_d  NUMBER. ; 

 

SQL>INSERT INTO unpivot_test VALUES (1, 101, 10, 20, 30, NULL. ; 

SQL>INSERT INTO unpivot_test VALUES (2, 102, 40, NULL, 50, NULL. ;  

SQL>INSERT INTO unpivot_test VALUES (3, 103, 60, 70, 80, 90. ; 

SQL>INSERT INTO unpivot_test VALUES (4, 104, 100, NULL, NULL, NULL. ; 

SQL>COMMIT; 

 

So our test data starts off looking like this.  

 

 

SQL>SELECT * FROM unpivot_test; 

   ID  CUSTOMER_ID PRODUCT_CODE_A PRODUCT_CODE_B 

PRODUCT_CODE_C PRODUCT_CODE_D 

      1         101               10               20               30 

      2         102              40                             50   80     

      3         103              60               70                90 

      4         104              100   70                90 

 

 

The UNPIVOT operator converts this column-based data into individual rows.  

 

SQL>SELECT * 

FROM   unpivot_test 

UNPIVOT (quantity FOR product_code IN (product_code_a AS 'A', 

product_code_b AS 'B', product_code_c AS 'C', product_code_d AS 'D'. . ; 

 

    ID CUSTOMER_ID  P   QUANTITY 



 

 

 

---------- -----------  - ---------- 

         1         101  A         10 

         1         101  B         20 

         1         101  C         30 

         2         102  A         40 

         2         102  C         50 

         3         103  A         60 

         3         103  B         70 

         3         103  C         80 

         3         103  D         90 

         4         104  A        100 

 

Convert rows to columns :- 

SQL> desc t1 

 Name   Null?   Type 

 NAME    VARCHAR2(10.  

 YEAR     NUMBER(4.  

 VALUE    NUMBER(4.  

 

 SQL> select * from t1; 

NAME   YEAR   VALUE 

john   1991   1000 

john   1992   2000 

john   1993   3000 

jack   1991   1500 

jack   1992   1200 

jack   1993   1340 

mary   1991   1250 

mary   1992   2323 

mary   1993   8700 

 

perform a sql query to return results like this: 

 

year, john, Jack, mary  

1991, 1000, 1500 1250 

1992, 2000, 1200, 2323 

1993, 3000, 1340, 8700 

 

 

Joins 



 

 

 

In OLTP db tables are normalized and data organized in more than one table.  For 

example sales DB is organized in customer, product, and supplier tables etc.  JOIN is an 

operation that combines rows from two or more tables or view.  ORACLE performs 

JOIN operation when more than one table is listed in FROM clause.  Tables participated 

in JOIN operation must share a meaningful relationship.  

Types of JOINS :- 

 Inner join or Equi Join 

 Non-Equi  Join 

 Self Join 

 Outer Join 

 Cross Join 

Inner Join :- 

 In INNER JOIN join operation is performed  based on common columns.  

 To perform INNER JOIN there should be a common column in joining tables and 

name of the common column need not to be same.  

 To perform INNER JOIN  parent/child relationship between the tables is not 

mandatory.  

 INNER join is most commonly used join in realtime.  

Syntax :- 

SQL>  SELECT <collist> FROM  <tab11> , <tab2> 

          WHERE <join cond 

           [AND <join cond> AND <cond>-------] 

 

Join Condition  :-  

Child. fk = parent. pk ( if relationship exists.  

Tab1. commoncolumn = Tab2. commoncolumn  (if there is no relationship.  

 

 Oracle performs INNER JOIN by comparing fk value with pk value by using = 

operator.  

 INNER JOIN is also called EQUI JOIN because join cond is based on  =  

operator.  

 INNER JOIN returns all rows from both tables that satisfies the JOIN 

CONDITION.   

 No of JOIN CONDS depends on number of tables to be joined .  

 To join N tables , min N-1 JOIN CONDS are required.  

 

Guidelines:- 

When writing a SELECT statement that joins tables, precede the column name with the 

table name or table alias for faster access and to avoid ambiguity.  

 



 

 

 

Example:-   

Display EMPNO,ENAME,DEPTNO,DNAME,LOC ? 

SQL> SELECT    e. empno,  e.  ename , e. sal, d.  deptno ,  d.  dname , d.  loc   

             FROM emp e,dept  d 

             WHERE e. deptno = d. deptno; 

 

Display ENAME of the employees working at NEW YORK location ? 

 

SQL>SELECT e. ename  

        FROM  emp e, dept d 

       WHERE      e. deptno = d. deptno  

   AND 

   d. loc=‟NEW YORK‟ ; 

 

                      

Display ENAME of the employees working at NEW YORK location and earning more 

than 2000 ? 

