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Introduction

Definition of TOC

TOC describes the basic ideas and models underlying computing. TOC

suggests various abstract models of computation, represented mathematically.

History of Theory of Computation
v/ 1936 Alan Turing invented the Turing machine, and proved that there exists
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an unsolvable problem.

1940’s Stored-program computers were built.

1943 McCulloch and Pitts invented finite automata.

1956 Kleene invented regular expressions and proved the equivalence of
regular expression and finite automata

1956 Chomsky defined Chomsky hierarchy, which organized languages
recognized by different automata into hierarchical classes.

1959 Rabin and Scott introduced nondeterministic finite automata and proved
its equivalence to (deterministic) finite automata.

1950’s-1960’s More works on languages, grammars, and compilers

1965 Hartmantis and Stearns defined time complexity, and Lewis, Hartmantis
and Stearns defined space complexity.

1971 Cook showed the first NP-complete problem, the satisfiability problem.
1972 Karp Showed many other NP-complete problems.

1976 Diffie and Helllman defined Modern Cryptography based on NP-
complete problems.

1978 Rivest, Shamir and Adelman proposed a public-key encryption scheme,
RSA.

Finite State systems

A finite automaton can also be thought of as the device shown below consisting of a tape
and a control circuit which satisfy the following conditions:
The tape has the left end and extends to the right without an end.
The tape is dividing into squares in each of which a symbol can be written prior to the
start of the operation of the automaton.
The tape has a read only head.
The head is always at the leftmost square at the beginning of the operation.
The head moves to the right one square every time it reads a symbol.
It never moves to the left. When it sees no symbol, it stops and the automaton
terminates its operation.
There is a finite control which determines the state of the automaton and also controls
the movement of the head.

v
v

AN
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Finite Control

Finite Automaton

Basic Definitions

v" Symbol :
Symbol is a character.
Example : a,b,c,..., 0,1,2,3,....9 and special characters.

v Alphabet :
An alphabet is a finite, nonempty set of symbol. It is denoted by .
Example :
a) > =1{0,1}, the set of binary alphabet.
b) Y ={ab........ z}, the set of all lowercase letters.

c) > ={+ &,.....}, the set of all special characters.

v" String or Word :
A string is a finite set sequence of symbols chosen from some alphabets.
Example :
a) 0111010 is a string from the binary alphabet Y = {0,1}
b) aabbaacab is a string from the alphabet > = {a,b,c}

v' Empty String :
The empty string is the string with zero occurrences of symbols (no symbols).
It is denoted by €.

v Length of String :
The length of a string is number of symbols in the string. It denoted by |w|.

Example :

w = 010110101 from binary alphabet )’ = {0,1}
Length of a string |w| =9
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v Power of an Alphabet:
v/ IfY is an alphabet, we can express the set of all strings of certain length
from that alphabet by using an exponential notation. It is denoted by Zk IS
the set of strings of length k, each of whose symbols is in ).

Example :
> ={0,1} has 2 symbols
i) ' ={01} (. 2'=2)
i) 32 ={00, 01,10, 11} (.. 2°=4)
i) >* ={000,001,010,011,100,101,110,111} (.. 2°=8)

v The set of strings over an alphabet 3 is usually denoted by .
For instance, >, = {0,1} = {¢,0,1,00,01,10,11}
(.Y =03 U2 L) - with € symbol.

v' The set of strings over an alphabet Y excluding e is usually denoted by Y *.
For instance, Z+ = {O,l}+ ={0,1,00,01,10,11}

(. 3'=Y"-{e} or YIUTAUYR.....L)
- without € symbol.

v Concatenation of String
Join the two or more strings. Let x and y be two strings. Concatenation of
strings X and y is appending symbols of y to right end of x.

X = 818283.ccuinnnnnn.. an and y=Dbibbs............... bn
Concatenation of String xy = ajazas...... ap bibobs....... bn
Example :

s = ababa and t=cdcddc

Concatenation st = ababacdcddc

v Languages:
If ¥ is an alphabet, and L < X* then L is a language.
Examples:
o The set of legal English words
o The set of legal C programs
o The set of strings consisting of n 0's followed by n 1's
{€01,0011,000111, ...}

v Operations on Languages

v' Complementation
Let L be a language over an alphabet X. The complementation of L, denoted
by L, is Z*-L.

v" Union
Let L; and L, be languages over an alphabet X. The union of L; and Lo,
denoted by LyuUL,, is{x|xisinL;or L,}.

v Intersection
Let L; and L, be languages over an alphabet X. The intersection of L; and L,
denoted by LinLy, is { x | xisin L; and L}
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v Concatenation
Let L; and L, be languages over an alphabet . The concatenation of L; and
L, denoted by L;-Ly, is {wq-w,| Wy is in Ly and Wy is in Ly},

v Reversal
Let L be a language over an alphabet X. The reversal of L, denoted by L', is
{w'|wisin L}.

v" Kleene’s closure
Let L be a language over an alphabet . The Kleene’s closure of L, denoted by

L*, is {x | foranintegern>0X =Xy Xz ... X, and Xy, Xz, ..., Xy are in L}.
(e8]
L"=U L (e.g.a ={c,a,aa,aaa,...... 13
i=0

v" Positive Closure
Let L be a language over an alphabet X. The closure of L, denoted by L+, is {

X [for an integer n > 1, X = X1Xz...X, and X, X2, ..., xpare in L}
o0
L'=U L (e.0.a ={a,aa,aaa,...... 3]
i=1

Finite Automata
Automaton is an abstract computing device. It is a mathematical model of a system,
with discrete inputs, outputs, states and set of transitions from state to state that occurs on
input symbols from alphabet X.
v’ It representations:
o Graphical (Transition Diagram or Transition Table)
o Tabular (Transition Table)
o Mathematical (Transition Function or Mapping Function)
v" Formal Definition of Finite Automata
A finite automaton is a 5-tuples; they are M=(Q, X, 0, qo, F)
where
Q is a finite set called the states
> is a finite set called the alphabet
0 :Q XX — Qis the transition function
Jo € Q is the start state also called initial state

F < Qs the set of accept states, also called the final states

v Transition Diagram (Transition graph)
It is a directed graph associated with the vertices of the graph corresponds to

the states of the finite automata. (or) It is a 5-tuple graph used state and edges
represent the transitions from one state to other state.

Example: 0 1 h
N
Qo =® 02
Start or Initial State Final or Accepting State
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v' Transition Table.
It is the tabular representation of the DFA. For a transition table the transition

function is used.

Example:
States 0 Input 1
~{q0} {91} {90}
{al} - {a2}
{02} - -

v" Transition Function.
- The mapping function or transition function denoted by 6.
- Two parameters are passed to this transition function: (i) current state and
(i) input symbol.
- The transition function returns a state which can be called as next state.
O (current_state, current_input symbol ) = next_state
Example:

5(q0,a)=ql

v/ Computation of a Finite Automaton
o The automaton receives the input symbols one by one from left to right.
o After reading each symbol, M1 moves from one state to another along the
transition that has that symbol as its label.
o When M1 reads the last symbol of the input it produces the output: accept if
M1 is in an accept state, or reject if M1 is not in an accept state.

v Applications
o It plays an important role in complier design.
o Inswitching theory and design and analysis of digital circuits automata theory
is applied.
Design and analysis of complex software and hardware systems.
To prove the correctness of the program automata theory is used.
To design finite state machines such as Moore and mealy machines.
It is base for the formal languages and these formal languages are useful of the
programming languages.

O O O O

v" Types of Finite Automata
o Finite Automata without output
o Deterministic Finite Automata (DFA)
o Non-Deterministic Finite Automata (NFA or NDFA)
o Non-Deterministic Finite Automata with € move (e-NFA or e-NDFA)
o Finite Automata with output
o Moore Machine
o Mealy Machine
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Deterministic Finite Automata (DFA)

Deterministic Finite Automaton is a FA in which there is only one path for a specific
input from current state to next state. There is a unique transition on each input symbol.

v" Formal Definition of Deterministic Finite Automata

A finite automaton is a 5-tuples; they are M=(Q, X, §, qo, F)
where

Q is a finite set called the states
¥ is a finite set called the alphabet

0 :Q XX — Qis the transition function
Jo € Q is the start state also called initial state
F © Q is the set of accept states, also called the final states

Non-Deterministic Finite Automata (NDFA or NFA)

Non-Deterministic Finite Automaton is a FA in which there many paths for a
specific input from current state to next state.

v" Formal Definition of Non-Deterministic Finite Automata

A finite automaton is a 5-tuples; they are M=(Q, X, 6, Qo, F)
where

Q is a finite set called the states
> is a finite set called the alphabet

§ 1 Q XX — 2%is the transition function

Qo € Q is the start state also called initial state

F © Qs the set of accept states, also called the final states
1

1
0
S
. Oamn O
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Finite Automaton with - moves
The finite automata is called NFA when there exists many paths for a specific input

or € from current state to next state. The g is a character used to indicate null string.

v Formal Definition of Non-Deterministic Finite Automata
A finite automaton is a 5-tuples; they are M=(Q, X, 6, Qo, F)
where
Q is a finite set called the states
> is a finite set called the alphabet
§ 1Q X (T u{e}) — 2is the transition function
Jo € Q is the start state also called initial state

F Qs the set of accept states, also called the final states
1

1
L3

Differentiate DFA and NFA

SI. No DFA NFA
DFA is Deterministic Finite | NFA is Non-Deterministic Finite
1.
Automata Automata
For given state, on a given input | For given state, on a given input
2. we reach to deterministic and | we reach to more than one state.
unique state.
3 DFA is a subset of NFA Need to convert NFA to DFA in
' the design of complier.
4 §:QXXx—0Q §:Q Xz — 2°
' Example: 8(qo, @) = {01} Example : 6(qp, @) = {01, 02}

Problems for Finite Automata
1. Design FA which accepts odd number of 1’s and any number of 0’s.

2.
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3. Design FA to check whether given unary number is divisible by three.

5. Obtain the g closure of states q0 and g1 in the following NFA with € transition.

c

a b
Q :
€
Jdo ’\‘h/ ™ 02

Solution:
¢ - CLOSURE {q0} = {q0, q1,92}
¢ - CLOSURE {qg1} = {q1,92}

6. Obtain € closure of each state in the following NFA with € move.
2

0 1
& % €
Jdo =\Q1J 02

Solution:
¢ - CLOSURE {q0} = {q0, q1,92}
¢ - CLOSURE {q1} = {q1,92}
¢ - CLOSURE {qg2} = {qg2}

Tutorial:

\]

. Design Finite Automata which accepts the only 0010 over the input X = {0, 1}.

8. Design Finite Automata which checks whether given binary number is even or
odd over the input X = {0, 1}.

9. Design Finite Automata which accepts only those strings which starts with ‘a’

and end with ‘b’ over the input X = {a, b}.
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10. Design a DFA to accept the language L = {w | w has both an even number of 0’s
and an even number of 1’s.

11. Design a DFA to accept the language L = {w | w has both an odd number of 0’s
and an odd number of 1’s.

12. Obtain € closure of each state in the following NFA with € move.

b

a, b
: /‘(\ a,b
> dz2

: o)

Equivalence of NFA and DFA

For every NFA, there exists an equivalent DFA.

Theorem:

For every NFA, there exists a DFA which simulates the behavior of NFA. If L is the set
accepted by NFA, then there exists a DFA which also accepts L.

Or

Let L be a set accepted by NFA (L(M)), then there exists a DFA that accepts (L(M")).

Proof:

Let M = (Q, X, 6, qo, F) be an NFA for language L, then define DFA M’ = (Q", X', &', qo’, F').

The states of M’ are all the subset of M.
The elements in Q' will be denoted by [g1, 02, O3, ... , Qi] and the elements in Q are
denoted by {q1, 92, G3, ... , qi}-
Initial state of NFA is qo, and also an initial state of DFA is qo’ =[qo].
we define
6" ([91, 92, Gs, -, qil.@) = [P1, P2, P3, ..., pi
if only if
6({qu, 2, 0, ---, 9i}a) = {P1, P2, Ps, ..., pi}

This means that whenever in NFA, at the current state {qa, 92, qs, ..., qi} if we
get input ‘a’ and it goes to the next states {pi, P2, P3, ..., pi} then while constructing
DFA for it the current state is assumed to be [q1, gz, d3, ..., qi]. At this state, the input
is ‘a’ and it goes to the next state is assumed to be [p1, P2, P3, ..., pi]- On applying
transition function on each of the state’s qi, (g, qs, ..., qi the new state may be any of
the state’s from py, p2, P3, .., Pi.

Theorem can be proved with the induction method by assuming length of input string ‘x’.

3'(qo’, X) = [A1, 2, O3, ..., qi]
if only if

d(qo, X) = {01, 02, O3, ---, qi}
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Basis method:
If the input string length is 0. ie. |x|=0 where x = {&}, then qo’ = [qo].

Induction method:

If we assume that the hypothesis is true for the length of input string is less than or
equal to ‘m’. Then if ‘xa’ is a length of string is m+1. Hence the transition function (8') could
be written as,

o’ (q0'1 Xa) =o' (6' (q0'1 X)’a)
By induction hypothesis,

0'(do’, X) = [P1, P2, P3, -, pil
if only if

0(qo, X) = {p1, P2, P3, ..., pi}

By definition of &'

d'([p1, P2, P3y ---»> pil, &) = [r1, 2, I3, ..., 1i
if only if

3({p1, P2, P3, ---» i}, @) = {r1, r2, r3, ..., 1i}
Thus,

o' (q()', xa) = [I’l, Mo, I3y ey l'i]
if only if
0 (qo, xa) ={ry, ra rs ..., ri}
Shown by induction hypothesis,

LM) =L(M’)

Extended Transition Function (&' or 6”\)

This is used to represent transition functions with a string of input symbols ‘w’ and returns a
set of states. It is represented by 8" or "

Suppose w = xa

0 (q7 X) = {p11 P2, Ps, ..., pk}
then

o0

U §"pia) = {r,rars, ..., tm}
i=0

6" (pi, xa) = 8"(8(q,x) a))
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Example Problems for Converting NFA into DFEA

1. Obtain the DFA equivalent to the following NFA.

0,1
0 '\1/ 2
Solution :
The transition table for given NFA can be drawn as follows
Input
States 0 1
~>{q0} {a0}{q1} {a0}
{a1} - {92}
*{a2} - -

Let the DFA M’ = (Q', X', &', qo’, F’) then, transition function (6") will be computed as,

8’([q0], 0) = [0, q1] - a new state - A
6'([q0], 1) = [q0]

6'([g1], 0) = -

6'([g1], 1) = [g2]

6'([92], 0) = -

6'([92], 1) = -

6'([90,q1],0) = [q0,q1]

8'([go,91],1) = [q0,92] a new state - B
6'([90,g2],0) = [q0,q1]

6'([90,g2],0) = [q0]

The transition table for DFA

Input
States 0 1
2[q0] | [90, g1] [q0]
[a1] - [a2]
*[92] - -
[90,q1] | [q0,q1] | [90, g2]
*[00,92] | [q0,a1] | [qQ]

The transition diagram for DFA

1 QO
» A 1
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2. LetM = ({q0, q1}, {0,1}, 8, q0, {q1}) be NFA. Where o (q0, 0) = {q0, q1},
4 (q0, 1) = {q1}, 6 (q1,0)={d}, o (ql, 1) = {q0, q1}. Construct its equivalent DFA.

