Sreenivasa Institute of Technology and Management Studies (Autonomous) Chittoor - 517127

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Year / Sem: II / IISub. Code & Subject : 18CSE225 – Formal Languages and Automata TheoryPrepared by: Dr. D. Jagadeesan, Professor / CSE

QUESTION BANK

<u>Unit – I</u>

Sl.	Questions	СО	PO	BT
No		00	10	51
1	Part - A	1	1	1
1 2	Write down the operations on set.	1	1	1
2	List any three applications of Automata Theory.	1		1
3 4	Define Finite Automation.	1	1	1
4 5	Define Deterministic Finite Automation. Define Non-Deterministic Finite Automation.	1	1	-
5 6		-		1
0 7	Define NFA with ε transition.	1	1	1
	Design FA which accepts odd number of 1's and any number of 0's.	1	2,3	6
8	Design FA to check whether given unary number is divisible by three.	1	2,3	6
9	Design FA to check whether given binary number is divisible by three.	1	2,3	6
10	Design FA to accept the string that always ends with 00.	1	2,3	6
11	Obtain the ε closure of states q0 and q1 in the following NFA with ε transition.	1	2	5
12	Obtain ε closure of each state in the following NFA with ε move.	1	2	5
13	Explain a transition diagram.	1	1	2
14	Explain a transition table.	1	1	2
15	Explain the transition function.	1	1	2
16	Differentiate DFA and NFA?	1	2	2
17	Write notes on Moore Machine.	1	1	6
18	Write the formal definition of Moore Machine.	1	1	6
19	Short notes on Mealy Machine.	1	1	1
20	Write the formal definition of Mealy Machine.	1	1	6
21	Compare the Mealy and Moore Model?	1	2	5
	Part – B			
22	Design FA to accept the string that always ends with 00.	1	2,3	6
23	Design FA to check whether given binary number is divisible by three.	1	2,3	6
	Show that "For every NFA, there exists a DFA which simulates the			
24	behavior of NFA. If L is the set accepted by NFA, then there exists a	1	2	1
	DFA which also accepts L".			
25	Show that "If L is accepted by NFA with ε -moves, then there exists L which is accepted by NFA without ε -moves.	1	2	1
	Construct DFA equivalent to the given NFA			
26	q_0 q_1 q_2	1	2,3	6

		(0,1) 5 0	(1)) 1		A XX71	5 (0	0) (0	1		
27	Let $M = (\{q0, q1\}, q1\}, \delta(q0, 1) = \{q$ equivalent DFA.	· · -				. –	· · -	1	2,3	6
28	Let M = ({q0, q1, q} Where δ (q0, 0) = ϵ) = {q1}, δ (q1, 1) 1) = {q0, q3,}, δ (q Construct its equiv	$\{q0, q1\}, \delta(q) = \{q0, q1\}, q1\}, q1\}, q1\}, q2\}, q1\}, q3, q2\}$	$q0, 1) = \delta(q2, 0)$	$\{q1\},\) = \{q2\}$	δ(q1, 2},δ(c	$(0) = \{q_2, e_3\} = \{q_3, q_3\} = \{q_3, q_3\} = \{q_3, q_3\} = \{q_3, q_3\}$	$q3$ }, δ ($q2$,	1	2,3	6
	Consider the follow find it's equivalent	-	Compu	te the	ε−clos	ure of eac	ch state and			
		3	а	b	c					
29		р Ф	{p}	{q}	Φ			1	2,3	5
		q {p	} {q}	{r}	Φ					
		*r {q	} {r}	ф	{p}					
30	Convert a NFA wh	nich accepts t	ne string	g ends	with 0	1 to a DF	A.	1	2,3	5
31	Consider the Moor below. To construct machine		ichine, v	-	is equi	U	U	1	2,3	5
	Consider the Meal below. To construct machine?			•			0			
	Present State	inpu	$\mathbf{t} = 0$	= 0 input = 1		= 1				
		Next State	Ou	tput	Nex	t State	Output			
32	→q1	q3		0		q2	0	1	2,3	5
	q2	q1		1		q4	0			
	q3	q2		1		q1	1			
	q4	q4		1		q3	0			