SQL>SELECT e. ename  

        FROM emp e,dept d 

        WHERE   e. deptno=d. deptno 

  AND 

d. loc=‟NEW YORK‟  and e. sal > 2000; 

 

Using ON clause :- 

 

SQL>SELECT e. empno,e. ename,e. sal,d. dname,d. loc 

FROM emp e JOIN dept d 

ON (e. deptno = d. deptno.  ; 

 

Using USING clause :-  

 

SQL>SELECT  e. empno,e. ename,e. sal,d. dname,d. loc  

FROM emp e JOIN  dept d 

USING (DEPTNO)  ; 

 

HINT :-   In USING clause common column name should not be prefixed with table 

alias.  

NOTE :- A join order is the order in which tables are accessed and joined together.  For 

example, in a join order of table1, table2, and table3, table table1 is accessed first.  Next, 



 

 

 

table2 is accessed, and its data is joined to table1.  Finally, table3 is accessed, and its data 

is joined to the result of the join between table1 and table2.  

 

Non Equi Join :- 

 

When the Join Cond is based on equality operator, the join is said to be an equi join.  

When the join condition based on otherthan equality operator , the join is said to be a 

non-equi join.  

Syntax:- 

Select col1,col2,…….      

From <table 1>,<table 2> 

Where <join cond>   [AND <join cond> AND <cond> ----] 

 

In NON-EQUI JOIN   JOIN COND  is not based on  =  operator.  It is based on other 

than = operator     usually BETWEEN or   >  or  < operators.  

 

Example:-   

Display EMPNO,ENAME,SAL,GRADE ? 

SQL>  SELECT e. empno,e. ename,e. sal,s,grade 

 FROM emp e, salgrade s 

 WHERE e. sal BETWEEN s. losal AND s. hisal; 

 

Display EMPNO,ENAME,SAL,DNAME,LOC,GRADE ? 

SQL>SELECT e. empno,e. ename,e. sal,d. dname,d. loc,s. grade 

 FROM emp e,dept d,salgrade s 

 WHERE e. deptno = d. deptno 

   AND 

  e. sal between g. losal AND g. hisal ; 

 

Self Join :- 

 Joining a table to itself is called Self Join.  

 Self Join is performed when tables having self-referential integrity.  

 To perform Self Join same table must be listed twice with different alias.  

 Self Join is Equi Join within the table.  

 

Syntax :-  

SQl>SELECT <collist>   

         From Table1 T1, Table1 T2 

          Where T1. Column1=T2. Column2; 

Example:- 



 

 

 

Display EMPNO,ENAME,SAL,MGRNAME ? 

SQL>SELECT e. empno,e. ename,e. sal,m. ename 

 FROM emp e, emp m 

 WHERE e. mgr = m. empno ; 

 

  

 

SQL>SELECT e. empno,e. ename,e. sal,d. dname,d. loc,,s. grade,m. ename 

 FROM emp e JOIN dept d 

   USING(deptno.  

 JOIN salgrade s 

            ON (e. sal BETWEEN g. losal  AND g. hisal.  

 JOIN emp m  

 ON ( e. mgr = m. empno) ; 

 

Outer Join:- 

 

Equi join returns only matching records from both the tables but not unmatched record, 

an outer join retrieves a row even when one of the column in the join contains a null 

value.  For example there are two tables  one is CUSTOMER that stores customer 

information and another ORDERS table that stores orders placed by customers , INNER 

JOIN returns only the list of customer who placed orders,but OUTER JOIN also returns 

customer who did not placed any order.  Outer join is 3 types.  

 LEFT OUTER JOIN 

 RIGHT OUTER JOIN 

 FULL OUTER JOIN 

To perform OUTER JOIN  use Oracle Proprietary operator (+) .  

 

Left Outer Join:- 

LEFT OUTER JOIN returns all rows(matched and unmatched.  from LEFT SIDE table 

and matching records from RIGHT SIDE table.  To perform LEFT OUTER JOIN (+) 

should be on RIGHT SIDE.  

Syntax :- 

SELECT <collist> FROM <tablist> 

WHERE  t1. commoncolumn  =  t2. commoncolumn (+) 

 

Example :-  

Display EMPNO,ENAME,DNAME,LOC and also display employee list who are not 

assigned to any dept? 

SQL> SELECT e. empno,e. ename,d. dname,d. loc  



 

 

 

 FROM emp e, dept d 

 WHERE e. deptno  = d. deptno (+)  ; 

 

ANSI Style :- 

In SQL/92 standard use keyword LEFT OUTER JOIN instead of using operator (+.  .  

Display EMPNO,ENAME,DNAME,LOC and also display employee list who are not 

assigned to any dept? 

SQL> SELECT e. empno,e. ename,d. dname,d. loc  

 FROM emp e LEFT OUTER JOIN dept d 

 USING(Deptno)  ; 

 

Right Outer Join:- 

 

RIGHT OUTER JOIN returns all rows(matched and unmatched.  from RIGHT SIDE 

table and matching records from LEFT SIDE table.  To perform RIGHT OUTER JOIN 

use (+.  on LEFT SIDE.  