Solution :
The transition table for NFA
Input
States 0 1
~>{q0} {q0}{q1} {q1}
*{q1} ¢ {90}{ql}
The transition diagram for NFA 1
0

0,1
do >

Let the DFA M’ = (Q', X', d', qo’, F’) then, transition function (8’) will be computed as,

8" ([90], 0) = [qO, g1] -a new state A
6'([q0], 1) = [q1]

6'([q1], 0) = ¢

6'([q1], 1) = [q0]

6'([q0,q91],0) = [q0,g1]

6'([go,q1],1) = [q0,q1]

The transition table for DFA

Input
States 0 1
2[90] | [90, g1] [91]
*[a1] ) [90]
*[90, g1] | [90,q1] | [q0, 1]

The transition diagram for DFA

0,1

12 /28



SITAMS — B.Tech — 1l Year - 1l Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
18CSE225 — Formal Languages and Automata Theory Professor in CSE,

Unit -1

Tutorial:

3. Obtain the DFA equivalent to the following NFA.
a,b

a,b
b /\(_\ ab
Jdo ’\Ch/ 0z

4. LetM =({q0, g1,92,93}, {0,1}, 8, q0, {q2,03}) be NFA. Where 6 (q0, 0) = {q0, q1},
6(q0, 1) = {q1}, 8 (q1,0) = {92,943}, 3 (q1, 1) = {q0, q1}, 6 (42, 0) = {2},
6 (q2, 1) ={q0, g3}, 8 (¢3, 0) ={q3}, 6 (q3, 1) = {g2, g3}, Construct its equivalent
DFA.

Equivalence of NDFA’s with and without g-moves

Theorem:

If L is accepted by NFA with g-moves, then there exists L which is accepted by NFA
without e-moves.

Proof:

Let M = (Q, %, 3, qo, F) be an NFA with e-moves for language L, then define NFA without

e-moves M’ = (Q’, X', &', o', F').

e The elements in Q" will be denoted by [g1, 02, O3, ... , qi] and the elements in Q are
denoted by {qi, 02, 03, ... , qi}-

e Initial state of NFA with e-moves is o, and also an initial state of NFA without e-moves
is qo” =[dlo]-

o F'=

e &' can be denoted by &'’ with some input.

Basis:
|X| =1, where X is a symbol ‘a’.
0'(q0,a) =06"(q0,a)
Induction:
|X|>1, Let X =wa
3'(q0,wa) = &'( 8"(q0,w),a)
By induction hypothesis,
6'(q0,w) = 8"(q0,w) =p
Now we will show that
&'(p,a) = 8(q0,wa)
But,
&'(p,a) = 8'(q,a) = 8"(q.a) as p =38"(q0,w)
We have
3"(q,a) = 0"(q0,wa)
Thus by definition of 5"
d'(q0,wa) = 8"(q0,wa)
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Example Problems for Converting NFA with € into NFA without &

1. Construct NFA without € from NFA with .

& % €
Jdo ’@ 02
Solution:

Find the ¢ — closure function of all states:
¢ —closure (q0) = {q0, q1, g2}
¢ —closure (ql1) = {ql, g2} ¢ — closure (g0)
¢ —closure (g2) = {q2} ={q0,q1,92}

Compute &' function:
6'(q0,0) = 6" (q0,0)

€ — closure (5(8'(q0,¢),0))

¢ — closure (6({q0,91,92},0))
¢ —closure (q0) ={q0,91,92}
¢ — closure (6(8'(q0.,¢),1))

¢ — closure (6({q0,91,92},1))
¢ —closure (q1) ={ql,92}

€ — closure (6(8'(q0,¢),2))

¢ — closure (6({q0,91,92},2))
¢ —closure (q2) = {92}

€ —closure (5(8'(q1,¢),0))

¢ — closure (6({q1,92},0))

e —closure (¢) ={é}

¢ — closure (6(8'(ql,¢),1))

¢ — closure (6({ql1,92},1))

¢ —closure (q1) ={ql,92}

€ — closure (5(8'(q1,¢),2))

¢ — closure (6({q1,92},2))

¢ —closure (q2) = {92}

€ — closure (6(8'(q2,€),0))

¢ — closure (6({g2},0))

e —closure (¢) ={¢}

€ — closure (6(8'(q2.€),1))

¢ — closure (6({g2},1))

e —closure (¢) = {¢}

€ — closure (6(8'(92,€),2))

¢ — closure (6({g2},2))

¢ —closure (q2) = {92}

6'(q0,1) = 5" (q0,1)

6'(q0,2) = 8" (q0.2)

6'(q1,0) = 8" (q1,0)

6'(q1,1) =5" (q1,1)

6'(q1,2) = 8" (q1,2)

6'(q2,0) = 8" (42,0)

6'(q2,1) = 5" (92,1)

6'(q2,2) = 8" (42,2)

14 /28



SITAMS — B.Tech — 1l Year - 1l Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
18CSE225 — Formal Languages and Automata Theory Professor in CSE,

Unit -1

The transition table for NFA

States 0 Inpult >
200 | {90,102} | {91,902} | {92}
ql {6} {91,902} | {92}
*g2 {o} {0} {92}

The transition diagram for NFA
0

0 1

Solution:

Find the € — closure function of all states:
¢ —closure (q0) = {q0, q1}
¢ —closure (ql1) = {q1}

Compute &' function:
0'(q0,0) = 5" (q0,0)

€ — closure (6(8'(q0,¢),0))
¢ — closure (6({q0,91},0))
¢ — closure (q0) ={q0,91}
€ — closure (5(8'(q0,¢),1))
¢ — closure (6({q0,91},1))
e —closure (q1) ={ql}

¢ — closure (6(8'(q1,¢),0))
¢ — closure (6({q1},0))

e —closure (¢) ={é}

¢ — closure (6(8'(q1,€),1))
€ —closure (6({q1},1))

¢ —closure (q1) ={ql}

8'(q0,1) = 8" (q0,1)

6'(q1,0) = 8" (q1,0)

6'(q1,1) =5" (a1,1)

The transition table for NFA

Input
States 0 1

>*q0 | {q0,g1} 191}
"ql {6} 191}
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The transition diagram for NFA
0 1

Tutorial:

1. Obtain the NFA equivalent to the following NFA with e-move.

a,b
& /\(\ a, b
0z

i o)

2. Let M =({q0, 91,92,93}, {0,1}, 8, q0, {q2,03}) be e-NFA.
Where 6 (q0, 0) = {q0, q1}, 5 (q0, 1) ={q1}, & (q1, 0) = {92,093}, 8 (q1, £) = {ql},
o (q1,1) = {q0, q1}, & (92, 0) = {q2}, 8 (42, £) = {3}, & (92, 1) = {00, 43,},
6 (93, 0) = {93}, 6 (93, 1) ={q2, g3}, o (q3, €) = {g0}. Construct its equivalent
NFA.

Example Problems for Converting NFA with g-move into DFA

1. Construct DFA from the following e-NFA.

a,b
g /\(\ a, b
> dz

® &
Solution:

¢ —closure (q0) = {90, g1, g2} > A new state in DFA

= g¢—closure (90,02)
= {90,091,092} 2> A
= g¢—closure (90,q1,92)
= {90,01,092} 2> A

€ — closure (0 (A, a))

€ — closure (6 (A, b))

The transition table for DFA

Input
A b a,b
A

States
>*A

The transition diagram for DFA @
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2. Construct DFA from the following e-NFA.

Solution:
g —closure (p)

{p.q,r} = A new state in DFA

€ — closure (6 (A, 0)) = &—closure (p,r) =¢—closure (p) w €—closure (r)

{p,a,r} v {rs} ={p,q.,r,s} > B new state in DFA

€ — closure (6 (A, 1))

€ — closure (q,s) =¢&— closure (q) w € — closure (S)
{ar} v {p.ars} ={p.ars}>B

€ —closure (p,r) =¢—closure (p) U & — closure (r)
{p.ar} v {rs} ={p.qrs}>B

€ — closure (6 (B, 0))

€ — closure (6 (B, 1)) = &—closure (g,s) =& — closure (q) w € — closure (s)

{ary v {pars} ={p.qrs} > B

The transition table for DFA

Input
States 0 1
2A B B
*B B B
The transition diagram for DFA
0,1

0‘1
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Tutorial:

1. Obtain the DFA equivalent to the following NFA with e-move.
0

1 (3

2. Let M =({q0, 91,92,93}, {0,1}, 8, q0, {q2,03}) be e-NFA.
Where 6 (q0, 0) = {q0, q1}, & (q0, 1) = {q1}, & (q1, 0) = {92,093}, 8 (q1, €) = {ql},
d (q1, 1) = {q0, q1}, 6 (q2, 0) = {02}, & (92, €) = {3}, & (q2, 1) = {q0, 93,},
6 (q3,0) ={g3}, 6 (93, 1) ={q2, g3}, 8 (q3, €) = {g0}. Construct its equivalent
DFA.

Minimization of DFA

v" DFA minimization stands for converting a given DFA to its equivalent DFA with
minimum number of states.

v Suppose there isa DFAM = (Q, 3, q0, 8, F) which recognizes a language L. Then the
minimized DFA M =(Q’, Y., q0, 8’, F*) can be constructed for language L as:

1. We will divide Q (set of states) into two sets. One set will contain all final states
and other set will contain non-final states. This partition is called Py.

2. Initialize k=1

3. Find Py by partitioning the different sets of Py.1. In each set of Py_;, we will take

all possible pair of states. If two states of a set are distinguishable, we will split the

sets into different sets in Py.

Stop when Py = P.; (No change in partition)

All states of one set are merged into one. No. of states in minimized DFA will be

equal to no. of sets in Py.

ok~

Example:
Consider the following DFA into minimized DFA.
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Solution:
Transition Table for DFA
Inputs
States 0 1
->q0 g3 gl
*ql g2 as
*q2 q2 qo
q3 q0 q4
*q4 2 qo
qo as as

Step 1: Divide into two sets. One set is containing final states and other set containing
non-final states.

Inputs Partition
States 0 1 (Po)
2490 g3 al Non-Final
a3 9 94 States
a5 g5 g5
*ql 92 g5
*q2 q2 a5 Final States
*g4 92 g5

Step 2: To calculate Py, we will check whether sets of partition Py can be partitioned or

not:

Forset{ql, q2,04}:
0(ql,0)=38(q2,0)=q2andd(ql,1)=56(qg2,1)=q5, Soql and g2 are
not distinguishable.
Similarly, 6 (q1,0)=38(qg4,0)=q2andd(ql,1)=06(q4,1)=q5,Soql
and g4 are not distinguishable.
So, g2 and g4 are not distinguishable. So, {gl, g2, g4} set will not be
partitioned in P1.

Inputs Partition
States 0 1 (Po)
-2q0 q3 ql .
i
a5 g5 g5
*ql g2 as
*g2 g2 g5 Final States
*q4 g2 gs
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Step 3: Remove g2 and g4 row from the table and replace g2 and g4 into g1 where
however present in the table.

Inputs Partition
States 0 1 Po)
-2q0 g3 gl i
Non-Final
93 q0 4% ql States
qo qs qs
- Final
al al a5 States

Step 4:
e 6(q0,0)=qg3 and b (g3, 0)=q0-Moves of g0 and g3 on input symbol 0
are g3 and g0 respectively which are in same set in partition PO.
e 6(q0,1)=05(q3,1)=ql- Moves of g0 and g3 on input symbol 1 is ql
which are in same set in partition PO.
e S0, g0 and g3 are not distinguishable.

Step 5: Remove g3 row from the table and replace g3 into g0 where however present in
the table.

Inputs Partition
States 0 1 (Po)
290 4540 ql Non-Final
q3 q0 ql States
as o as
* Final
ql ql a5 States

Step 6: Final Transition Table for DFA (no more not distinguishable)

Inputs Partition
States 0 1 (Po)
->q0 qo gl Non-Final
g5 g5 g5 States
Final
“al al as States

Step 7: Transition Diagram for minimized DFA
0

2
% ! = ! [ 5

0,1
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Tutorial:

1. Consider the following DFA into minimized DFA.

Finite automata with Output
v" Finite automata may have outputs corresponding to each transition. There are two model
or machine for finite automata with output.

Finite Automata
with Output
|

I 1
[ Mealy Machine } [ Moore Machine }

Mealy Machine

v" A Mealy Machine is an FSM whose output depends on the present state as well as the
present input.

v The value of the output function z(t) depends only on the present state q(t) and present
input A (1), i.e. z(t) = A (q(t), x(1))

v The length of output for a mealy machine is equal to the length of input. If input string e,
the output string is also .
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v" It can be described by a 6 tuples M = (Q, 3., 4, 3, A, q0)

where

e Qs afinite set of states.

> is a finite set of input symbols
A is a finite set of output symbols
0 is the input transition function where 6: Q X > — Q
A is the output transition function where A: Q x > — A
qo is the initial state

v’ Transition table of mealy machine:

Input=0 Input=1
Present State
Next State Output | Next State Output
->q0 ql 0 g2 0
gl gl 0 g2 1
02 ql 1 02 0
v Transition diagram of mealy machine:
N\ o
1/1 0/1
1/0 H
\f Mo

Moore Machine

v" Moore machines are FSM whose output depends on the present state as well as the

previous state.

v' The value of the output function z(t) depends only on the present state g(t) and

independent of the current input x(t), i.e. z(t) = A (q(t))

v The length of output for a moore machine is greater than input by 1. If input string ¢, the

output string is A= A (q(t)).

v' It can be described by a 6 tuples M = (Q, 3, 4, 3, A, q0)

where

e Qs afinite set of states.
e Y isa finite set of input symbols

A is a finite set of output symbols
0 is the input transition function where 6: Q X Y. — Q
A is the output transition function where A: Q — A
qo is the initial state
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v" Transition table of moore machine:

Next State
Present State Input = Input = Output
0 1
->q0 ql g2 0
ql ql g3 0
q2 q4 g2 0
q3 q4 g2 1
q4 ql g3 1

v Transition diagram of moore machine:

Mealy Machine vs. Moore Machine
Mealy Machine

Output depends both upon the present state
and the present input

Generally, it has fewer states than Moore
Machine.

The value of the output function is a
function of the transitions and the changes,
when the input logic on the present state is
done.

Mealy machines react faster to inputs. They
generally react in the same clock cycle.

Moore Machine

Output depends only upon the present state.

Generally, it has more states than Mealy
Machine.

The value of the output function is a function
of the current state and the changes at the
clock edges, whenever state changes occur.

In Moore machines, more logic is required to
decode the outputs resulting in more circuit
delays. They generally react one clock cycle
later.
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Transforming Mealy Machine into Moore Machine

v Transform Mealy Machine into Moore Machine for the given input string and the output
string as same (except for the first symbol).
v Algorithm:
e Step 1: Look into the next state column for any state (example q0,q1, .... qi) and
determine the number of different outputs associated with gi in that column
(output column values are same or different).
e Step 2: qi into several different states. The number of such states being equal to
the number of outputs associated with gi.
e Step 3: qi replaced by gi0 for output 0 and qil for output 1
e Step 4: Convert Mealy Structure to Moore Structure
e Step 5: Add new start state with output 0 and next states same as the next states of
first state.

v' Example:
Consider the Mealy machine described by the transition table given below. To
construct a Moore machine, this is equivalent to mealy machine.

Solution:

a=0 a=1
Present State
Next State Output Next State Output
>q1 q3 0 q2
g2 ql 1 g4
a3 q2 1 q1
g4 g4 1 q3

Step 1: Look into the next state column for any state (example q0.,q1, .... qi) and
determine the number of different outputs associated with gi in that column (output column
values are same or different).