<u>Unit – II</u>

Sl. No	Questions	CO	РО	BT
110	Part - A			
1	State regular expression.	2	1	1
2	How the kleen's closure of L can be denoted?	2	1,2	4
3	How do you represent positive closure of L?	2	1,2	4
	Write the regular expression for the language accepting all combinations			_
4	of a's over the set $\Sigma = \{a\}$.	2	2,3	6
5	Write regular expression for the language accepting the strings which	2	2,3	6
	are starting with 1 and ending with 0, over the set $\Sigma = \{0,1\}$.	2	2	2
6	Show that $(0^{*}1^{*})^{*} = (0+1)^{*}$.	2	2	2
7	Show that $(r+s)^* \neq r^* + s^*$.	2	2	2
8	If $L = \{$ The language starting and ending with 'a' and having any combinations of b's in between, that what is r?	2	2,3	4
	Give regular expression for L= $L1 \cap L2$ over alphabet {a,b}			
9	where $L1 = all strings of even length$	2	2,3	2
-	L2 = all strings starting with 'b'.		_,_	
10	Explain the application of the pumping lemma.	2		3
10	Describe the following by regular expression			0
	a. $L1 =$ the set of all strings of 0's and 1's ending in 00.			
11	b. $L2 =$ the set of all strings of 0's and 1's beginning with 0 and	2	2,3	1
	ending with 1.			
12	Show that $(r^*)^* = r^*$ for a regular expression r.	2	2	2
13	Write down the closure properties of regular language.	2	3	6
14	What is pumping lemma?	2	2	4
15	State Arden's theorem.	2	1	1
16	What is dead state?	2	2	4
10	Part – B	2	-	
1.7	Show that 'r' be a regular expression, the there exists an NFA with ε			
17	transitions that accepts $L{r}$.	2	2	2
	Construct the NFA with ε for the regular expression using Thomson			
10	construction method.			-
18	a. $0(0+1)*100$	2	2,3	6
	b. $a(a+b)*b$			
	Obtain the equivalent DFA from the following regular expressions			
19	a. (a+b)*abb	2	2,3	5
	b. $(00+11)^*(0+1)^*$	_	_,c	C
	Show that the following languages are not regular using pumping lemma			
20	a. $L=\{0^{i} 1^{i}; i \ge 1\}$	2	2,3	2
	b. $L=\{a^p; p \text{ is prime}\}$		<i>,</i> –	
	Find the regular expression for the set of all strings denotes by $(R_{13})^2$			
	from the deterministic finite automata given below			
	0			
21		2	2,3	5
	start		, í	
		1	l	

	Obtain the regular expression using Arden's theorem from the given			
22	DFA. q_1 q_2 q_3	2	2,3	5
23	Obtain the regular expression using state elimination method from the given DFA. q_1 q_2 q_2 q_3	2	2,3	5

<u>Unit – III</u>

Sl.	Questions	CO	PO	ВТ
No	Questions		10	DI
	Part - A			
1	Obtain the Right Linear Grammar from the given Left Linear Grammar	3	1	5
2	Let G = ({S,C}, {a,b}, P,S} where P consists of S \rightarrow aCa, C \rightarrow aCa, Find L(G))?	3	2	5
3	Consider G whose productions are $S \rightarrow aAS/a$, $A \rightarrow SbA / SS / ba, show that S \rightarrow aabbaa and construct a derivation tree.$	3	2	2
4	Find L(G) where $G = (\{S\}, \{0,1\}, \{S \rightarrow 0S1, s \rightarrow \epsilon\}, S)$	3	2	5
5	Construct a CFL from the given grammar $S \rightarrow aaA, A \rightarrow S / a$	3	2	6
6	Define a derivation tree for CFG.	3	1	1
7	Construct CFG L= { $a^n b^n$; $n \ge 1$ }.	3	2,3	6
8	Find a LM derivation for aaabbabbba with the productions.	3	2	5
9	Find L(G), $S \rightarrow aSb, S \rightarrow ab$.	3	2	5
10	Show that id* id can be generated by two distinct leftmost derivation in the grammar	3	2	2