 

Syntax :- 

SELECT <collist> FROM <tablist> 

WHERE  t1. commoncolumn(+)  =  t2. commoncolumn  

Example :-  

Display EMPNO,ENAME,DNAME,LOC and also display department which are empty ? 

SQL> SELECT e. empno,e. ename,d. dname,d. loc  

 FROM emp e, dept d 

 WHERE e. deptno(+)   = d. deptno ; 

 

ANSI Style :- 

In SQL/92 standard use keyword RIGHT OUTER JOIN instead of using operator (+.  .  

Display EMPNO,ENAME,DNAME,LOC and also display departments which are empty 

? 

SQL> SELECT e. empno,e. ename,d. dname,d. loc  

 FROM emp e RIGHT OUTER JOIN dept d 

 USING(Deptno); 

 

Full Outer Join:- 

 

Returns all rows (matched and unmatched.  from both tables.  

Prior to oracle 9i doesn’t support FULL OUTER JOIN.  

To perform FULL OUTER JOIN  in prior to ORACLE 9i.  

 



 

 

 

SQL> SELECT e. empno,e. ename,d. dname,d. loc  

 FROM emp e, dept d 

 WHERE e. deptno  = d. deptno (+) ; 

 UNION 

 SELECT e. empno,e. ename,d. dname,d. loc  

 FROM emp e, dept d 

 WHERE e. deptno(+)  = d. deptno ; 

HINT :-  

(+.   should be either left side or right side but cannot be on both sides.  

CROSS JOIN :- 

 CROSS JOIN returns cross product of two tables.  

 Each record of one table is joined to each and every record of another table.  

 If table1 contains 10 records and table2 contains 5 records  then CROSS JOIN 

between table1 and table2 returns 50 records.  

 ORACLE performs CROSS JOIN when we submit query without JOIN COND.  

Syntax :-  

SQL>SELECT  col1 ,col2  FROM  tab1 , tab2 ;  

Example:- 

TABLE       TABLE 

 ORDERS       DISCOUNT 

ORDAMT        DIS 

100000        5 

       7 

       12 

 

Display ORDAMT for each and every DISCOUNT percentage ? 

 

SQL>SELECT o. ordamt,d. dis, (o. ordamt*d. dis. /100  AS  amount 

FROM orders o,discounts d ; 

 

ANSI Style :- 

 

SQL>SELECT o. ordamt,d. dis, (o. ordamt*d. dis. /100  AS  amount 

FROM orders o CROSS JOIN discounts d ; 

 

 

 

Natural Join :- 

 

 NATURAL JOIN is possible in ANSI SQL/92 standard.  



 

 

 

 NATURAL JOIN is similar to EQUI JOIN.  

 NATURAL JOIN is performed only when common column name is same.  

 in NATURAL JOIN no need to specify join condition explicitly , ORACLE 

automatically performs join operation on the column with same name. .  

 

Example :-  

SQL>SELECT e. empno,e. ename,e. sal,d. dname,d. loc 

           FROM emp e NATURAL JOIN dept d ; 

Above query performs JOIN operation on DEPTNO.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Set Operators:-  

 UNION  

 UNION ALL 

 INTERSECT 

 MINUS 

 

Syntax :- 

 

SELECT statement 1 

UNION / UNION ALL / INTERSECT / MINUS 

SELECT statement 2 ; 

 

Rules :-  

1 No of columns returned by first query must be equal to no of columns returned by 

second query 

2 Corrosponding columns datatype type must be same.  

 

UNION:- 

 UNION operator combines data returned by two SELECT statement.  

 eliminates duplicates.  

 Sorts result.  

Example :- 

 

1 SQL>SELECT job FROM emp WHERE deptno=10 

          UNION 

            SELECT job FROM emp WHERE deptno=20 ; 

 

2 SQL>SELECT job,sal FROM emp WHERE deptno=10 

            UNION 

            SELECT job,sal FROM emp WHERE deptno=20 

 ORDER BY sal ; 

 

NOTE:-  ORDER BY clause must be used with last query.  

 

UNION ALL:- 

 

UNION ALL is similar to UNION but it includes duplicates 

Example :-  

SQL>SELECT job FROM emp WHERE deptno=10 

          UNION ALL 



 

 

 

          SELECT job FROM emp WHERE deptno=20  ; 

 

 

 

Scenario :- 

EMP1       EMP2 

EMPNO ENAME DNO   EMPNO ENAME DNO 

1  A  10   100  X  10 

2  B  20   101  Y  20 

 

DEPT:- 

 

 DNO DNAME LOC 

10 ACCT  HYD 

20 SALES  HYD 

 

Display all employee list along with department names and locations ? 