Determine same or
a=o a=1 different output
Present State P
Next State Output Next State Output

->q1 q3 0 g2 0 same

g2 q1 1 g4 0 different

g3 q2 1 ql 1 same

g4 q4 1 g3 0 different
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Step 2: g2 split into g20 and g21 states. Similarly g4 split into g40 and g41.

a=0 a=1
Present State
Next State Output Next State Output
>q1 g3 0 g2 0
q20
g2 < ql 1 q4 0
q21
g3 g2 1 ql 1
q40
q4 < q4 1 93 0
gé1
a=0 a=1
Present State
Next State Output Next State Output
2>q1 q3 0 q2 0
q20 q1 1 g4 0
q21 ql 1 q4 0
q3 q2 1 q1 1
q40 q4 1 q3 0
q41 q4 1 q3 0

Step 3: g2 replaced by 20 for output 0 and g21 for output 1, similarly g4 replaced by q40
for output 0 and 41 for output 1

a=0 a=1
Present State
Next State Output Next State Output
>q1 g3 0 q20 0
q20 q1 1 q40 0
g21 ql 1 q40 0
g3 q21 1 ql 1
q40 q4é1 1 q3 0
q41 q41 1 q3 0
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Step 4: Convert Mealy Structure to Moore Structure

Next State
Present State Output
a=0 a=1
ql g3 q20 1
q20 q1 q40 0
q21 ql q40 1
q3 g21 q1 0
q40 g4é1 q3 0
qé1 gé1 g3 1

Step 5: Add new start state with output 0 and next states same as the next states of first state.

Next State
Present State Output
a=0 a=1
->q0 g3 g20 0
q1 a3 q20 1
q20 ql q40 0
q21 ql q40 1
q3 g21 q1 0
q40 q41 q3 0
q41 q41 q3 1

Transition Diagram for Moore Machine

26/28



SITAMS — B.Tech — 1l Year - 1l Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
18CSE225 — Formal Languages and Automata Theory Professor in CSE,

Unit -1

Transforming Moore Machine into Mealy Machine
v" Transform Mealy Machine into Moore Machine for the given input string and the output
string as same.

v' Algorithm:
e Step 1: Remove output column from moore table and add output column to
mealy table

e Step 2: Fill the output column from moore table.

Example:
Consider the Moore machine described by the transition diagram given below. To
construct a Mealy machine, which is equivalent to moore machine.

Transition Table for Moore Machine

Next State
Present State Output
a=0 a=1
->q0 q3 ql 0
ql ql q2 1
q2 q2 g3 0
g3 q3 qo0 1

Solution:
Step 1: Remove output column from moore table and add output column to mealy table
Transition Table for Mealy:

a=0 a=1
Present State
Next State Output Next State Output
->q0 q3 1 q1 1
ql q1 1 q2 0
g2 q2 0 q3 1
q3 q3 1 q0 0
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Transition Diagram for Mealy:

0/1

0/0

Tutorial Problems:
1. Construct the moore machine from the given mealy machine.

2. Construct the moore machine from the given mealy machine.
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Syllabus : Unit — 11 : Regular Expressions and Regular sets

Regular expressions — Regular languages - Identity rules for regular expressions — Equivalence of
finite automata and regular expressions — Pumping lemma for regular sets — Applications of the
Pumping lemma - Closure proportions of regular sets (Without proof)

Equivalence of finite Automaton and reqular expressions

Regular Languages
A language is called regular language if there exists a finite automaton that recognizes
it. For example finite automaton M recognizes the language L if L = {w | M accepts w}.

v’ Operations on Regular Languages
Let A and B be languages. We define regular operations union, concatenation,
and star as follows:

- Union cAuB={x|xe Av xe€ B}
- Concatenation cA°B={xy|x€e AA ye B}
- Star AT =X .. X |[k=0A Xi€ A 1<i<k}

Regular Expression

Let X be an alphabet. The regular expressions over X and the sets that they denote are
defined recursively as follows:

a. @isaregular expression and denotes the empty set.

b. eisaregular expression and denotes the set {}

c. Foreach ‘a’e X, ‘a’ is a regular expression and denotes the set {a}.

d. If ‘r’ and ‘s’ are regular expressions denoting the languages L; and L,

respectively then

v" Union : r+sisequivalenttoL; U L,
v" Concatenation . rsis equivalent to Ly L,
v Closure . r isequivalentto Ly

Problems for Reqular Expression

1. Write the regular expression for the language accepting all combinations of a’s
over the set 3 = {a}.

L={aaaaaa,...................... }

R=a (i.e. kleen closure)

2. Write regular expression for the language accepting the strings which are
starting with 1 and ending with 0, over the set X, ={0,1}.

L={10,1100,1010,100010...................... }
R=1(0+1)0
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3. Show that (0*1*)* = (0+1)*.

LHS: (0*1*)*= {¢ 0,1,00,11,0011,011,0011110................... }
RHS: (0+1)* = {¢,0,1,00,11,0011,011,0011110................... }
Hence

LHS = RHS is proved

4. Show that (r+s)* # r* +s*,

LHS: (r+s)* = { &, 1,8,IS,IT,SS,ITISSST,........cvvnrenn... }

RHS: r*+s* = {¢,rrrrr............. U { €, 8,85,888,..uuunnnnn. }
= { & I,IT,I11,5,55,SSSS. ...oevvenrnnn.n. }

Hence

LHS # RHS is proved
5. Describe the following by regular expression
a. L1 = the set of all strings of 0’s and 1’s ending in 00.
b. L2 = the set of all strings of 0’s and 1’s beginning with 0 and ending with .

r1 = (0+1)*00
r2 = 0(0+1)*1

6. Show that (r*)* = r* for a regular expression r.

LHS =r* = { & LILIIT, i, )
(T%)* = { & LI, oo )*
(r**  ={&rIrIr, ..covvenennn... ) =r*
LHS = RHS

7. If L ={The language starting and ending with ‘a’ and having any combinations
of b’s in between, that what is r?

rl =ab*a
8. Give regular expression for L= L1 n L2 over alphabet {a,b}
where L1 = all strings of even length,

L2 = all strings starting with ‘b’.

r=rl+r2
r=a"n"+ b (a+b)*
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SITAMS — B.Tech— Il Year - Il Sem CSE
18CSE225 — Formal Languages and Automata Theory
Unit — 111

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE
Professor in CSE,

Syllabus : Unit — 111 : Regular Grammars and Context Free Grammars

Types of Grammars - Regular grammars — Right Linear and Left Linear grammars -
Equivalence of regular grammar and Finite Automata - Context free Grammars - Motivation
and introduction - Derivations - Leftmost derivation - Rightmost derivation - Derivation tree
— Ambiguity - Simplification of CFG’s - Chomsky Normal Form - Greibach Normal Form.

Introduction
v' Language: “A language is a collection of sentences of finite length all constructed

from a finite alphabet of symbols.”
v' Grammar: “A grammar can be regarded as a device that enumerates the sentences of

a language.”

v' A formal grammar is a quad-tuple G=(N, T, P, S)
where
N is a finite set of non-terminals
T is a finite set of terminals and is disjoint from N
P is a finite set of production rules of the formw e(NUT)* — w e(NUT)x*
S € N is the start symbol

v' Chomsky Hierarchy (Types of grammars)

Class Grammars Languages Automaton Rules
Type-0 | Unrestricted | Recursively Turing Rules are of the form:
Grammar enumerable machine a— B,
Language where o and P are arbitrary strings
over a vocabulary Vand a # ¢
Type-1 | Context- Context- Linear- Rules are of the form:
sensitive sensitive bounded aAp — oBp
Grammar Language automaton S—¢
where
A SeN
a, B, Be(NUT)*B#£¢
Type-2 | Context-free | Context-free Pushdown Rules are of the form:
Grammar Language automaton A—a
where A € N
ae (NuUT)x*
Type-3 | Regular Regular Finite Rules are of the form:
Grammar Language automaton A—¢
A—a
A—oB
where A, B eNanda €T

1/35
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v Scope of each type of grammar
A figure shows the scope of each type of grammar:

ﬂcursively EnumerN
// \'\
';" Context-Sensitive "'.‘
| 1
| = ) \ |
\ | 1 !
\ i’ Context - Free ‘l /
."\ \ ‘." \ | /
\ f |

\ Y oL
N (=) )L

v' Type - 3 Grammar
e Type-3 grammars generate regular languages. Type-3 grammars must have a
single non-terminal on the left-hand side and a right-hand side consisting of a
single terminal or single terminal followed by a single non-terminal.
e The productions must be in the form
X—a
X —aY

where X, Y € N (Non terminal) and a € T (Terminal)
e Therule S — ¢isallowed if S does not appear on the right side of any rule.
e Example

X —¢

X —alaY

Y—b

v' Type - 2 Grammar
e Type-2 grammars generate context-free languages. These languages generated by
these grammars are be recognized by a non-deterministic pushdown automaton.
e The productions must be in the form
A—vy
where A € N (Non terminal) and y € (T U N)*.
e Example
S—Xa
X—a
X —aX
X — abc
X—e

v" Type - 1 Grammar
e Type-1 grammars generate context-sensitive languages.
e The productions must be in the form
aAB—ayp
Where A € N (Non-terminal) and a, B,y € (T U N)*
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e The strings a and  may be empty, but y must be non-empty.

e TheruleS — ¢is allowed if S does not appear on the right side of any rule. The
languages generated by these grammars are recognized by a linear bounded
automaton.

e Example

AB — AbBc
A — bcA
B—b

v' Type - 0 Grammar
e Type-0 grammars generate recursively enumerable languages. The productions
have no restrictions. They are any phase structure grammar including all formal
grammars.
e They generate the languages that are recognized by a Turing machine.
e The productions can be in the form of
a— B
where o is a string of terminals and non-terminals with at least one non-
terminal and o cannot be null. B is a string of terminals and non-terminals.
e Example
S — ACaB
Bc — acB
CB — DB
aD — Db

Regular grammars
v" Formal Definition of Regular Grammars
e Aregular grammar is a mathematical object, G, with four components,
G=(N,T,P,S)
Where
N is a nonempty, finite set of non-terminal symbols
T is a finite set of terminal symbols
P is a set of grammar rules, each of one having one of the forms
A — aB
A—a
A — ¢ for A, B € N,a e T, and ¢ the empty string
S is the start symbol S € N

v Definition: The Language Generated by a Regular Grammar
o LetG=(N,T,P,S) be aregular grammar. We define the language generated by
G to be L(G)
e L(G)={w|S=*w, wherew €T*}

Linear grammar
v/ A linear grammar is a context-free grammar that has at most one non-terminal symbol
on the right hand side of each grammar rule.
S — aA
A — aB
B — Bb
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Left Linear grammars
v' A left linear grammar is a linear grammar in which the non-terminal symbol always
occurs on the left side.
v"Ina grammar if all productions are in the form

A—Ba

A— o where AB e Vand a € T
v' Example

A— Aa/Bb/b

Right Linear grammars
v Arright linear grammar is a linear grammar in which the non-terminal symbol always
occurs on the right side.
v In a grammar if all productions are in the form

A— aB

A— q where ABeVandoe T
v' Example

A— aA/bB/b

Converting Left Linear grammars into Right Linear grammars
v' Algorithm:

1. If the left linear grammar has a rule S — a, then make that a rule in the right
linear grammar

2. If the left linear grammar has a rule A — a, then add the following rule to the
right linear grammar: S — aA

3. If the left linear grammar has a rule B — Aa, add the following rule to the
right linear grammar: A — aB

4. If the left linear grammar has a rule S — Aa, then add the following rule to the
right linear grammar: A — a

v' Example 1:
Left Linear Grammar Right Linear Grammar
S — Aa —>»| S — abA
A— ab A— a
v' Example 2:
Left Linear Grammar
S— Ab
S— Sb
A — Aa
A—a
Step 1: Make new non-terminal
So — S
S — Ab
S —Sb
A — Aa
A—a
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Step 2:

If the left linear grammar has this rule A — p, then add the following

rule to the right linear grammar: S — pA

Step 3:

Left Linear Grammar Left Linear Grammar
So — S So — aA

S — Ab

S — Sb

A — Aa

A—a

If the left linear grammar has a rule B — Ap, add the following rule

to the right linear grammar: A — pB

Left Linear Grammar Left Linear Grammar

So—>s So—>aA
S — Ab 3 A —bS

S— Sb A — aA
A — Aa S —bS
A—a

Step 4: If the left linear grammar has S — Ap, then add the following rule to
the right linear grammar: A — p
Left Linear Grammar Left Linear Grammar
So — S So — aA
S— Ab A — bS
S — Sb A —aA
A — Aa S — bS
A—a S—¢
Step 5: Equivalent Right Linear Grammar:
So — aA
A — bS
A — aA
S — bS
S—e

Equivalence of reqular grammar and Finite Automata

v" Conversion of Finite Automata to Right Linear Reqular Grammar

1. Algorithm:

1.
2.
3.

4.

Repeat the process for every state.

Begin the process from start state.

Write the production as the output followed by the state on which the
transition is going.

And at the last add € because that’s required to end the derivation.
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v" Problems for Finite Automata to Right Linear Regular Grammar:

1. Construct Right Linear Grammar from the given Finite Automata
~a,b

1) Pick start state and output is on symbol 'a' we are going on state B
So, we will write as :
A — aB
2) Then we will pick state B and then we will go for each output.
So, we will get the below production.
B—aB/bB/e
3) So, final we got right linear grammar as:
A — aB
B — aB/bB/e

2. Construct Right Linear Grammar from the given Finite Automata
b

o /T\>®
A |
( E>\ b
ba
©
1) Pick start state and output is on symbol ‘ab' we are going on state A
So, we will write as :
S — abA
2) Pick start state and output is on symbol 'ba’ we are going on state B
So, we will write as :
S — baA
3) Pick start state and output is on symbol e ' we are going on state B and C
So, we will write as :
S—B and S — ¢ (Cisfinal state)
4) Then we will pick state A and then we will go for each output.
So, we will get the below production.
A— bS and A— b (Cis final state)
5) Then we will pick state B and then we will go for each output.
So, we will get the below production.
B— aS
6) Then we will pick state C and then we will go for each output.
So, we will get the below production.
C—oze¢
7) So, final we got right linear grammar as:
S —abA/baA/B/¢
A—DbS/b

B — aS
C—oe¢
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v" Conversion of Reqular language to Right Linear Reqgular Grammar

Algorithm:

1.
2.
3.
4

5.

Construct Finite automata from regular language.
Repeat the process for every state.
Begin the process from start state.

. Write the production as the output followed by the state on which the

transition is going.
And at the last add € because that’s required to end the derivation.

v Problems for Regular language to Right Linear Regular Grammar:

3. Construct Regular language from the given Finite Automata

L:

{All strings start with ‘a’ over X = (a+b)*}.

1) Construct Finite automata from given regular language.

2) Pick start state and output is on symbol 'a’ we are going on state B
So, we will write as :

A — aB

3) Then we will pick state B and then we will go for each output.
So, we will get the below production.

B—aB/bB/g

4) So, final we got right linear grammar as:

A — aB
B — aB/bB/¢

v" Conversion of Reqular expression to Right Linear Reqular Grammar

Algorithm:

1.
2.
3.
4. Write the production as the output followed by the state on which the

5.

Construct Finite automata from regular expression.
Repeat the process for every state.
Begin the process from start state.

transition is going.
And at the last add € because that’s required to end the derivation.

v" Problems for Regular language to Right Linear Regular Grammar:

4. Construct Regular Expression from the given Finite Automata
r = a(a+h)*

1) Construct Finite automata from given regular expression.
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2) Pick start state and output is on symbol ‘a' we are going on state B
So, we will write as :
A — aB
3) Then we will pick state B and then we will go for each output.
So, we will get the below production.
B—aB/bB/s
4) So, final we got right linear grammar as:
A — aB
B — aB/bB/g

Tutorial Questions:
5. Construct Right Linear Grammar from the given Finite Automata

7. Construct Right Linear Grammar from the given Finite Automata

a, b

a, b
b /\C\ ab
do ’\(h/ Jz

8. Construct Right Linear Grammar from the following Regular Languages.
a. L ={All the strings starting and ending with ‘a’ and having any
combinations of b’s in between over X = (a, b)}.
b. L ={The set of all strings of 0’s and 1’s ending in 00 over X = (0, 1)}.
c. L ={The set of all strings of 0’s and 1’s beginning with 0 and ending with
lover £=(0,1)}.