11	Write a CFG for the set of strings which does not produce any palindromes.	3	2	6
12	Find the derivation tree for the grammar $G = (\{S, A, B\}, \{a,b\}, P, S\}$ Where P is given by $S \rightarrow Aa / bB$ $A \rightarrow ab$	3	2	5
10	$B \rightarrow aBb / a$			
13	Define parse tree.	3	1	1
14	What are the two major normal forms for context-free grammar?	3	2	4
15	What is a useless symbol?	3	2	4
16	Define Nullable Variable?	3	1	1
17	Let G = (V, T, P,S) with the productions given by S → aSbS/ B / ε B→ abB Eliminate the useless production.	3	2	5
18	What is a useful production?	3	2	4
	Determine whether the grammar G has a useless production?		-	
19	$S \rightarrow A$ $A \rightarrow aA / \varepsilon$ $B \rightarrow bA$	3	2	4
20	Write a procedure to eliminate ε production.	3	2	6
21	Write the procedure to eliminate the unit productions.	3	2	6
22	Define CNF.	3	1	1
23	Define GNF.	3	1	1
	Part – B			
24	 Consider the Grammar G whose productions are S → 0B / 1A A → 0 / 0S / 1AA B → 1 / 1S / 0BB and the string 0110 a. Find the left most derivation and associated derivation tree. b. Find the right most derivation and associated derivation tree. c. Show that the G is ambiguous. d. Find L(G) 	3	2	5
25	 Consider the Grammar whose productions are S → aAS / a A → SbA / SS / ba a. Construct a LMD and RMD Tree for S =>* aabbaa b. Find the above grammar is ambiguous or unambiguous. 	3	2	5
26	Construct Right Linear Grammar from the given Finite Automata	3	2,3	6

			1	
]	Construct Left Linear Grammar from the given Finite Automata			
	a, b			
	A			
27	b	3	2,3	6
		-	_,_	-
	C			
	a, b			
	Construct a Finite Automata from the following Right Linear Grammar			
	a) $A \rightarrow aB/bA/b$			
	$B \rightarrow aC/bB$			
	$C \rightarrow aA/bC/a$			
28		3	2,3	6
	b) $S \rightarrow A / B / \epsilon$			
	$A \rightarrow /1B/0$			
	$B \rightarrow 0S/1A/1$			
	Construct a Finite Automata from the following Left Linear Grammar			
	a) $A \rightarrow Ba/Ab/b$			
	$B \rightarrow Ca/Bb$			
	$C \rightarrow Aa/Cb/a$			
29		3	2,3	6
	b) $S \rightarrow Aab / Aba / B / \epsilon$			
	$A \rightarrow Sb / b$			
	$B \rightarrow Sa$			
	$C \rightarrow \varepsilon$			
	Consider the grammar			
	$S \rightarrow 0A0 / 1B1 / BB$			
	$A \rightarrow C$			
30	$B \rightarrow S / A$	3	2,3	5
	$C \rightarrow S / \epsilon$ and simplify using the same order a. Eliminate ϵ -Productions			
	a. Eliminate ε-Productionsb. Eliminate unit productions			
	c. Eliminate unit productions			
	Let G be the following grammar with productions:			
	a) $S \rightarrow bA / aB$			
	$A \rightarrow bAA / aS / \varepsilon$			
	$B \rightarrow aBB / bS / b$. Convert the above grammar G into CNF			
31	<i>b</i> / <i>ubb</i> / <i>ob</i> / <i>o</i> . Convert the above grammar O into CIVI	3	2,3	5
	b) $S \rightarrow 0A0 / 1B1 / BB$	-	-,2	
	$A \rightarrow C$			
	$B \rightarrow S / A$			
	$C \rightarrow S / \epsilon$. Convert the above grammar G into CNF			
32	Find the GNF equivalent of the given grammar	3	22	5
52	$S \rightarrow AA / 0 \qquad A \rightarrow SS / 1$	3	2,3	5
	Consider the Grammar $G = ({S,A,B}, {a,b}, P, S)$ as the productions			
	$S \rightarrow AB$			
33	$A \rightarrow BS / b$	3	2,3	5
	$B \rightarrow SA / a$ Convert it into GNF.			