 

Solution :-  (EMP1 union EMP2.  Join DEPT  

INTERSECT:- 

INTERSECT operator returns common values from the result of two SELECT 

statements.  

Example:- 

Display common jobs belongs to 10
th

 and 20
th

 departments ? 

SQL>SELECT job FROM emp WHERE deptno=10 

INTERSECT 

SELECT job FROM emp WHERE deptno=20; 

 

MINUS:- 

MINUS operator returns values present in the result of first SELECT statement and not 

present in the result of second SELECT statement.  

Example:- 

Display jobs in 10
th

 dept and not in 20
th

 dept ? 

SQL>SELECT job FROM emp WHERE deptno=10 

MINUS 

SELECT job FROM emp WHERE deptno=20; 

 

 

 

 



 

 

 

Sub queries 

Sub query:- 

 Query embedded in another query is called sub query.  

 One query is called inner/child/sub query.  

 Another query is called outer/parent/main query.  

 The result of inner query acts as an input to outer query.  

 Outer query can be   INSERT,UPDATE,DELETE,SELECT 

 Inner query must be always SELECT 

 Sub queries  can appear  in    

WHERE CLAUSE 

                 HAVING CLAUSE 

             FROM CLAUSE 

             SELECT CLAUSE 

Types of SUBQUERIES :- 

 Single Row Subqueries 

 Multi Row Subqueries 

 Nested Queries 

 Muliti Column Subqueries 

 Co-related Subqueries 

SINGLE ROW SUBQUERIES:- 

If inner query returns only one row then it is called single row subquery.  

Syntax :- 

SELECT <collist> FROM <tabname>    

                 WHERE  colname  OP (SELECT statement.  

OP can be        <   >   <=   >=   =   <> 

Example :- 

Subqueries in WHERE clause :- 

Display employee records whose job equals to job of SMITH? 

SQL>SELECT * FROM emp 

WHERE job = (SELECT job FROM emp WHERE  ename=‟SMITH‟.  ; 

 

Display employee name earning maximum salary ? 

SQL>SELECT ename FROM emp 

    WHERE sal = (SELECT MAX(sal.  FROM emp.  ; 

 

Display all records except last record ? 

SQL>SELECT * FROM emp 

   WHERE ROWID <(SELECT MAX(ROWID.  FROM emp.  ; 

 

 



 

 

 

Subqueries with BETWEEN operator:- 

Display employee reocrds earning salary between min sal of 10 dept and max sal of 30 

dept ? 

SQL>SELECT * FROM emp 

         WHERE sal BETWEEN  (SELECT MIN(sal.  FROM emp WHERE 

deptno=10.  

    AND 

    (SELECT MAX(sal.  FROM emp WHERE deptno=30.  

; 

 

Subqueries in HAVING clause:- 

Display departmentss whose avg(sal.  geater than avg(sal.  of 10 dept? 

SQL>SELECT deptno FROM emp 

  GROUP BY deptno 

   HAVING AVG(sal.  > (SELECT AVG(sal.  FROM emp 

     WHERE deptno=10.  ; 

Subqueries in UPDATE command :- 

Update employee salary to maximum salary whose empno=7369 ? 

SQL>UPDATE emp SET sal = (SELECT MAX(sal.  FROM emp.   WHERE  

EMPNO=7369 ; 

 Swap employee salaries whose empno in (7369,7499.  ? 

SQL>UPDATE emp SET sal=DECODE(empno,7369,(SELECT sal FROM emp 

        WHERE empno=7499. , 

                    7499,(SELECT sal FROM emp 

           WHERE empno=7369.  . ; 

Subqueries in DELETE command:- 

Delete employee record whose job equals to job of SMITH ? 

SQL>DELETE FROM emp 

WHERE job= (SELECT job FROM emp WHERE                                                                                                                                                                                                                                                                                                                  

ename=‟SMITH‟. ; 

Multi Row Subqueries:- 

if inner query returns more than one row then it is called multi row subquery.  

Syntax :-  

SQL>SELECT <collist> FROM <tabname> 

   WHERE colname OP (SELECT statement.  ; 

 

OP must be  IN ,   NOT  IN,    ANY,  ALL 

Example :- 

Displaye employee records whose job equals to job of SMITH or job of BLAKE ? 

SQL>SELECT * FROM emp 



 

 

 

  WHERE job  IN (SELECT job FROM emp WHERE ename IN 

(„SMITH‟,‟BLAKE‟. . ; 

 

Displaye employee records who are earning minimum and maximum salaries ? 

 

SQL>SELECT * FROM emp WHERE sal  IN (SELECT  MIN(sal.  FROM emp 

        UNION 

              SELECT MAX(sal.  FROM emp); 

 

Display 4
th

,7
th

,11
th

 record in EMP table ? 