9. Construct Right Linear Grammar from the following Regular Expressions.
a. r=(0+1)*11
b. r=a(ath)*b
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v Conversion of Right Linear Regular Grammar to Finite Automata
Algorithm:

Given a regular grammar G, a finite automata accepting L(G) can be obtained as

follows:

1. The number of states in the automata will be equal to the number of non-
terminals plus one. Each state in automata represents each non-terminal in the
regular grammar. The additional state will be the final state of the automata.
The state corresponding to the start symbol of the grammar will be the initial
state of automata. If L(G) contains € that is start symbol is grammar devices to
¢, then make start state also as final state.

2. The transitions for automata are obtained as follows:

= For every production A — aB, then make 6(A, a) = B that is make an
are labeled ‘a’ from A to B.

= For every production A — a, then make 6(A, a) = final state.

= For every production A — ¢, then make d(A, €) = A and A will be final
state.

v Problems for Right Linear Regular Grammar to Finite Automata
1. Construct a Finite Automata from the given Right Linear Grammar
A — aB/bA/b
B — aC/bB
C — aA/bCla

Solution:
Step 1: Take the ‘A’ productions, then will make transition functions
A — aB > 0(A,a)=B
A — bA > 3(A,b)=A
A— Db > d(A, b) = Final State

Step 2: Take the ‘B’ productions, then will make transition functions
B— aC > d(B,a)=C
B — bB > 0(B,b)=B

Step 3: Take the ‘C’ productions, then will make transition functions
C— aA > 3(C,a)=A
C— bC > 3(C,b)=C
C— b > d(C, b) = Final State

Step 4: Construct Finite Automata

* State D is a new final State
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2. Construct a Finite Automata from the given Right Linear Grammar

S— A/B/¢

A — 0S/1B/0

B — 0S/1A/1

Solution:

Step 1: Take the ‘S’ productions, then will make transition functions

S— A > (S, e) =A
S— B > 3(S,e)=B
S— ¢ > d(S, €) = Sand S is make Final State

Step 2: Take the ‘A’ productions, then will make transition functions
A— 0S > (A, 0)=S
A— 1B > 0(A,1)=B
A— 0 > d(A, 0) = Final State

Step 3: Take the ‘B’ productions, then will make transition functions
B — 0S > 3(B,0)=S
B— 1A > B, 1)=A
B— 1 > d(B, 1) = Final State

Step 4: Construct Finite Automata

0
1
q\ ‘ B

A
0 1
* State C is a new final State

Step 5: Reconstructed Finite Automata (after removing state C)
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Tutorial Questions:

3. Construct a Finite Automata from the given Right Linear Grammar
S—abA/baA/B/¢
A—DbS/b
B — aS
C—oe

4. Construct a Finite Automata from the given Right Linear Grammar
A — aB
B — aB/bB/e
5. Give the Finite Automata from the given Right Linear Grammar
S — 0S/1A/1/0B/0
A — 0A/1B/0/1
B — 0B/1A/0/1

v Conversion of Finite Automata to Left Linear Regular Grammar
Algorithm:
1. Take reverse of the finite automata
2. Remove unreachable state.
3. Then write right linear grammar using the following steps
I. Repeat the process for every state.
ii. Begin the process from start state.
ili. Write the production as the output followed by the state on which
the transition is going.
iIv. And at the last add € because that’s required to end the derivation.
4. Then take reverse of the right linear grammar
5. And you will get the final left linear grammar

v Problems for Finite Automata to Left Linear Regular Grammar:

1. Construct Left Linear Grammar from the given Finite Automata

1) Take reverse of the finite automata (make final state as initial state and vice-
Versa) ab

D

2) Remove unreachable state.
There is no unreachable state
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3) Then write right linear grammar
a. Pick start state and output is on symbol 'a" we are going on state A and
B. So, we will write as :
B—aA/aB
b. Pick start state and output is on symbol 'b* we are going on state B. So,
we will write as :
B — bB
c. Then we will pick state A and then we will go for each output.
So, we will get the below production.
A— ¢
d. So, final we got right linear grammar as:
B— aA/aB/bB
A—eg
4) Then take reverse of the right linear grammar
B— Aa/Ba/Bb
A—z¢g
5) Final left linear grammar
B— Aa/Ba/Bb
A—z¢g

2. Construct Left Linear Grammar from the given Finite Automata

s ab

1) Take reverse of the finite automata (make final state as initial state and vice-
versa) s a,b

b

2) Remove unreachable state.
State C is unreachable state, So remove state from the above FA

. a,b
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Professor in CSE,

3) Then write right linear grammar
a. Pick start state and output is on symbol 'a" we are going on state A and
B. So, we will write as :
B—aA/aB
b. Pick start state and output is on symbol 'b* we are going on state B. So,
we will write as :
B — bB
c. Then we will pick state A and then we will go for each output.
So, we will get the below production.
A— ¢
d. So, final we got right linear grammar as:
B— aA/aB/bB
A—eg
4) Then take reverse of the right linear grammar
B— Aa/Ba/Bb
A—z¢g
5) Final left linear grammar
B— Aa/Ba/Bb
A—z¢g

Tutorial Questions:

3. Construct Left Linear Grammar from the given Finite Automata

b b a
/- ™ TN BN
A e U
— e
a

5. Construct Left Linear Grammar from the given Finite Automata

a, b

a, b
b /"(\ ab
> Jz

: o)
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v Conversion of Left Linear Regular Grammar to Finite Automata
Algorithm:
Given a regular grammar G, a finite automata accepting L(G) can be obtained as
follows:
1. Take reverse of CFG
2. The number of states in the automata will be equal to the number of non-
terminals plus one. Each state in automata represents each non-terminal in the
regular grammar. The additional state will be the final state of the automata.
The state corresponding to the start symbol of the grammar will be the initial
state of automata. If L(G) contains € that is start symbol is grammar devices to
€, then make start state also as final state.
3. The transitions for automata are obtained as follows:
= For every production A — aB, then make 6(A, a) = B that is make an
are labeled ‘a’ from A to B.
= For every production A — a, then make 5(A, a) = final state.
= For every production A — ¢, then make d(A, €) = A and A will be final
state.
4. Then again take reverse of the FA and that will be our final output
5. Start State: It will be the first production’s state
6. Final State: Take those states which end up with input alphabets.

v Problems for Finite Automata to Left Linear Regular Grammar

1. Construct a Finite Automata from the given Left Linear Grammar
A — Bal/Ab/b
B — Ca/Bb
C — Aa/Cb/a

Solution:
Step 1: Take reverse of CFG
A — aB/bA/b
B — aC/bB
C — aA/bCla

Step 2: Take the ‘A’ productions, then will make transition functions
A— aB > O0(A,a)=B
A — bA > 0(A,b)=A
A— Db > O(A, b) = Final State

Step 3: Take the ‘B’ productions, then will make transition functions
B— aC > 0(B,a)=C
B— bB > 0(B,b)=B

Step 4: Take the ‘C’ productions, then will make transition functions
C— aA > 0(C,a)=A
C— bC > 3(C,b)=C
C—b > d(C, b) = Final State
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Step 5:

Construct Finite Automata

2. Construct a Finite Automata from the given Left Linear Grammar

S - A/B/¢

A — S0/B1/0
B — SO/Al/1

Solution:
Step 1:

Step 2:

Step 3:

Step 4:

Take reverse of CFG

S— A/B/¢

A — 0S/1B/0

B — 0S/1A/1

Take the ‘S’ productions, then will make transition functions
S— A 2> 3(S,e)=A

S— B > 3(S,e)=B

S— ¢ > 3(S, €) = Sand S is make Final State
Take the ‘A’ productions, then will make transition functions

A — 0S 2> (A, 0)=S

A— 1B > 0(A, 1)=B

A— 0 > d(A, 0) = Final State

Take the ‘B’ productions, then will make transition functions
B — 0S > (B, 0)=S

B— 1A > 0B, 1)=A

B—-1 > d(B, 1) = Final State
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Step 5: Construct Finite Automata

* State C is a new final State

Step 6: Reconstructed Finite Automata (remove state C)
0.1

Step 7: Again take reverse of the FA, this is final output.
0.1

Tutorial Questions:

3. Construct a Finite Automata from the given Left Linear Grammar
S— Aab/Aba/B/¢
A— Sb/b
B — Sa
C—oe
4. Construct a Finite Automata from the given Left Linear Grammar
A — Ba
B — Ba/Bb/e
5. Give the Finite Automata from the given Left Linear Grammar
S — S0/A1/1/B0/0
A — A0/B1/0/1
B — BO/A1/0/1
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Context free Grammars
v Motivation and introduction
e A Context Free Grammar is a “machine” that creates a language.
e Alanguage created by a CF grammar is called A Context Free Language.
e The class of Context Free Languages Properly Contains the class of Regular
Languages.

v Definition:
A Context Free Grammar is consists of four components. They are finite set of
non-terminals, finite set of terminals, set of productions and start symbol.

v" Formal Definition of Context Free Grammars (CFG)
e A CFG is a mathematical object, G, with four components,
G=(N,T,P,9S)
Where
N is a nonempty, finite set of non-terminal symbols
T is a finite set of terminal symbols
P is a set of grammar rules, each of one having one of the forms
A—a
Where Ae Nand ae (NUT)*
S is the start symbol S € N
e Example
Let G = ({S},{0,1,&},P,S) be a CFG, where productions are S— 0S0/1S1/e

v' Context Free Language: The Language Generated by a Regular Grammar
e LetG=(N,T,P,S) be aregular grammar. We define the language generated by
G to be L(G).

e L(G)={w|w can be derived from G (or) S > w, where w e T*}

v" Conversion of Context Free Language (CFL) into Context Free Grammar (CFG)

1. Construct a CFG representing the set of palindromes over (0+1)*.
The possible strings are
{¢,0,1,00,11,000,111,010,101,0000,1111,00100,11011, 01110,10101,....}
The CFG for a palindrome is given by
S—0/1/¢
S—0S0/1S1

2. Construct a CFG for the language L = {a™ ; n is odd}.
The possible strings are {¢, a, aaa, aaaaa, aaaaaaa, ....}
The productions are
G: S—alaaS

3. Construct a CFG for the language L = {a"b" ; n > 0}.
The possible strings are {&, ab, aabb, aaabbb, aaaabbbb, ....}
The productions are
G: S—ab/aSb/e
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4. Construct a CFG for the language L = {0"1" ; n>1}.
The possible strings are {01, 0011, 000111, 00001111, ....}
The productions are
G: S—01/0S1

5. Construct a CFG for the language L = {a"cb" ; n>0}.
The possible strings are {c, ach, aacbb, aaacbbb, aaaacbbbb, ....}
The productions are
G: S—c/aSb

6. Construct a CFG for the language L = {wcw" ; w € (a+b)*}.
The possible strings are {c, aca, bcb, abcba, aacaa, bbcbb, bacab, abacaba,
bbacabba,....}
The productions are
G. S—aSa/bSb /c

7. Construct a CFG for the language L = {aab(bba)"bab(aab)"; n > 0}.
The possible strings are {aabbab, aabbbababaab, aabbbabbababaabaab,....}
The productions are
G: S— ABCD
A — aab
B — bba/ bbaB
C — bab
D — aab /aabD

Tutorial Questions:
8. Construct a CFG for the language L = {a"bc™ ; n, m > 0}.
9. Construct a CFG for the language L = {0"1011" ; n>1}.
10. Construct a CFG for the language L = {1"0™ ; n > 0, m = n+2}.

v" Conversion of Context Free Grammar (CFG) into Context Free Language (CFL)
1. Construct a CFL from the given grammar
G=({S}{0,1,¢},P,S)
Where

S—0/1/¢
S—0S0/1S1
Solution:

If String Length = 1, The Strings are ¢, 0, 1

If String Length = 2, The Strings are 00, 11

If String Length = 3, The Strings are 000, 111, 010, 101

If String Length = 4, The Strings are 0000,1111

If String Length = 5, The Strings are 00000,11111, 01010, 10101,
11011, 00100, 01110, 10001

If String Length > 5, The Strings are 0000 ....001111 ... 11

So, The CFL is

L ={ w; All strings are palindrome over £{0,1}}
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2. Construct a CFL from the given grammar
G={S}{0,1,¢},P,S)
Where
S—alaaS
Solution:
If String Length = 1, The String is a
If String Length = 2, The String is aaa
If String Length = 3, The String is aaaaa
If String Length = 4, The String is aaaaaaa
If String Length > n, The String is aaa......aaaa, n is odd
So, The CFL is
L={a";n isodd}.

3. Construct a CFL from the given grammar
G=({S} {a b,c},PYS)
Where
S—aSa/bSb /c

Solution:
If String Length =1, The String is c
If String Length = 3, The Strings are aca, bcb
If String Length =5, The Strings are aacaa, bbcbb, abcba, bacab

If String Length > n, The Strings are aaa...c...aaa, bb...c...bb,
aba..c..aba, bba....c...bba, ...
So, The CFL is
L = {wcw" ; w € (a+bh)*}.

Tutorial Questions:

4. Construct a the CFL from the following grammar
S—c/aSh

5. Construct a the CFL from the following grammar
S — ABCD
A — aab

B — bba / bbaB
C — bab
D — aab/aabD

6. Construct a the CFL from the grammar G = ({S},{a,b},P,S)}, with productions
S— aSa,
S — bSbh,
S—¢
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Derivations
v" A derivation of a string for a grammar is a sequence of grammar rule applications that
transform the start symbol into the string. A derivation proves that the string belongs
to the grammar's language. ie. S = w, wherew eT*andw € L(G)

v" A derivation is fully determined by giving, for each step:

o The rule applied in that step
o The occurrence of its left-hand side to which it is applied

v' Example

Consider G whose productions are S — aAS /a, A— SbA /SS / ba,
show that S = aabbaa.
Solution:
S = aAs
= aSbAs [A - SbA]
= aabAS [S - 3]
= aabbaS [A - ba]
= aabbaa [S - 3]

S = aabbaa

Leftmost derivation (LMD)

v A leftmost derivation is obtained by applying production to the leftmost variable or
non-terminal in each step.

ie. S l:> w, wherew eT* and w € L(G)
m

v" Problems for LMD

1. Consider G whose productions are S — aAS/a, A— SbA/SS/ba,
Show that S = aabbaa.

Solution:

S = aAS
= aSbAS [A-> SbA]
= aabAS [S- a]
= aabbaS [A-> ba]
= aabbaa [S-> 3]

S =*>
Im

aabbaa
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2. Find a left most derivation for “aaabbabbba’ with the productions.
P:S— aB/bA, A—alS/bAA, B—Db/bS/aBB

Solution:
S = aB
= aaBB [B— aBB]
= aaaBBB [B— aBB]
= aaabBB [B— b]
= aaabbB [B— b]
= aaabbaBB [B— aBB]
= aaabbabB [B— b]

= aaabbabb$S [B— bS]
= aaabbabbbA  [S— bA]
= aaabbabbba [A— a]

*

S = aaabbabbba
lm

Rightmost derivation

v" Arightmost derivation is obtained by applying production to the rightmost variable or
non-terminal in each step.