<u>Unit – IV</u>

Sl.	Questions	СО	PO	BT
No	Part – A			
1	Define pushdown automaton.	4	1	1
2	What are the different ways of language acceptances by a PDA and define them.	4	2	4
3	Construct a PDA that accepts the language generated by the grammar $S \rightarrow aSbb / aab$	4	2,3	6
4	Construct a PDA that accepts the language generated by the grammar $S \rightarrow aABB$, $A \rightarrow aB / a$, $B \rightarrow bA / b$	4	2,3	6
5	How do you convert CFG to a PDA.	4	2	6
6	Define Deterministic PDA.	4	1	1
7	Is it true that NDPA is more powerful than that od DPDA? Justify your answer.	4	2	5
8	Is it true that the language accepted by a PDA by empty stack and final states are different languages.	4	2	5
9	What is the additional feature PDA has when compared with NFA? Is PDA superior over NFA in the sense L acceptance? Justify your answer.	4	2	4
	Part – B			
10	Prove that if L=N(PN) for some PDA PN = (Q, Σ , Γ , δ , q0, Z0, F), then there is a PDA PF such that L=L(PF).	4	1,2	2
11	Prove that if M1 = (Q, Σ , Γ , δ , q0, Z0, F) accept by final state, we can find a PDA M2, accepting L by empty store i.e., L = L(M1) = N(M2).	4	1,2	2
12	 Construct a PDA that accepts the following languages a. L= {wcwr W in (0+1)* } by empty stack or final state b. L = {wwR ; w ∈ (0+1)*} by empty stack or final state c. L = {0n 1n ; n ≥ 0} accepted by empty stack or final state d. L = {anbmcmdn; n, m ≥ 1} accepted by empty store and check whether the string w = aaabcddd is accept or not. 	4	2,3	б
13	Construct a PDA that will accept the language generated by the grammar $G = (\{S, A\}, \{a, b\}, P, S)$ with the productions $S \rightarrow AA / a, A \rightarrow SA / b$ and test whether "abbabb" is in N(M).	4	2,3	6
14	Consider the grammar G = (V, T, P, S) and test whether "0101001" is in N(M). Where Productions are $S \rightarrow 0S/1A/1/0B/0$ $A \rightarrow 0A/1B/0/1$ $B \rightarrow 0B/1A/0/1$	4	2,3	4
15	Construct a PDA from the given CFG G = ({S, A}, {a, b}, P, S) where the productions are $S \rightarrow AS / \epsilon$ and $A \rightarrow aAb / Sb / a$	4	2,3	6
16	Construct a PDA from the following CFG. $G = (V, T, P, S)$ with $V = \{S\}$, $T = \{a, b, c\}$, and $P = \{S \rightarrow aSa, S \rightarrow bSb, S \rightarrow c\}$	4	2,3	6
17	Convert the PDA P= ({p, q}, {0,1}, {X,Z0}, δ , q, Z0) to a CFG. Where δ is given below: δ (q0, 0, S) = {(q0, AS)} δ (q0, 0, A) = {(q0, AA), (q1, S)} δ (q0, 1, A) = {(q1, ϵ)} δ (q1, 1, A) = {(q1, ϵ)} δ (q1, ϵ , A) = {(q1, ϵ)} δ (q1, ϵ , S) = {(q1, ϵ)}	4	2,3	5

18	Convert the PDA P= ({p, q}, {0,1}, {X,Z0}, δ , q, Z0) to a CFG, if is given by $\delta(q, 1, Z0) = \{(q, XZ0)\}$ $\delta(q, 1, X) = \{(q, XX)\}$ $\delta(q, 0, X) = \{(q, XX)\}$ $\delta(q, \varepsilon, X) = \{(p, X)\}$ $\delta(q, \varepsilon, X) = \{(q, \varepsilon)\}$ $\delta(p, 1, X) = \{(p, \varepsilon)\}$ $\delta(p, 0, Z0) = \{(q, Z0)\}$	4	2,3	5
----	---	---	-----	---

<u>Unit – V</u>

S1.		00		рт			
No	Questions	CO	PO	BT			
Part – A							
1	What is a Turning Machine?	5	1	4			
2	Define a Turing Machine.	5	1	1			
3	Define Instantaneous description of TM.	5	1	1			
4	What are the applications of TM?	5	1	4			
5	What are the required fields of an instantaneous description or configuration of a TM.	5	1	4			
6	Differentiate PDA and TM.	5	2	3			
7	Define Universal TM	5	1	1			
8	When is a function f said to be Turing computable?	5	2	4			
9	Explain the Class of Grammars.	5	1	2			
10	Discuss about PCP.	5	2	2			
11	Differentiate PCP and MPCP.	5	2	4			
	Part – B						
12	Design a TM to recognize the language $L = \{a^n b^n; n>0\}$ and test whether the strings "aabb" is accepts or not.	5	2,3	6			
13	Design a TM to recognize the language $L = \{ww^r ; w \in (a+b)^*\}$ and test whether the strings "abba" is accepts or not.	5	2,3	6			
14	Design a TM to recognize the language $L = \{wcw^r ; w \in (0+1)^*\}.$	5	2,3	6			
15	Design a Turing machine to compute proper subtraction m-n.	5	2,3	6			
16	Explain the class of Grammars with example.	5	1,2	2			
17	Explain the PCP and MPCP with example	5	1,2	2			