SQL>SELECT * FROM emp 

 WHERE  ROWID  IN (SELECT DECODE(ROWNUM,4,ROWID, 

           7,ROWID, 

          11,ROWID)  

        FROM emp) ; 

 

ANY operator:- 

 Compares a value to each value in a list or returned by a query.  Must be preceded by =, 

!=, >, <, <=, >=.  Evaluates to FALSE if the query returns no rows.  

Example:- 

Select employees whose salary is greater than any salesman’s salary ? 

SQL>SELECT ename  FROM emp 

      WHERE SAL > ANY ( SELECT sal FROM emp  WHERE  job = 

'SALESMAN') ; 

ALL operator :- 

 Compares a value to every value in a list or returned by a query.  Must be preceded by =, 

!=, >, <, <=, >=.           evaluates to TRUE if the query returns no rows.  

 

Example:- 

 

Select employees whose salary is greater than every salesman’s salary ? 

SQL>SELECT ename  FROM emp 

      WHERE SAL > ALL ( SELECT sal FROM emp  WHERE  job = 

'SALESMAN') ; 

 

 

 

 

 

 



 

 

 

Nested Queries:- 

A subquery embedded in another subquery is called NESTED QUERY.  

Queries can be nested upto 255 level.  

 

Example :- 

Display employee name earning second maximum salary ? 

SQL>SELECT ename FROM emp  

     WHERE sal = (SELECT MAX(sal.  FROM EMP 

      WHERE sal < (SELECT MAX(sal.  FROM emp)  ; 

 

Update the employee salary to maximum salary of SALES dept ? 

SQL>UPDATE emp 

            SET sal = (SELECT MAX(sal.  FROM emp 

  WHERE deptno = (SELECT deptno FROM dept 

    WHERE dname=‟SALES‟)  ; 

Multi Column Subqueries:- 

If inner query returns more than one column value then it is called MULTI COLUMN 

subquery.  

Example :- 

Display employee names earning maximum salaries in their dept ? 

SQL>SELECT ename FROM emp 

 WHERE (deptno,sal.  IN (SELECT deptno,MAX(sal.  

       FROM emp 

       GROUP BY Deptno) ; 

Co-related Subqueries:- 

If a subquery references one or more columns of parent query is called CO-RELATED 

subquery because it is related to outer query.  This subquery executes once for each and 

every row of main query.  

Example :-  

Display employee names earning more than avg(sal.  of their dept ? 

SQL>SELECT ename FROM emp x 

  WHERE sal > (SELECT AVG(sal.  FROM emp 

         WHERE deptno=x. Deptno) ; 

 

Display employee names earning more than their manager ? 

SQL>SELECT ename FROM emp x 

 WHERE sal > (SELECT sal FROM emp 

     WHERE empno=x. mgr) ; 

Delete duplicate records in a table ? 

SQL>DELETE FROM emp X 



 

 

 

   WHERE ROWID > (SELECT MIN(ROWID.  FROM emp 

  WHERE empno=x. empno 

    AND 

       ename=x. ename 

    AND 

      sal=x. sal) ; 

Display top 3 maximum salaries in emp table ? 

SQL>SELECT DISTINCT sal FROM emp a 

                 WHERE 3 > (SELECT COUNT(DISTINCT sal.  

 FROM emp b 

     WHERE a. sal < b. sal)  ; 

 

Using EXISTS operator :- 

EXISTS operator returns TRUE or FALSE.  

If inner query returns at least one record then EXISTS returns TRUE otherwise returns 

FALSE.  

ORACLE recommends  EXISTS and NOT EXISTS operators instead of IN and NOT 

IN.  

Display dept which not empty ? 

SQL>SELECT * FROM dept d 

              WHERE EXISTS (SELECT * FROM emp  WHERE deptno =d. Deptno) ; 

SQL>SELECT * FROM dept d 

            WHERE NOT EXISTS (SELECT * FROM emp 

                        WHERE deptno = d. Deptno) ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

VIEWS 

Data abstraction is usually required after a table is created and populated with data.  Data 

held by some tables might require restricted access to prevent all users from accessing all 

columns of a table, for data security reasons.  Such a security issue can be solved by 

creating several tables with appropriate columns and assigning specific users to each such 

table, as required.  This answers data security requirements very well but gives rise to a 

great deal of redundant data being resident in tables, in the database. To reduce redundant 

data to the minimum possible, Oracle provides  Virtual tables which are Views.  

View Definition :- 

A View is a virtual table based on the result returned by a SELECT query.   

The most basic purpose of a view is restricting access to specific column/rows from a 

table thus allowing different users to see only certain rows or columns of a table.  

Composition Of View:- 

A view is composed of rows and columns, very similar to table.  The fields in a view 

are fields from one or more database tables in the database.  

SQL functions, WHERE clauses and JOIN statements can be applied to a view in the 

same manner as they are applied to a table.  

View storage:- 

Oracle does not store the view data.  It recreates the data, using the view’s SELECT 

statement, every time a user queries a view.  