*

ie.S = w,wherew eT*andw e L(G)
rm

v" Problems for RMD

1. Consider G whose productions are S — aAS/a, A— SbA/SS/ba,
Show that S = aabbaa.
Solution:
S = aAS

= aAa [S— a]

= aSbAa [S— SbA]

= aShbaa [A— ba]

= aabbaa [S— a]

*
S=>
rm

aabbaa
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2. Find a right most derivation for “aaabbabbba’ with the productions.
P:S— aB/bA, A—alS/bAA, B—Db/bS/aBB

Solution:
S = aB

= aaBB [B— aBB]
= aaBbS [B— bS]
= aaBbbA [S— bA]
= aaBbba [A— a]

= aaaBBbba [B— aBB]
= aaaBbbba [B— b]

= aaabSbbba [B— bS]
= aaabbAbbba  [S— bA]
= aaabbabbba [A— a]

S = aaabbabbba
rm

v" Sentential Form or Partial Derivation

o A partial derivation is a part of a derivation. The strings are derived from the
start symbol is called as Sentential form.

o IfG=(V,T,P,S)isaCFG,thena(VuT)*
S =G> a, where ¢ e(V U T)* - Sentential Form

S l:> a,wherea e(VuUT)* - LeftSentential Form
m

S = a,wherea e(VUT)* - RightSentential Form
rm

Derivation Tree or Parse Tree - (Pictorial representation of derivation)

v A derivation tree or parse tree is an ordered rooted tree that graphically represents the
semantic information a string derived from a context-free grammar.

v Representation Technique
o Root vertex — Must be labelled by the start symbol.
o Vertex — Labelled by a non-terminal symbol.
o Leaves — Labelled by a terminal symbol or €.

(5
o[0)
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v Types of Derivation Tree
o Leftmost derivation tree

= A leftmost derivation tree is obtained by applying production to the
leftmost vertex in each step.

= Example:S— ABa,A—a,B—¢

ol

o Rightmost derivation tree

= A rightmost derivation tree is obtained by applying production to the
rightmost vertex in each step.

= Example:S— ABa,A—3,B—¢

o e

23/35



SITAMS — B.Tech — 1l Year - 1l Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 — Formal Languages and Automata Theory Professor in CSE,
Unit — 111
Ambiguity

v If a context free grammar G has more than one derivation tree (leftmost or rightmost
derivation tree) for some string weL(G), it is called an ambiguous grammar. There
exist multiple right-most or left-most derivations for some string generated from that
grammar.

v" Problems for Ambiguity in Context-Free Grammars

1. Check whether the grammar G with production rules S — S+S / S*S /S /a'is
ambiguous or not.

Solution:
Let’s assume a string w = a+a*a

Parse Tree 1: Parse Tree 2 :

Thus we have two parse trees, So the given grammar is ambiguous.

2. Check whether the grammar G with production rules S — E+E / E*E / (E) / id is
ambiguous or not.

Solution:
Let’s assume a string w = (id*id+id)

Parse Tree 1: Parse Tree 2 :

Thus we have two parse trees, so the given grammar is ambiguous.
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Tutorial Questions:

1.

Show that the grammar defined by the productions
S — SS/a /b is ambiguous.

If G is the grammar S — SbS / a, Show that G is ambiguous.

Prove that the grammar defined by the productions
S — AlB,A— 0A /¢, B— 0B/ 1B/ ¢is unambiguous.

Let the production of the grammarbe S — 0B /1A, A— 0/0S/1AA,
B — 1/1S/0BB and the string 0110.
a. Find the left most derivation and associated derivation tree.

b. Find the right most derivation and associated derivation tree.
c. Find the G is ambiguous or not.
d. Finda L(G).

G denotes the context-free grammar defined by the following rules.
S—ASB/ab/SS

A—aA /A
B—bB/A
a. Give a left most derivation of “aaabb” in G. Draw the associated parse
tree.
b. Give a right most derivation of “aaabb” in G. Draw the associated parse
tree.
c. Show that G is ambiguous.
d. Finda L(G).

Simplification of CFG’s

v" In a CFG, it may happen that all the production rules and symbols are not needed for
the derivation of strings. Besides, there may be some null productions, useless
symbols and unit productions. Elimination of these productions and symbols is
called simplification of CFGs.

v Simplification essentially comprises of the following steps

o Elimination of Useless Symbols or Productions
o Elimination of Null Productions (ie. €)
o Elimination of Unit Productions

25/35



SITAMS — B.Tech — 1l Year - 1l Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE
18CSE225 — Formal Languages and Automata Theory Professor in CSE,

Unit — 111

v Elimination of Useless Symbols or Productions

o The productions that can never take part in derivation of any string are called
useless productions. Similarly, a symbol that can never take part in derivation
of any string is called a useless symbol or variable.

o Example

1. Eliminate the useless symbols or productions from the given grammar

G: S— abS/abA/abB
A —cd
B — aB
C —dc

Solution:
Step 1:

Step 2:

Step 3:

Tutorial Questions:

The production ‘B —aB’ is useless because there is no way it
will ever terminate. If it never terminates, then it can never
produce a string, then remove all the productions in which
variable ‘B’ occurs.

After eliminating B production and B symbols:

G1l: S — abS/abA
A — cd
C—dc

The production ‘C — dc’ is useless because the variable ‘C’
will never occur in derivation of any string, then remove all the
productions in which variable ‘C’ occurs.

After eliminating C production:

G2: S — abS/abA
A — cd

Resultant Grammar
G’: S— abS/abA

A —cd

2. Eliminate the useless symbols or productions from the given grammar

S— AC/B,

A—aC—c/BC,E—aA/¢

3. Remove the useless symbol from the given context free grammar:

A — Bad/
B —aSB/

hSX /a
hBX

X - SBD/aBx/ad

26/35



SITAMS — B.Tech — 1l Year - 1l Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE
18CSE225 — Formal Languages and Automata Theory Professor in CSE,

Unit — 111

v Elimination of Null Productions (ie. g)

o The productions A — ¢ are called ¢ productions (also null productions). These
productions can only be removed from those grammars that do not generate ¢
(an empty string).

o To remove null productions, we first have to find all the nullable variables. A
variable A is called nullable if € can be derived from A.

= For all the productions A— ¢, A is a nullable variable.

= For all the productions of type B — A1A2...An, where all ’Ai’s are
nullable variables, B is also a nullable variable.

o If all the variables on the RHS of the production are nullable , then we do not
add A — ¢ to the new grammar.

o Example:

1. Eliminate the € productions from the given grammar

G: S— ABCd
A — BC
B—bB/¢
C—cCle

Solution:
Step 1: Remove the productions B—¢ and C—¢

G: S— ABCd/ACd/ABd/ Ad
A—BC/C/B/¢
B—-bB/b
C—-cClc

Step 2: Remove the production A—¢

G. S—ABCd/ACd/ABd/Ad/BCd/Cd/Bd/d
A—BC/C/B
B—bB/b
C—cClc

Step 2: Resultant Grammar

G: S— ABCd/ACd/ABd/Ad/BCd/Cd/Bd/d
A—BC/C/B
B—DbB/Db
C—cClc
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Tutorial Questions:

2. Eliminate the & productions from the given grammar

S — ABAC
A—aAle
B—bB/¢
C—oc

3. Remove the & productions from the given grammar
S— ASA/aB/b,A—B,B—b/¢

v" Elimination of Unit Productions

o Any production rules in the form A — B where A, B € Non-terminal is
called unit production.

o Steps for eliminate unit productions:

= Step 1: To remove A — B, add production A — x to the grammar rule
whenever B — x occurs in the grammar. [x € Terminal, x can be Null]

= Step 2: Delete A — B from the grammar.
= Step 3: Repeat from step 1 until all unit productions are removed.

o Example
1. Eliminate the unit production from the given grammar

G: S— Aa/B
A—b/B
B—>A/a

Solution:
Step 1: Remove the production B— A

G: S—> Aa/B
A—b/Ala
B—-A/a

Step 2: Remove the production A—A

G: S—> Aa/B
A—b/a
B—->A/a

Step 3: Remove the production B—A

G:. S—> Aa/B
A—bla
B—bl/a
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Step 4: Remove the production S—B

G: S—Aal/bl/a
A—bl/a
B—bl/a

Step 4: Resultant Grammar

G:S—Aa/b/a
A—b/a
B—-b/a

Tutorial Questions:

2. Eliminate the useless symbols or productions from the given grammar
S—>XY,X—a,Y—>Z/b,Z—->M,M—>N,N—a

3. Remove the useless symbol from the given context free grammar:
S— AB
A— a
B— C/b
C—-D
D— E
E— a

4. Consider the grammar
S— 0A0/1B1/BB
A—C
B—S/A
C— S /¢ and simplify using the same order
a. Eliminate g-Productions

b. Eliminate unit productions
c. Eliminate useless symbols

Normal Form

v' A CFG is convert into a specific form is called as Normal forms.
v There are two types of Normal Norms.

o Chomsky Normal Form (CNF)

o Greibach Normal Form (GNF)
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Chomsky Normal Form (CNF)

v" A CFG is said to be in Chomsky Normal Form if every production is of one of these
two forms:

1. Non-Terminal — Non-Terminal . Non-Terminal
Example: A — BC where A,B,C<V (right side is two Non-Terminal).
2. Non-Terminal — Terminal
Example: A — awhere a € T (right side is a single Terminal).
v Algorithms for converting CFG into CNF:
Step 1: Eliminate Null productions.

Step 2: Eliminate Unit productions.
Step 3: Eliminate Useless Symbols or Productions.

Step 4: Replace each production A — B;...B, where n > 2 with A — B;C.
Where C — B, ...B,. Repeat this step for all productions having more than
two non-terminals in the right side.

Step 5: If the right side of any production is in the form A — aB where a is a terminal
and A, B are non-terminal, then the production is replaced by A — XB and
X — a. Repeat this step for every production which is in the form A — aB.

v" Problems for converting CGF into CNF:
1. Consider the Grammar G = ({S,A,B},{a,b}, P, S} as the productions

S —>bA/aB

A —DbAA/aS/a
B —aBB/bS/b.
Convert it into CNF.

Solution:

Step 1: Eliminate Null productions.
There is no Null production.
Step 2: Eliminate Unit productions.
There is no Unit production.
Step 3: Eliminate Useless Symbols or Productions.
There is no Useless Symbols or Productions.
Step 4: Find the productions which are already in CNF.
A—a
B—b
Step 5: Replace all remaining productions into CNF.
Non-Terminal — Non-Terminal . Non-Terminal
Non-Terminal — Terminal

i) S—bA

S — ChA
Ch—Db
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ii) S— aB
S—-C_B
C,—a

iii) A — bAA
A — CyDy
D; — AA
Ch—Db

iv) A—aS
A — C,S
C,—a

v) B — aBB
B—C.D,
D, — BB
C,—a

v) B—bS
B — C,S
Ch—Db

Step 3: Final Resultant Grammar
G: S—>CA/C,B

A— CbDllCaS /a
B—-CyD,/C,S/b
D; — AA
D, — BB
C,—a
Ch—b

2. Convert the given grammar into CNF.

G=({S,AB}{ab}, P, S}
The Productions are
S— 0A0/1B1 /BB
A— C
B—S/A
C—S/e.

Solution:
Step 1: Eliminate e-Productions

1.1 Remove the production C— ¢
S— 0A0/1B1 /BB
A—S/¢
B—S/A
C—S

1.2 Remove the production A— ¢
S— 0A0/00/1B1/BB
A— S
B—S/e
C—S
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1.3 Remove the production B— ¢
S— 0A0/00/1B1/11/BB/B
A— S
B— S
C—S

Step 2: Eliminate Unit productions.

2.1 Remove the production C— S
S— 0A0/00/1B1/11/BB/B
A— S
B— S

2.2 Remove the production B— S
S—0A0/00/1S1/11/SS/S
A— S

2.3 Remove the production A— S
S—0S0/00/1S1/11/SS/S

2.4 Remove the production S— S

S— 0S0/00/1S1/11/SS

Step 3: Eliminate useless symbols
There is no Unit production.
Resultant Grammar (after simplifications)
G’: S—0S0/00/1S1/11/SS
Step 4: Find the productions which are already in CNF.
S— SS

Step 5: Replace all productions into CNF.
Non-Terminal — Non-Terminal . Non-Terminal
Non-Terminal — Terminal

i) S—0S0
S— AB
B— SA
A—0

i) S— 00
S — AA
A—0

iii) S—1S1
S —-DC
C—>SD
D—1
iv) S—11
S — DD
D—1
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Step 5: Resultant Grammar
G: S—AB/AA/DC/DD
B— SA
A—0
C—SDh
D—1

Tutorial Questions:

3. Convert the following CFG to CNF
S— ASA/aB
A—B/S
B—bl/e

4. Convert the following CFG to CNF
S— AB/ Aa
A— aAA/a
B— bBB /b

5. Find a grammar in Chomsky Normal form equivalent to
S—aAD
A—aB /bAB
B—b
D—d

6. Consider G = ({S,A}, {a,b}, P, S} where P consists of
S—aAS/a
A— SbA/SS/ba
Convert it to its equivalent CNF

Greibach Normal Form (GNF)

v' A CFG is said to be in Greibach Normal Form if every production is of one of these
two forms:

1. Non-Terminal — Terminal . Any no. of Non-Terminal
Example: A —aBC or
2. Non-Terminal — Terminal
Example: A — a (right side is a single Terminal).
(Or)

A — ao , where acT and aeV*

v Algorithms for converting CFG into GNF:
Step 1: Eliminate Null productions.

Step 2: Eliminate Unit productions.
Step 3: Eliminate Useless Symbols or Productions.
Step 4: Check whether the CFG is already in CNF and convert it to CNF if it is not.
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Step 5: Rename the variables like Az, A, ...An starting with S = A;. (Ajin ascending
order of i)
Step 6: No need to modify the productions like Aj— Ayy where i <j
Step 7: Modify the productions like A; — Ajy where i > ]
(@) If Aj— Ajy where i > j, then substitute for A; productions.
Suppose A; — Ax/ AL then the new set of productions are
Ai — Aky /ALY
(b) It Aj— Ay where i = j, then do the following steps:
Introduce a new variable B;
Then
Bi— Ax
Bi —Y Bi
and remove the production Aj — Ajy
(c) For each production A; — B where 3 does not begin with A;, then add the
production
Ai— B B;

Step 7: Convert all the productions into GNF form. A — aa where aeT and aeV*

v Problems for converting CFG into GNF:
1. Consider the Grammar G = ({S,A,B},{a,b}, P, S} as the productions

S— AB
A—BS/b
B—SA/a

Convert it into CNF.

Solution:

Step 1: Eliminate Null productions.
There is no Null production.
Step 2: Eliminate Unit productions.
There is no Unit production.
Step 3: Eliminate Useless Symbols or Productions.
There is no Useless Symbols or Productions.
Step 4: All production rules are already in CNF form.
Step 5: Rename the variables S, A, B as A;, A,, Asrespectively.

AA—A Az e (1)
A, — Az AL/ e (2
As— AL A la - (3)

In (1), i <}, no need to modify the production.

In (2), i <}, no need to modify the production.

In (3), i > j, substitute A; productions in (3)
Az — A Az A2/a ------- (4)

In (4), i > ], substitute A, productions in (4)
A3—>A3A1A3A2/bA3A2/a ------- (5)

34/35



SITAMS — B.Tech — 1l Year - 1l Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE
18CSE225 — Formal Languages and Automata Theory Professor in CSE,

Unit — 111

In (5), i =], introduce new non-terminal Bs, then B3 productions are
B; — A Az Az/Al Az A, Bs and
Az — b A3 A,/ a has been modified to
As; —bAsA/albAs; AyBs/aBs

Step 6: Resultant productions are

AA—-AA; e (]_)
A, —As A /D e )
B3—> Al A3 Az/Al A3 A2 B3 ________ (3)
Az —>bAsA/albAs; A,Bs/aBs ----—--- (4)

Step 7: Convert into GNF form
Non-Terminal = Terminal .any no. of Non-Terminals
Non-Terminal = Terminal

Substitute A; in (1)
Al — A3 A1 A3/ b A3 -------- (5)
Substitute Az in (5)
A — bA3 A Ay A3/ aA; A3/ b Az A, Bz A A3/
aBsA; A3/ b Az
Substitute Az in (2)
A, — bA3 Ao Az A1/ aAs A]_/ b Az A; Bs Az A]_/
aBs;Az A /b
Substitute A; in (3)
B; — bA3 As Az Az/aAgAzl bA3 A, B3 A3A2/a Bz Az Az/
bAs; A, A A, Bs/aAs A; B3/ bA; A, B3 Az A, Bs/
a Az A, B3B3

Step 8: The equivalent GNF productions are
A — bA3A2A1A3/aA1A3/bA3AngA1A3/aBgA1A3/bA3
A, — bAgAzAgAl/aAgAllegAng A3A1/ aBgAgAllb
As—>bA;A/albAs; A, By/aBs
B; — bA3 As Az Az/aAgAzl bA3 A, B3 A3A2/a Bz Az A,
Bs—bA; A, As A, Bs/aAs; A, B3/ b As; A, B3 Az Ay Bs
B; — a Az Ay B3B3

Tutorial Questions:
2. Convert the following CFG to GNF

S— AA/a
A—SS/b
(or)
Convert the following CFG to GNF
A1 — AA /a
A,— AjA1 /Db

3. Convert the following CFG to GNF

S— AB/ Aa
A— aAA/a
B—bBB/b

4. Convert the following CFG to GNF

S — ABA A—aAle B—bB/e¢
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Syllabus : Unit — IV : Push Down Automata

Definitions - Model of PDA — Acceptance by PDA - Design of PDA - Equivalence of PDA’s and
CFL’s - Deterministic PDA - pumping lemma for CFL - Closure properties of CFL (Without proof)

Definition for Push Down Automata
v" Formal Definition of Pushdown Automaton
A pushdown automaton consists of seven tuple
M= (Q’ 2: F: 69 qo, ZO’ F)n
Where
Q - Finite set of states
¥ - Finite input alphabet
I' - Finite alphabet of pushdown symbols
d - Transition function Q x (X U {&}) x ' — QxI’
Qo - start / initial state qo € Q
Z, - start symbol on the pushdown Z; € T’
F - set of final states F € Q

Model of PDA
v" Pushdown Automata is a finite automaton with extra memory called stack which helps
Pushdown automata to recognize Context Free Languages.
v A DFA can remember a finite amount of information, but a PDA can remember an
infinite amount of information.
v' The PDA consists of a finite set of states, a finite set of input symbols and a finite set of
push down symbols.
The finite control has control of both the input tape and the push down store.
The stack head scans the top symbol of the stack.
A pushdown automaton has three components:
o input tape
o control unit, and
o stack with infinite size.
v A stack does two operations:
o Push —a new symbol is added at the top.
o Pop — the top symbol is read and removed.

ANANIN

Takes
input Finite control .
> : |———» Accept or reject
unit
A
Push or Pop
A
Input tape
Stack
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Acceptance by PDA

v’ There are two different ways to Acceptance by PDA
o Acceptance by Final State

= In final state acceptability, a PDA accepts a string when, after reading the
entire string, the PDA is in a final state. From the starting state, we can
make moves that end up in a final state with any stack values. The stack
values are irrelevant as long as we end up in a final state.

= lLetM=(Q, >, T, 3, qo Zo, F) be a PDA, then the language accepted by
the set of final states F is

L(M) = {W ; (q01 W, ZO) F* (p3 & Y)’ pE Fv Y€ l_*}

o Acceptance by Empty Stack
= |n empty stack acceptability, a PDA accepts a string when, after reading
the entire string and also stack is empty, the PDA is in any state.
= letM=(Q, Y, T, 95, qo, Zo, {q}) be a PDA, then the language accepted by
the empty stack is:

N(M) ={w ; (90, w, z0) F* (q, &, £), q € Q}

Instantaneous Description (ID)

v" The ID must record the state and stack contains
If M=(Q,3.T, 8, qo, Zo, F) be a PDA
then

(Go, aw, za) +(qo, W, Ba) i 3(q, a, 2) = (p, B)

Equivalence of Acceptance of PDA from Empty Stack to Final state
If L is N(M,) (the language accepted by empty stack) for some PDA My, then L is L(My)
(language accepted by final state) for some PDA M, i.e. L=N(M;) = L(M,)

(or)
Prove that if L=N(Py) for some PDA Py = (Q, X, T, 8, 0o, Zo, F), then there is a PDA Pgsuch
that L=L(P).

(or)

If L is L(M,) for some PDA M; then N(M;)=L(M,),L is N(M;) for some PDA M;.

Theorem:
If My =(Q, Z, T, 8, o, Zo, @) is a PDA accepting L by empty store, then construct a
PDA M, =(Q’, ¥, I, 8°, qo’, Zo’, F) which accepts L by final state i.e., L=N(M,) =
L(My).

Proof:
M, is constructed in such a way that
a) by the initial state moves M, of , it reaches an initial id of M,
b) by the final move of B, it reaches its final state.
c¢) all intermediate moves of B are in A.
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e, 2y /¢

Let us define M, as follows
M2 = (Q’l 2’1 F,v 8,1 qO’, ZO’! F)

Where
Q’=Q U {po, pr}
X=X
r=Tu{Z,}

F’ = {ps} - New final state (not in Q)
Jo’ = po - New start state
Zy’ = New start symbol for stack.
d'is given by rules:
Ri: 8°(Po &, Zo’) = {(do, ZoZo')}
Ro: 0°(0,a,Z) = 8(q,a, Z)forallginQ,ain(XuUe)and ZinT.

Rs: 8° (0, & Zo”) = {(pr, €)}-

e By Rule R;, the PDA M; moves from initial ID of M; to an initial ID of M;.
Rigives a ‘e” move. As a result of R;, M, moves to the initial state of A with
the start symbol z, on top of the stack.

e By Rule R; is used to simulate M;. Once M, reaches an initial ID of My, R, is
used to simulate moves of M;. We can repeatedly apply R, until Zy’ is pushed
to the top of the stack.

e By Rule Rz is also a ‘e’ move. Using R3, M, moves to new final state ps by
erasing Zy’ in stack.

We have to show N(M;) = L(M,).
Let w € N(M;) then by definition of N(M,),
M; : (Qo, W, Zo) F*(q, €, €) forsome q € Q
By theorem
(q’ X’ (x') |_* (p’ y’ B) :> (q’ XW7 ay) |_* (p’ yW7 BY)
we get
Ml : (qO! W, ZOZO’) > (q’ & ZO’)
Since empty store (8) is a subset of 8’ i.e. 6C &’
we have
Mz : (do, W, ZoZo’) H* (0, €, Zo")
Therefore we conclude that
Mz (Po, W, 20°) + (Qo, W, 220")
F*(q, €, 20)
F (pr, & €)
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Equivalence of Acceptance of PDA from final state to empty stack

If L is N(M,) for some PDA M then L if L(M2) for some PDA M2.

(or)
If A= (Q, X, T, 8, qo, Zo, F) accept by final state, we can find a PDA B, accepting L by
empty store i.e., L =T(A) = N(B).

If My =(Q, X, T, 3, qo, Zo, F) accept by final state, we can find a PDA M, accepting L
by empty store i.e., L = L(M;) = N(My).

Theorem:
If My =(Q, Z, T, 9, o, Zo, F) is a PDA accepting L by final state, then construct a
PDA M, =(Q’, ¥, I, 8°, qo’, Zo’, §) which accepts L by empty store.
i.e., L= L(Ml) = N(Mz)

Proof:
M. is constructs from M in such a way that
a) by the initial move of M as initial ID of My is reached.
b) once M; reaches an initial ID of M, it behaves like M; until a final state of M;
is reached.
c) when M, reaches final state of My, it checks whether the input string is
exhausted. Then M, simulates M; or it erases all the symbols in stack.

€, Zo’ /ZoZo,

Let us define M, as follows
M2 = (Q’! 2’) F,v 6,1 qO’, ZO’1 4))

Where
Q= Q U {po, p}
> =3
r=r U{Zo’}

F’ = {p} - New final state (not in Q)
Jo’ = po - New start state
Zy’ = New start symbol for stack.
d'is given by rules:
Ry 1 8(Po, & Zo’) = {(do, Z0Zo’) }
R2:8°(qo, &, Z) ={(qs, &)} forall Z € T U {Zy}.
R3:0°(q,a,Z)=6(q,a,Z)forallae Z,qe Q,Z e T.
R4:0°(q,¢,2)=0(q, &, 2) U{(p,e)}forall Ze TU{Zy’} andq € F.
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e Using R;, My enters an initial ID of M1 and start symbol Z, is placed on top of
stack.

e R;isaemove, using this M, erases all the symbols on stack.

e Rjisused to make M, simulate M; until it reaches the final state of M;.

We have to show that L(M;) = N(M,)
Letw € L(M,) then
M. (Qo, W, Zo) F* (g, €, o)) for someqe F,a e+
Since 6’ € 6 and by theorem
Ml: (q! X, (X) l_* (p! y! B) = (q’ Xw, QY) |_* (p! yW! BY)
We can write has
Mo: (qu W, Z()Zo’) F* (q, g, (XZ()’)
Then M, can be computed has
Mo: (po, W, Zo’) - (qO, w, ZZo’)
F*(Q, €, Zo")
F (pfl €, 8)

Design of PDA

1. Construct a PDA that accepts L = {a" b" ; n > 1} accepted by Final State.

Solution:
LetM=(Q, >, T, 9, qo, Zo, F) be a PDA

The productions are:

1. 8(o, & o) = {(o, azo)} } Push operations
2. 8(0o, a, a) = {(qo, aa)}

3. 8(qo, b, a) = {(as, &)} } Pop operations
4. 8(qu, b, a) = {(qu. )}

5. 8(0u, & 20) = {(02, Z0)} - Accept the Final State

Transition Diagram:

a, Zo/ azg
a,alaa

b,ale
b,alg Q £ 20/ 2o
do ’\m/ dz
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2. Construct a PDA that accepts L = {a" b" ; n > 1} accepted by empty stack.

Solution:
LetM=(Q, >, T, 9, qo, Zo, F) be a PDA

The productions are:

5(Clo, a, 20) = {(qo, a20)} } Push operations
2. 8o, & @) = {(qo, a@)}

3. 8(o, b, @) = {(qu, €)} } Pop operations
4. 3(qu, b, a) ={(qu, &)}

5. 8(01 & 20) ={(02 &)} - Accept the empty stack

=

Transition Diagram:

a, Zo/ azg
a,alaa

b,alg
b,a/s Q 8,20/8
do ’\qV dz

3. Construct a PDA that accepts L = {0" 1" ; n > 0} accepted by Final State.

Solution:
LetM=(Q, >, T,3d, qo, Zo, F) be a PDA

The productions are:

1. 8(do, 0, o) = {(qo, 0zo)} Push operations
2. 8(qo, & 20) = {(G2, 20)}

3. 8(do, 0, 0) = {(00, 00)}

4. 5(do, 1, 0) = {(qu, €)} } Pop operations
5. S(QL 1! 0) = {(qll 8)}
6. 8(qu & 20) = {(d2, z0)} _ Accept the Final State

Transition Diagram:

0, Zo/OZo
0,0/00

[
»

1,0/¢
1,0/¢ Q
(—H=)

g, Z()/Zo
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4. Construct a PDA that accepts L = {0" 1" ; n > 0} accepted by empty stack.

Solution:

LetM = (Q, 3, T, 8, qo, Zo, F) be a PDA

The productions are:

1.
2.
3.

4.
S.

6.

8(do, 0, Zo) = {(o, 020) }
3(qo, &, 2o) = {(02, €)}
8(do, 0, 0) = {(qo, 00)}

8(qo. 1, 0) = {(a1, &)}
8(ql! 1! 0) = {(ql! 8)}

8(q1! & ZO) = {(qz’ 8)}

Transition Diagram:

0, Zo/ OZ()
0,0/00

1,0/¢

[
»

1,0/¢ Q
()

g, 20l ¢

|

}

Push operations

Pop operations

Accept the empty stack

()

5. Construct a PDA that accepts L = {wew” ; w e (a+b)*} accepted by Final State.

Solution:

LetM = (Q, ¥, T, 8, qo, Zo, F) be a PDA

The productions are:

1.

ok wm

~

8.
9.
10.

11.

8(qo, a, o) = {(do, azo)
3(do, b, o) = {(qo, bzo)
(o, &, @) = {(do, aa)
(0o, b, b) = {(qo, bb)
(do, a, b) = {(qo, ab)
(o, b, @) = {(do, ba)

8(do, ¢, @) = {(q1, @)}
8(do, ¢, b) = {(q1, b)}

8(ds, a, ) = {(qu, €)}
8(qs, b, b) = {(q., €)}

0(du, &, 20) = {(02, 20)}

Push operations

Accept the
separator ‘c’

Pop operations

Accept the Final State
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Transition Diagram:

a, Zo/ azp

b, zo/ bz

a,alaa

b, b/ bb

a,b/ab aya/g
b, a/ba b.ble

6. Construct a PDA that accepts L = {wew” ; w e (a+b)*} accepted by empty stack.

Solution:
LetM=(Q, >, T,3d, qo, Zo, F) be a PDA

The productions are:

1. 3(qo, &, Zo) = {(o, azo) )
(o, b, zo) = {(do, bzo)
5(Clo. 3, ) = {(do, a2) \~ Push operations
(do, b, b) = {(qo, bb)
3(do, &, b) = {(qo, ab)
S(QO, b, a) = {(qu ba) _J

8(o: ¢, a) = {(qu, )} } Accept the
8. 8(qo, ¢, b) ={(q, b)} separator ‘c’

9. (a1 a a) = {(qs, &)} }
10. 8(q1, b, b) = {(q1, €)}

ok wd

~

Pop operations

11.8(01, & € ) = {(92, &)} - Accept the empty stack

Transition Diagram:
a, 2o/ azy
b, Zo/ bZo
a,alaa
b, b/ bb
a,b/ab als
b, a/ba b.ble

c,ala

c.b/b R € 20l ¢
Jdo =\qu g2
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7. Design a PDA that accepts L = {ww" ; w e (0+1)*} accepted by final state.

(or)

Design a PDA for even length palindrome.

Solution:

LetM=(Q, >, T, 9, qo, Zo, F) be a PDA

The productions are:

1.

ok wN

~

8.

9

(%o, 0, o) = {(qo, 0z0)
8(do, 1, o) = {(do, 120)
(do, 0, 0) = {(qo, 00)
8(do, 1, 1) = {(qo, 11)
8(do, 0, 1) = {(qo, 01)
(o, 1, 0) = {(d, 10)

8(do, & 0) ={(qs, 0)}
8(q01 & 1) = {(q11 1)}

8(ql! 0! 0) = {(ql! 8)}

Push operations

Accept the
separator ‘g’

Pop operations

10, 0(qs, 1, 1) = {(qu, €)} }

11. 8(qy, & 20) = {(92, 20)} - Accept the Final State

Transition Diagram:

0, Zo/OZo
1, Zo/lZo
0,0/00
1,1/11
0,1/01
1,0/10

= o
= O
~

m

g, 0/0

g 111 R € 20/ 29
Jo =\0I1/ op;

8. Construct a PDA that accepts L = {a"n™a" ; m, n >1} accepted by empty store.

Solution:

LetM=(Q, >, T,3d, qo, Zo, F) be a PDA

The productions are:

1. 8(do, &, Zo) = {(do, azo)

(o, @, @) = {(qo, aa)
(o, b, @) = {(qs, a)
8(ds, b, @) = {(qu, a)
8(q1! a, a) = {(q2! 8)
3(q2, a, a) = {(02, €)
6(qZ! &, ZO) = {(qu 8)

Nookown
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Transition Diagram:

a, o/ azo
a, alaa b ala a ale

9. Design a PDA that accepts L = {a"b™c™d"; n, m > 1} accepted by empty store and
check whether the string w = aaabcddd is accept or not.