A view is stored only as a definition in Oracle’s system catalog.   

When a reference is made to a view, its definition is scanned, the base table is opened 

and the view is created on top of the base table. This, therefore, means that a view never 

holds data, until a specific call to the view is made.  This reduces redundant data on the 

HDD to a very large extent.  

Advantages Of View:- 

Security:- Each user can be given permission to access only a set of views that contain 

specific data.  

Query simplicity:- A view can drawn from several different tables and present it as a 

single table turning multiple table queries into single table queries against the view.  

Data Integrity:- If data is accessed and entered through a view, the DBMS can 

automatically check the data to ensure that it meets specified integrity constraints.  

Disadvantage of View:- 

Performance:- Views only create the appearance of the table but the RDBMS must still 

translate queries against the views into the queries against the underlined source tables.  

If the view is defined on a complex multiple table query then even a simple query against 

the view becomes a complicated join and takes a long time to execute.  

 

 

 



 

 

 

Types of Views :- 

 Simple Views 

 Complex Views 

 

Simple Views :-  

a View based on single table  is called simple view.  

Syntax:- 

CREATE VIEW <View Name>  

AS 

SELECT<ColumnName1>,<ColumnName2> 

FROM  <TableName> 

[WHERE <COND>] 

[WITH CHECK OPTION] 

[WITH READ ONLY] 

 

Example :- 

 

SQL>CREATE VIEW emp_v  

AS 

SELECT empno,ename,sal FROM emp ; 

 

Views can also be used for manipulating the data that is available in the base tables[i. 

e.  the user can perform the Insert, Update and Delete operations through view.  

 

Views on which data manipulation can be done are called Updateable Views.  

If an Insert, Update or Delete SQL statement is fired on a view, modifications to data 

in the view are passed to the underlying base table.  

For a view to be updatable,it should meet the following criteria: 

Views defined from Single table.  

If the user wants to INSERT records with the help of a view, then the PRIMARY KEY       

column(s.  and all the NOT NULL columns must be included in the view.  

Inserting record through view :- 

 

SQL>INSERT INTO emp_v VALUES(1,‟A‟,5000,200.  ; 

 

Updating record throught view  :- 

 

SQL>UPDATE emp_v SET sal=2000 WHERE empno=1; 

 

 Deleting record throught view :- 



 

 

 

 

 SQL>DELETE FROM emp_v WHERE empno=1; 

 

With Check Option :- 

 

If  VIEW created with WITH CHECK OPTION then any DML operation through that 

view violates where condition then that DML operation returns error.  

 

Example :- 

SQL>CREATE VIEW V2 

AS 

SELECT empno,ename,sal,deptno FROM emp 

WHERE deptno=10 

WITH CHECK OPTION ; 

 

Then insert the record into emp table through view V2  

SQL>INSERT INTO V2 VALUES(2323,‟RAJU‟,4000,20.  ; 

The above INSERT returns error because DML operation violating WHERE clause.  

Complex Views :- 

A view is said to complex view 

           If it based on more than one table 

   Query contains 

             AGGREGATE  functions 

               DISTINCT clause 

 GROUP BY  clause 

 HAVING clause 

 Sub-queries 

 Constants 

 Strings or Values Expressions                

                   UNION,INTERSECT,MINUS operators.  

 Example 1 :- 

SQL>CREATE VIEW V3 

AS 

SELECT E. empno,E. ename,E. sal,D. dname,D. loc  

FROM emp E JOIN dept D 

USING(deptno.  ;  

 

Complex views are not updatable i. e.  we cannot perform insert or update or delete 

operations on base table through complex views.  

Example 2 :- 



 

 

 

SQL>CREATE VIEW V2 

AS 

SELECT deptno,SUM(sal.  AS sumsal  

FROM EMP 

GROUP BY deptno; 

 

Destroying a View:- 

The DROP VIEW command is used to destroy a view from the database.  

Syntax:- 

DROP VIEW<viewName> 

Example :- 

SQL>DROP VIEW emp_v; 

Querying VIEWS information :- 

USER_VIEWS  

ALL_VIEWS 

DBA_VIEWS 

 

OCA questions :- 

1.  Which two statements are true regarding views? (Choose two. .  

A. A subquery that defines a view cannot include the GROUP BY clause.  

B. A view that is created with the subquery having the DISTINCT keyword can be 

updated.  

C. A view that is created with the subquery having the pseudo column ROWNUM 

keyword cannot be 

updated.  

D. A data manipulation language (DML.  operation can be performed on a view that is 

created with the 

subquery having all the NOT NULL columns of a table.  

 

2  You want to create a SALE_PROD view by executing the following SQL statement:  

CREATE VIEW sale_prod 

AS SELECT p. prod_id, cust_id, SUM(quantity_sold.  "Quantity", 

SUM(prod_list_price.  "Price"  

FROM products p, sales s 

WHERE p. prod_id=s. prod_id  

GROUP BY p. prod_id, cust_id; 

 

Which statement is true regarding the execution of the above statement? 