Solution:
LetM=(Q, >, T, 9, qo, Zo, F) be a PDA

The productions are:
1. 5(do, a, 2o) = {(qo, azo)

(o, @, @) = {(do, aa)
5(C10, b, a) = {(qla ba)
(o, b, b) = {(as, bb)
(o, ¢, b) = {(ay, €)
8(ql! C, b) = {(q1! 8)
8(ql’ d, a) = {(an 8)
8(q2! d! a) = {(an 8)
3(q2, &, o) = {(03, €)

©ooN O WN

Transition Diagram:

a, o/ azg
a,alaa
b, a/ba
b, b/bb

String w = aaabcddd

(0o, @aabeddd, zg) + (o, aabcddd, azg)
F (qo, abcddd, aazo)
+ (qo, beddd, aaazp)
F (qo, cddd, baaazo)
+ (q, ddd, aaaz)
F (02, dd, aazp)
F (02, d, azo)
(o (qg, g, Zo)
F (03, €, €) - Hence the string is accepted.
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Tutorial Problems:

10. Construct a PDA that accepts L = {a"b®"; n>1} accepted by empty stack.

11. Construct a PDA that accepts L = {a"ba" ; n> 0} accepted by final state.

12. Design a PDA that accepts L = {a"ba" ; n > 0} accepted by final state.

13. Construct a PDA that accepts L = {a"n™a" ; n > 0 and m = n+1} accepted by empty
store.

14. Construct a PDA that accepts L = {a"b™; n > 0 and m > n} accepted by empty store.

15. Construct a PDA that accepts L = {a"n™c™"; m, n > 0 and m > n} and check whether
the given string is accepted or not. (a) aabbbbcc (b) aabbc

Equivalence of PDA’s and CFL’s

i)_ Conversion of CFG to PDA

Theorem:
For any CFG L, there exists an PDA M such that L=L(M).

Proof:
LetG=(V, T,P,S)beaCFG.
Construct the PDA M that accepts L(G) by empty stack as follows:
M=({q}, T,VUT,S,q,S)
Where transition function 6 is defined by:
1. For each variable A, make d(q, €, A) = {(q, a) if A — a is a production
of P}.
2. For each terminal a, make d(q, a, a) = {(q, €)}.

v" Problems for CFG to PDA

1. Construct a PDA from the following CFG.
G =({S, A}, {a, b}, P, S) where the productions are
S—>AS/¢
A —aAb/Sb/a

Solution:
Let the equivalent PDA, M = ({q}, {a, b}, {a, b, A, S},98,q, S)
where d:
6(q, &, S) = {(q, AS), (q, & )}
5(q, &, A) = {(q, aAb), (g, Sb), (q, a)}
5(q, a,a) = {(q, & )}
8(q, b, b) = {(q, &)}
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2. Consider the grammar G = (V, T, P, S) withV ={S}, T={a, b, c},and P = {S —
aSa, S — bSb, S — ¢}

Solution:
Let the equivalent PDA, M = ({q}, {a,b,c}, {a,b, ¢, S},9,q,S)
where 6:
8(q, &, S) = {(q, aSa), (q, bSb ), (q, ¢ )}
8(q, a,a) = {(q, &)}
8(q, b, b) = {(q, &)}
8(q, ¢, )= {(q, &)}

3. Consider the grammar G = (Vn, V1, P, S) withP={S — abA /baA /B /¢
A—DbS/b,B—aS,C — ¢}

Solution:
Let the equivalent PDA, M = ({q}, {a, b}, {a,b, S, A, B, C},9,q, S)
where 0:
8(q, &, S) = {(q, abA), (g, baA), (0, B), (q, &)}
8(q, &, A) = {(q, bS), (a, b)}
8(q, & , B) = {(q, aS)}
5(q, &, C) = {(q, & )}
5(q, a,a) = {(q, & )}
8(q, b, b) = {(q, & )}

4. Consider the grammar G = (Vn, V1, P, S)

Where P :
S— A/B/¢
A — 0S/1B/0
B — 0S/1A/1
Solution:
Let the equivalent PDA, M = ({q}, {0, 1}, {0, 1, S, A, B}, 5, q, S)
where o:

(g, &,8)=1{(q,A), (4. B). (g9, &)}
8(q, &, A) = {(q, 0S), (9, 1B), (a, 0)}
5(q, £, B) = {(q, 05), (0, 1A), (0, 1)}
6(q, 0, 0) = {(q, &)}

6(q, 1, D) = {(q, &)}
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5. Construct a PDA that will accept the language generated by the grammar G = ({S,
A}, {a, b}, P, S) with the productions S — AA /a, A — SA /b and test whether
“abbabb” is in N(M).

Solution:
Let the equivalent PDA, M = ({q}, {a, b}, {a,b, S, A}, d,q, S)
where 6:
8(q, &, S)={(q, AA), (g, a }
8(q, &, A) = {(q, SA), (9, b)}
6(q, 8, a) = {(q, € )}
8(q, b, b) = {(q, &)}

Test whether “abbabb” is in N(M):

d(q, abbabb , S) + 6(q, abbabb , AA) by d(q, €, S) = {(q, AA)}

F d(q, abbabb , SAA)
+ d(q, abbabb , aAA)
(g, abbabb , aAA)
F d(q, bbabb , SAA)
- d(q, bbabb , AAAA)
F 0(q, bbabb , bAAA)
F 0(q, babb , AAA)

+ 0(q, babb , bAA)
Fd(q, abb , AA)

F d(q, abb , SAA)
Fd(q, abb , aAA)
Fo(q, bb , AA)

Fd(q, bb, bA)

Fo(gq, b, A)

Fo(q, b, b)

Fd(q, €, ¢€)

by d(q, €, A) ={(d, SA)}
by d(q, €, S) ={(q, a)}
by d(q, a, a) = {(q, &)}

by d(q, €, A) ={(a, SA)}
by 8(q, € , S) = {(q, AA)}
by d(q, &, A) = {(a, b)}
by 8(q, b, b) ={(q, €)}
by d(q, &, A) ={(q, b)}
by d(q, b, b) ={(q, )}
by d(q, €, A) = {(a, SA)}
by d(q, €, S) ={(q, a)}
by d(q; a, a) = {(q, €)}

by 8(q, &, A) = {(a, b)}
by 8(q, b, b) ={(q, €)}
by 8(q, &, A) = {(a, b)}
by 8(q, b, b) ={(q, €)}

Tutorial Problems:

6. Consider the grammar G = (Vy, V1, P, S) and test whether “abbabb” is in N(M).
Where P :
S—abA/baA/B/¢
A—DbS/b
B — aS
C—oe
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7. Consider the grammarG=(V, T, P, S)
Where P :
A — aB
B — aB/bB/e
8. Consider the grammar G = (V, T, P, S) and test whether “0101001” is in N(M).
Where P :
S — 0S/1A/1/0B/0
A — 0A/1B/0/1
B — 0B/1A/0/1
9. Consider the grammar G = (V, T, P, S)
Where P :
A — Ba/Ab/b
B — Ca/Bb
C — Aa/Cb/a
10. Consider the grammar G = (V, T, P, S)
Where P :
A — aB/bA/b
B — aC/bB
C — aA/bCla
11. Consider the grammar G = (V, T, P, S)
Where P :
S — ABCD
A — aab
B — bba / bbaB
C — bab
D — aab / aabD

if)_ Conversion of PDA to CFG

Theorem:
If L is N(M) for some PDA M then L is CFL.

Proof:
Let M=(Q, >, T, 9, qo, Zo, D) be a PDA
Construct the CFG G that accepts L(M) by empty stack as follows:
G=(V,T,P,S)
Where production P is defined by:

v The productions in P are induced by moves of PDA as follows:

Step 1: Rules for start symbol:
S productions are given by S — [qo Zo q] for every geQ
For example:
We have two states (o, q1), S0 two rules for starting variable.
S — [qo Zo Go]
S — [qo0Zo 1]

14120



SITAMS — B.Tech — 1l Year - 1l Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE
18CSE225 — Formal Languages and Automata Theory Professor in CSE,
Unit— IV

Step 2: Rules for POP operations:
Each erasing move d(q, a, Z) = (q1, €) induces production [q Zq’'] — a
For example:

E‘)(q’ 4, Z) = (ql’ 8)

VN

[AZqg] —a

5(% & Z) = (ql: 8)

VN

[AZgi] —¢

Step 3: Rules for PUSH operations:
Each non-erasing move 6(q, a, Z) = (q:, Z1 Z» Z3 .... Z,) induces many
productions of form.
[AZq]—alq1ZiQ] [G2Z20s] - oevvvnennnnn. [an Zn Q7]
Where each state q’, q1, (2, .... qnCan be any state in Q
General Format 1:

PN

[WZ__]—alqs 1L Z; 1

A A

same

same
Filled with other states

Example: d(qo, X(qo, XZ,) with two states (go,q1)

[CIo Zy Qo] — a[qo X QO] [%0 Zo qo]
[do Zo d1] — a[qo X do] [doZo qil
[do Zo go] — a [qo X d1] [d1Zo do]
[do Zo d1] — a[qo X a1] [01Z0 qul

[@0Z__]—alqgpZi___]
¢ 1

General Format 2:

Same  Filled with others states
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[do Zo do] — a[qo X qo]
[do Zo 1] — a[qo X q1]

Example: 8(qo, @, Zo) = (qo, X) with two states (qo,01)

v" Problems for CFG to PDA

1. Convert the PDA P= ({p, 9}.{0,1}.{X,Zo}, 6, 0, Zo) to a CFG, if is given by

1 6(‘19 1! ZO) :{(q1 XZO)}
2.8(q, 1, X) = {(a, XX)}
3.8(q, 0, X) ={(p, X)}
4.8(q, & X) ={(a, &)}
5.8(p, 1, X) ={(p. &)}

6. 8(p’ O! ZO) = {(ql ZO)}

Solution:

Step 1: Find the push and pop operations:

1.68(q, 1, Zo) ={(qg, XZo)} - Push
2.9(q, 1, X) ={(g, XX)} - Push
3.0(q, 0, X) ={(p, X)} - Push
4. 5(% €, X) = {(q1 8)} - POp
5.8(p, 1, X) ={(p, &)} - Pop
6. 0(p, 0, Zo) ={(q, Zo)} - Push

Step 2: Rules for start symbol:
We have two states g and p.
So, S productions are

Step 2: Rules for POP operations:
2.1 Rules for é(q, &, X) ={(q,¢)} -—-(4)
3. [qXq] —¢

2.2 Rules fordo(p, 1, X) ={(p,e)} --- (5)
4. [pXp]—1

Step 3: Rules for PUSH operations:

3.1 Rules for 6(q, 1, Zo) ={(q, XZo)} --- (1)
. [@Zoql = 1[gXd] [qZoq]
. [aZopl —1[gXd] [qZop]
. [@Zoql —1[gXp] [pZoq]
. [@Zopl = 1[gXp] [pZop]

o1

o0 N o
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3. 2 Rules for 8(q,1, X) ={(9,XX)} ---(2)
9. [qXql—1[gXq] [gX(]
10.[qXpl —1[gXq] [gXp]
11.[qXq] = 1[gXp] [pXd]
12.[qXpl—1[gXp] [pXp]

3.3 Rules for 8(q,0, X) ={(p.X)} --- (3)
13.1q X q] — 0[q X q]

14.[qXp] = 0[gXp]
3.4 Rules for 8(p, 0, Zo) ={(q, Zo)} --- (6)

15.[pZoql - 0[q Zo q]
16. [p Zo p] — 0 [q Zo p]

2. Convert the PDA P= ({q, p}, {0,1},{Zo, X}, 3, q, Zo,{p}) to a Context free grammar.

1. 8(q,0, Z0) ={(q, XZ0)}
2.6(q,0, X) = {(q, XX)}
3.8(q,1, X) = {(q, X)}
4.5(q, & X) = {(p, &)}
5.0(p, & X) = {(p &)}
6. 3(p,1, X) = {(p, XX)}
7.8(p,1, 20) = {(p, &)}

Solution:

Step 1: Find the push and pop operations:

1. 8(q’ O! ZO) :{(q1 XZO)}
2.8(q, 0, X) = {(q, XX)}
3.8(g, 1, X) ={(a, X)}
4.8(q, &, X) ={(p, &)}
5.9(p, & X) ={(p, &)}

6. 8(p,1, X) = {(p, XX)}
7.8(p.1, Zo) ={(p, ¢)}

Step 2: Rules for start symbol:
We have two states g and p.
So, S productions are
2. S— [q 7, p]

Step 2: Rules for POP operations:

- Push
- Push

- Push

- Pop
- Pop

- Push
- Pop

2.1 Rules for 6 8(q, &, X) ={(p, &)} --- (4)

3. [aXp]l—¢

2.2 Rules for 3(p, &, X) ={(p, &)} - (5)

4, [pXp]l—cs

2.3 Rules for 8(p,1, Zo) ={(p, )} - (7)
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Step 3: Rules for PUSH operations:
3.1 Rules for 6(q, 0, Zo) ={(q, XZo)}--- (1)
6. [Zoql—0[aXd] [qZoq]
7. [qZopl — 0[aXaq] [aZop]
8. [0Zoql—0[gXp] [PZoq]
9. [dZopl —0[gXp] [pZop]

3.2 Rules for §(q, 0, X) = {(q, XX)}--- (2)
10. [q X q] — 0[gq X q] [q X d]
11.[gXpl —0[qXd] [aXp]
12.[q X q] = 0[gXp] [pXd]
13.[qXpl —0[gXp] [pXp]

3.3 Rules for 5(q, 1, X) ={(q, X)} - (3)
14.[qX q] — 1[qXd]
15. [gXpl —1[gXp]

3.4 Rules for &(p,1, X) = {(p, XX)} ---- (6)
16. [pXql —1[pXd] [qXd]
17.[pXpl = 1[p Xd] [aXp]
18. [pXql— 1[pXp] [pXd]
19.[pXp] = 1[pXp] [PXPp]

Tutorial Problems:

1. Construct a Context free grammar G which accepts N(M), where
M=({q0,q1},{a,b},{z0,z},0,q0,20,®) and where J is given by

6(q0,b,20) = {(q0,220)}, 6(q0, &,20) = {(q0, &)}
6(q0,b,z) = {(q0,22)}, 6(q0,a,2) = {(q1,2);
6(ql,b,2) = {(ql, &)}, d(ql,a,20) = {(q0,20);

2. Construct the grammar from the given PDA.
M=({q0, q1}{0,1}{X,Zo},6,90,Z0,®) and where d is given by

S(qO»OaZO) = {(q()aXZO)}! S(q0,0,X) = {(qO’XX)}a
6(q0,1,X) = {(ql, &)}, 6(ql,1,X) = {(ql, &)},
S(qla 87X) = {(qla 8)}5 5((11; &, ZO ) = {(qla 8)}

3. Let M=({q0,q1}, {0,1}, {S,A}, 5, q0, Z0, ¢} to be a PDA
Where & is given by
8 (0o, 0,S) ={(q,AS)}
8 (0o, 0, A) = {(do,AA), (a1, S)}
8 (do, 1, A) = {(ar )}

6(q, 1, A) = {(a1, &)}
8 (ds, & A) = {(au, &)}
5 (g1, & S) = {(qs €)} Constructa CFG G = (V, T, P, S) generating N (M).
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Deterministic PDA
v In general terms, a deterministic PDA is one in which there is at most one possible
transition from any state based on the current input.
v' A deterministic pushdown automaton (DPDA) is a 7-tuple

M= (QJ Z’ Fa 8’ qo, ZO’ F),
Where
Q - Finite set of states
¥ - Finite input alphabet
I' - Finite alphabet of pushdown symbols
d - Transition function 6 : Q X T *x I'* — (Q x I'*) U {@}
Qo - start / initial state q0 € Q
Z, - start symbol on the pushdown Z; € T’
F - set of final states F € Q

Example: Describe a DPDA that can recognize the language {w ; w contains more
a’s than b’s}.