A.  The view will be created and you can perform DML operations on the view.   

B.  The view will be created but no DML operations will be allowed on the view.   



 

 

 

C.  The view will not be created because the join statements are not allowed for 

creating a view.   

D.  The view will not be created because the GROUP BY clause is not allowed for 

creating a view.   

 

3  Evaluate the following command:  

CREATE TABLE employees 

(employee_id NUMBER(2.  PRIMARY KEY, 

last_name VARCHAR2(25.  NOT NULL,  

department_id NUMBER(2. NOT NULL,  

job_id VARCHAR2(8. ,salary NUMBER(10,2. . ; 

 

You issue the following command to create a view that displays the IDs and last names of 

the sales staff in the organization: 

 

CREATE OR REPLACE VIEW sales_staff_vu  

AS  

SELECT employee_id,last_name,job_id  

FROM employees 

WHERE job_id LIKE 'SA_%'  

WITH CHECK OPTION; 

 

Which two statements are true regarding the above view? (Choose two. .  

A.  It allows you to insert rows into the EMPLOYEES table.   

B.  It allows you to delete details of the existing sales staff from the EMPLOYEES 

table.   

C.  It allows you to update job IDs of the existing sales staff to any other job ID in the 

EMPLOYEES table.   

D.  It allows you to insert IDs, last names, and job IDs of the sales staff from the view 

if it is used in multitable INSERT statements.   

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Triggers 

 

DESCRIPTION : 

 

A trigger is a statement (action.  that is executed automatically by the system (DBMS.  in 

a side effect of the modification in the database.  

       A trigger is a procedure that is executed automatically whenever an event occurs in a 

database.   

A trigger describes 3 parts.  

 

 

1.  An Event:      A change in database that activates a trigger.  

2.  A Condition: It is a query of test, if true, then the trigger is activated.  

3.  An Action :   It is the procedure that is executed when trigger is activated and its   

                          condition is true.  

 

 

 

         

        Triggers are useful mechanisms alternating or performing certain events 

automatically in database and some conditions are met.  

 

A trigger can form the following events 

 

1.  Insert 

2.  Delete 

3.  Update  A row form a relation.  

 

 

SYNTAX: 

 

 

Create TRIGGER <trigger_name> 

BEFORE    | INSERT |    

AFTER      | UPDATE| ON <TABLE _NAME> 

                    |DELETE| 

for each row 

DECLARE 

BEGIN 



 

 

 

    DBMS_OUTPUT. PUT_LINE(‘Trigger Message’. ; 

    <SQL STATEMENT> 

  END; 

 

 

 

 

LAB: 

- -  This trigger is used to raise an error when all the seats are reserved in a Bus.  

 

-- Trigger DDL Statements 

DELIMITER $$ 

USE `rwt`$$ 

CREATE 

DEFINER=`root`@`localhost` 

TRIGGER `rwt`. `upchk` 

AFTER INSERT ON `rwt`. `ticket` 

FOR EACH ROW 

Begin  

DECLARE 

TNSEATS INT(3. ; 

DECLARE 

CPCT INT(3. ;  

  SELECT SUM(TICKET. NOOFSEATS. ,BUS. CAPACITY INTO TNSEATS,CPCT 

FROM TICKET GROUP BY TICKET. BUSNO;  

  IF TNSEATS > CPCT THEN 

    CALL RAISE_APPLICATION_ERROR(-30000,'SEATS   ARE   NOT  

AVAILABLE'. ; 

  END IF; 

 END$$ 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Procedures 

 

This procedure is used to display the bus type, passenger name, source and 

destination when a passenger id is given.  

DELIMITER $$ 

 

DROP PROCEDURE IF EXISTS `rwtdet` $$ 

CREATE DEFINER=`root`@`localhost` PROCEDURE `rwtdet`(pid int(11. .  

BEGIN 

DECLARE 

BTYPE VARCHAR(45. ; 

DECLARE 

PNM VARCHAR(45. ; 

DECLARE 

SRC VARCHAR(45. ; 

DECLARE 

DEST VARCHAR(45. ; 

SELECT BUS. BUSTYPE,PASSENGER. PNAME,TICKET. SOURCE,TICKET. 

DESTINATION INTO BTYPE,PNM,SRC,DEST FROM BUS,TICKET,PASSENGER 

WHERE TICKET. BUSNO=BUS. BUSNO AND PASSENGER. MOBNO=TICKET. 

MOBNO; 

 select BTYPE AS BUS_TYPE,PNM AS PASS_NAME,SRC AS PASS_SRC,DEST AS 

PASS_DEST; 

END $$ 

 

DELIMITER ; 

 

OutPut: 

mysql>  CALL rwt. rwtdet(213657. ; 

 

BUS_TYPE PASS_NAME PASS_SRC PASS_DEST 

SUPER LUXURY SREENIVAS HYD BGLR 

 

 

 

 

 

 

 



 

 

 

Cursors 

 

What is cursors? 

 

The Oracle engine uses a work area for its internal processing in order to execute an SQL 

statement.  This work area is private to SQL’s operations and  is called a cursor.  

 

The data is stored in the cursor is called the active data set.  

 

Every SQL statement executed by the Oracle server has an individual cursor associated 

with it and are called implicit cursors.  There are two types of cursors.   

 

Implicit cursors: Declared for all DML and PL/SQL SELECT statements.  

Explicit cursors: Declared and names by the programmer.  

 

Explicit Cursors: 

o Individually process each row returned by a multiple row select statement.   

o A PL/SQL program opens a cursor, processes rows returned by a query, and then 

closes the cursor.  The cursor marks the current position in the active set.   

 

o Can process beyond the first row returned by the query, row by row.  

o Keep track of which row is currently being processed.  

o Allow the programmer to manually control explicit cursors in the PL/QL 

block.  

 

Controlling Explicit Cursors: 

 

o Declare the cursor by naming it and defining the structure of the query to be 

performed.  Within it.   

o Open the cursor: The OPEN statement executes the query and binds the variables 

that are referenced.  Rows identified by the query are called the active set and are 

now available for fetching.   

o Fetch data from the cursor: After each fetch, you test the cursor for any existing 

row.  If there are no more rows to process, then you must close the cursor.  

o Close the cursor: The CLOSE statement releases the active set of rows.  It is now 

possible to reopen the cursor to establish a fresh active set.   

 

Syntax: 

 

 



 

 

 

Declaring a cursor: 

 

CURSOR cursor_name IS 

     Select_statement; 

 

Opening a cursor: 

 

OPEN cursor_name; 

 

 

Fetch data from a cursor: 

 

FETCH cursor_name INTO [variable1, variable2,…. ]| record_name]; 

 

Closing a cursor: 

 

Close cursor_name; 

 

 

 

Attributes of an Explicit Cursor: 

 

o %ISOPEN [is cursor open] 

o %NOTFOUND [is row not found] 

o %FOUND [is row found] 

o %ROWCOUNT [rows returned so far] 

 

Cursors can be passed parameters.  Cursors also have FOR UPDATE option which 

allows more fine grained control of locking at a table level.  WHERE CURRENT OF can 

be used to apply the update or delete operation to current row in the cursor.   

 

 

 

 

 

 

This procedure includes a cursor which is used to display particular passenger 

details based onhis mobile number who have reserved the  seats in different buses.  

-- -------------------------------------------------------------------------------- 

-- Routine DDL 



 

 

 

-- Note: comments before and after the routine body will not be stored by the server 

-- -------------------------------------------------------------------------------- 

DELIMITER $$ 

CREATE DEFINER=`root`@`localhost` PROCEDURE `pass_mob_tct`(mno bigint(11. .  

BEGIN 

declare 

no_more_rows int default false; 

declare 

pid int(11. ; 

declare 

tid int(11. ; 

declare 

jdt date; 

DECLARE 

COUNT INT(3. ; 

declare 

C1 cursor for select passenger. PPNO,TICKETID,JDATE from passenger,TICKET 

WHERE mno=ticket. mobno and mno=passenger. mobno AND TICKET. 

MOBNO=PASSENGER. MOBNO; 

DECLARE 

CONTINUE HANDLER FOR NOT FOUND SET no_more_rows =TRUE; 

OPEN C1; 

TICK:LOOP 

   FETCH C1 INTO PID,TID,JDT; 

   IF no_more_rows THEN  

    LEAVE TICK; 

   END IF; 

     

     SELECT PID AS PASS_ID,MNO AS MOBILE_NO,TID AS TCT_NO,JDT AS 

JOURNEY_DATE; 

    SET COUNT=(SELECT FOUND_ROWS(. . ; 

    

END LOOP TICK; 

     

    SELECT COUNT AS NO_OF_ROWS_FETCHED; 

CLOSE C1; 

END 

 

 

 



 

 

 

OutPut: 

 

mysql>   CALL  rwt. pass_mob_tct(7766445533. ; 

 

PASS_ID MOBILE_

NO 

TCT_NO JOURNEY_DATE 

213657 776644553

3 

10001 2012-05-01 

 

NO_OF_ROWS_FETCHED 

1 

 

 

 

 

 

REFERENCE BOOKS: 

 

1. SQL, PL/SQL The Programming Language of Oracle --Ivan Bayross 

2. Introduction to SQL, Rick F. Vander Lans, Pearson education.  

3. .  Oracle PL/SQL, B. Rosenzweig and E. Silvestrova, Pearson education.  

 

 

 

 

 

 

 

 

 

 