Non-Deterministic PDA
v In general terms, a non-deterministic PDA is one in which there is more than two
possible transition from any state based on the current input.
v A non-deterministic pushdown automaton (NPDA) is a 7-tuple

M= (Qa 29 Fa 87 qo; ZO, F),
Where
Q - Finite set of states
¥ - Finite input alphabet
I' - Finite alphabet of pushdown symbols
§ - Transition function § : Q x T *x [ *— 2Q*1
Qo - start / initial state q0 € Q
Z, - start symbol on the pushdown Z; € T’
F - set of final states F € Q

Example: Define a NPDA that recognizes the language {ww" ; w € I*}.

Pumping Lemma
If L is a context-free language, there is a pumping length p such that any string w €
L of length > p can be written as w = uvxyz, where vy # ¢, |vxy| < p, and for all i > 0,
uv'xy'z € L.

Applications of Pumping Lemma

Pumping lemma is used to check whether a grammar is context free or not. Let us
take an example and show how it is checked.
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Problem

1. Find out whether the language L = {xnynzn | n > 1} is context free or not.

Solution

1.

2
3.
4

~

Let L is context free. Then, L must satisfy pumping lemma.

. At first, choose a number n of the pumping lemma. Then, take z as On1n2n.

Break z into uvwxy, where [vwx| <n and vx #&.

Hence vwx cannot involve both Os and 2s, since the last 0 and the first 2 are at
least (n+1) positions apart. There are two cases:

Case 1 — vwx has no 2s. Then vx has only Os and 1s. Then uwy, which would
have to be in L, has n 2s, but fewer than n Os or 1s.

Case 2 — vwx has no 0s.

Here contradiction occurs.

Hence, L is not a context-free language.

2. The text uses the pumping lemma to show that {ww | w in (0 + 1)*} is not a CFL.

ok whE

© o N

11.

Suppose L were a CFL.

Let n be L’s pumping-lemma constant.

Consider z =0n10n10n.

We can write z = uvwxy, where [vwx| < n, and |vx| > 1.

Case 1: vx hasno 0’s.

Then at least one of them is a 1, and uwy has at most one 1, which no string in
L does.

Still considering z = On10n10n.

Case 2: vx has at least one 0.

vwx is too short (length < n) to extend to all three blocks of 0’s in On10n10n.

. Thus, uwy has at least one block of n 0’s, and at least one block with fewer

thann 0’s.
Thus, uwy is not in L.

Closure properties of CFL (Without proof)
1. CFLs are closed under union

4.

If L1 and L2 are CFLs, then L1 U L2 is a CFL.

CFLs are closed under concatenation

If L1 and L2 are CFLs, then L1L2 is a CFL.

CFLs are closed under Kleene closure

If Lisa CFL, then L*is a CFL.

CFLs are not closed under intersection

If L1 and L2 are CFLs, then L1 N L2 may not be a CFL.

CFLs are not closed under complement

If L isa CFL, then L may not be a CFL.
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Syllabus : Unit -V : Turing Machine and Undecidabality

Definition - Model - Language acceptance - Design of Turing Machine - Computable
languages and functions - Modifications of Turing machine - Universal Turing machine-
Chomsky hierarchy of languages - Grammars and their machine recognizers - Undecidabile
Post correspondence problem.

Introduction

v' A Turing Machine is an accepting device which accepts the languages (recursively
enumerable set) generated by type 0 grammars.
v’ It was invented in 1936 by Alan Turing.

Definition
v" A Turing Machine (TM) is a mathematical model which consists of
o An infinite length tape divided into cells, each cell contains a symbol from
some finite alphabet. The alphabet contains a special blank symbol (here
written as '0") and one or more other symbols. The tape is assumed to be
arbitrarily extendable to the left and to the right.
o A head which reads the input tape.
o A state register stores the state of the Turing machine.
v After reading an input symbol, it is replaced with another symbol, its internal state is
changed, and it moves from one cell to the right or left. If the TM reaches the final
state, the input string is accepted, otherwise rejected.

v" A TM can be formally described as a 7-tuple M = (Q, Z, T, 8, qo, B, F)
Where
Q is a finite set of states
> is the input alphabet
I' is the tape alphabet
d is a transition function; 6 : Q x ' - Q x I' x {L, R}.
Qo is the initial state, qo € Q
B is the blank symbol, B e T’
F is the set of final states, F € Q

Model of Turing Machine (TM) Blank Symbol

1
1

$ B B a a b b B B' <

»
Read / _,———'T Y

Write -~~~ . Infinite Input Tape
Head .
Finite . Output :
Control " M accepts w/
M rejects w.
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v" TM has three components:
i.  Finite state control:
= Itisin one of a finite number of states at each instant, and is connected
to the tape head.
ii.  Tape head:
= |t is used to scans one of the tape symbol (cell) of the tape at each
instant, and is connected to the finite state control. It can read and write
symbols from/to the tape, and it can move left and right along the tape.
ii.  Tape:
= |t is consists of an infinite number of tape cells, each of which can
store one of a finite number of tape symbols at each instant. The tape is
infinite both to the left and to the right.

Language acceptance

v A TM accepts a language if it enters into a final state for any input string w. A
language is recursively enumerable (generated by Type-0 grammar) if it is accepted
by a Turing machine.

v' Astring w is accepted by the TM, M = (Q, X, T, 6, qo, B, F) if gow +* a;gra, for some
oy, 0p € I'*, gr € F.

v The language accepted by the TM M is denoted as

T(M) ={w;w e X*, qow +* a3 s ap for some oy, 0p € I'*, g € F}

Movesina TM
Let M =(Q, Z, T, 3, qo, B, F) be a TM. The symbol is used to represent the move.
+ - Single move
F* - Zero or more moves

v" 3(q, X) causes a change in ID of the TM. This is called as a move.

Input head Move to Left side:

v Suppose 5(q, xi) = (p, ¥, L) and the input string to be processed is X1X2X3 .... Xq
and the head is pointing to symbol x;.

v’ Before processing:

X1XoX3 ... X1 (g Xj....... Xn
v’ After processing:
X1XoX3 ... Xi2g Xiaa Y Xjs1 ooenees Xn
X1XoX3 eee Xj1  Xjeooenne Xn F X1XoX3 eee Xi2 O Xii1 Y Xit1 eeveees Xn

Input head Move to Right side:

v Suppose 5(q, xi) = (p, ¥y, R) and the input string to be processed is X1X2X3 .... Xy
and the head is pointing to symbol x;.

v Before processing:

X1XoX3 ... Xi-1 g Xj....... Xn
v’ After processing:
X1XoX3 ..o Xi2 Xii1 YV g Xit1 e v e Xn
X1XoX3 eee Xi2 Xic1 Y ( Xjt+1 eeeceee Xn
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Design of Turing Machine
1. Design a TM to recognize the language L ={a"b"; n>0} and test whether the strings
w= “aabb” and “abbb” are accepts or not.

Solution:
The TM is designed using the following steps:

Step 1: M replaces the leftmost ‘a’ by ‘x” and moves right to the leftmost ‘b’,
replacing it by ‘y’.
Then M moves left to find the rightmost ‘x’ and moves one cell right
to the leftmost ‘a’ and repeat the step 1.
While searching for a ‘b’, if a blank (B) is encountered, and then M
halts without accepting.
After changing a ‘b’ to ‘y’, if M finds no more a’s, then M checks no
more b’s remains, M accepting the string else not.

Step 2:
Step 3:

Step 4 :

Let M = ({qo, 1, 02, 03, d4}, {a, b}, {a, b, B}, 8, qo, B, {d4}) be a TM.

0 is defined by:
5 (q1! a) = ( qu, a, R)

0 (qol a) = ( CIL X, R)
6(qn, y)=(an Y, R) 0(qi,b)=(02 Yy, L)
(g2, y) =(do, ¥, L)

0(q2,a)=(0za,L)
6 (do, ¥) =(ds, ¥, R)

0 (d2,X) = (do, X, R)
0(q3, Y)=(0s, ¥, R) 6 (q3, B) = (094 B,R)

Transition Table:

States Tape Symbols
a b X y B
20 | (4L X R) - - (o, ¥, R) -
St (guaR) | (92 y L) - (91 ¥, R) -
02 (028, L) - (do, X, R) | (duy, L) -
U - - - (9. y,R) | (s B, R)
*q4 - - - -
Transition Diagram: e a/a <
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i) Test whether the string w = “aabb” is in L(TM)
goaabbB + xqg;abbB F xaq;bbB F xq.aybB F qg.xaybB
F XgoaybB F xxq;ybB F xxyq;bB F xxq,yyB
F Xd2xXyyB F xxqoyyB F xxyqgsyB F xxyyqsB
F xxyyBQa
Hence the string is accepted.

1) Test whether the string w = “abbb” is in L(TM)
JoabbbB F xqg;bbbB F xqgibbbB F g,xybbB F xqoybbB

F XyqsbbB
Hence the string is rejected.

2. Design a TM to recognize the language L ={a"b"c"; n>0}.

Solution:

The TM is designed using the following steps:

Step 1: M replaces the leftmost ‘a’ by ‘x’ and moves right to the leftmost ‘b’,
replacing it by ‘y’ and moves right to the leftmost ‘c’, replacing it by
A

Step 2: Then M moves left to find the rightmost ‘x” and moves one cell right
to the leftmost ‘a’ and repeat the step 1.

Step 3 : While searching for a ‘b’ or ‘c’, if a blank (B) is encountered, and
then M halts without accepting.

Step 4 : After changing a ‘b’ to “y’ and ‘¢’ to ‘z’, if M finds no more a’s, then
M checks no more b’s and c¢’s remains, M accepting the string else
not.

Let M = ({do, 1. 92, 93, 94, 05}, {a, b, ¢}, {a, b, ¢, B}, 6, qo, B, {qs}) be a TM.

0 is defined by:
0 (qo,a) = (0, X R) d(qn,a)=(0qy,a R)
8(quy)=(du ¥, R) 3(qu b)=(a2 ¥, R)
0 (g2, b) =(02 b, R) 0(92,2)=(02, 2, R)
0(q2,€)=(0s, z, L) 0(g3, 2) =(0s, 2, L)
d (Cl3, b) = ( QB, b, L) o (q31 y) = ( QB, y! L)
0(qs, @) =(0gs, a, L) 0 (gs, X) = (do, X, R)
0 (qo, Y) =(da ¥, R) 0(q4,Y)=(da ¥, R)
6(q4,2)=(04, 2, R) 8(q4,B)=(0s B, R)
Transition Table:
States Tape Symbols
a b C X y z B
er (ql! X, R) - - - (q4v Y, R) - -
01 (9 a,R) | (@2, Y, R) - - (91, ¥, R) - -
dz - (02, b, R) | (gs, 2, L) - - (92, z, R) -
g | @al) | (g,b L) - Qo xR) | @y L) | (@2 L) -
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Q4

(q4v yi R)

(Q41 Z, R)

(q51 Bv R)

*Us

Transition Diagram:

3. Design a TM to recognize the language L ={ww"; w e (0+1)*} and check whether

the string “010010” is accept or not.

(or)

Design A TM to accept the set of palindrome strings and check whether the string

“010010” is accept or not.

Solution

Let M = ({qO 01,02, G3,G4,0s, Gs, q7}1 {a’ b, C}v {a’ b, c, B}9 3, do; B, {q7}) be a TM.

0 is defined by:
6 (q0,0) = (a1, B,R)
6 (q1, 0)=(01, 0, R)
6(q1,1)=(q, 1, R)
6(qu, B)=(0z2 B, L)
6 (q2,0)=(gs, B, L)
6(q3, 0)=(0s, 0, L)
6(q3 1) =(gs 1, L)
6 (g3, B) =(do, B, R)
0 (qo, B) = ( s, Bv R)

0 (qo, 1) =(0ds B, R)
0 (qs, 0) =(ds, O, R)
0(ds 1)=(0ds L, R)
o (Q4, B) = ( Js, B! L)
(s, 1) = (s, B, L)
(g6, 0) = (s, 0, L)
0(qs 1)=(0s 1, L)
0 (qG! B) = ( q01 B, R)
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Transition Table:

Tape Symbols
0 1 B
2G | (91.B,R) | (94, B/ R) | (g B, R)
01 (0, 0,R) | (g, L,R) | (92, B, L)
02 (gs B, L) - -
Os (03,0,L) | (g3 1, L) | (do B, R)
G4 (94 0,R) | (44 L, R) | (s B, L)

States

q5 - ( an B) L) -
U (q6! 0! L) (q61 11 L) (qu B! R)
*q7 - - -

Transition Diagram:

Test whether the string “010010” is in L(TM):
00010010B + BQ;10010B + B1g;0010B F B10g;010B

+ B100g;10B + B1001g;0B + B10010qg;B

+ B1001g,0B + B100g3;1BB + B10gs;01BB

+ B1gs001BB F B(31001BB + 3B1001BB

+ Bgy1001BB + BBQ,001BB + BB0g,01BB
+ BB00g,1BB + BB001g,BB F+ BB00gs1BB
+ BB0gs0BBB + BBgs00BBB + BgsB00BBB
+ BBg,00BBB + BBBg;0BBB I BBB0g;BBB
+ BBBg.0BBB I BB(g;BBBBB  BBBg,BBBB
+ BBBB(Q;BBB - Hence the string is accepted.
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4. Design a TM to recognize the language L ={wcw"; w e (a+b)*}.

Solution

Let M = ({qO, d1, 92, 03, 04,05, Gs, 7, q8}’ {a1 b1 C}’ {av bv C, B}v 89 o, B’ {q8}) be a TM.

0 1s defined by:

8 (qo,a) = (01, B,R)
6(qua)=(du a R)
6 (qu, b)=(0qy, b, R)
6(qu, ¢)=(0qy ¢, R)
6(qu, B)=(0z B, L)
6 (q2, @) = (03 B, L)
6(qs, @) = (0s, & L)

6 (q3 b) =(gs, b, L)
6(q3¢)=(0sc, L)
6 (q3, B)=(do, B, R)
3 (qo, €) = (97, B, R)

Transition Table:

8 (qo, b) = (04, B,R)
d(qs,a)=(0gs, & R)
6 (qs, b) = (s, b, R)
6(qs,¢)=(0sc R)
6 (q4,B)=(0s B, L)
8 (g5, b) = (ge, B, L)
8 (g, @) = (e, &, L)

6 (qe, b) = (e, b, L)
6(qe€)=(0e ¢, L)
8 (qe, B) = (o, B, R)
6 (q7, B)=(0s B, R)

Tape Symbols
States
a b C B
20 | (duB,R) | (dsB,R) | (a7, BR) (98 B, R)
S/l (9, 0,R) | (au, 1, R) (9, ¢, R) (92, B, L)
q2 (s B, L) - - -
ds (93,0,L) | (o031, L) (gs,¢ L) (%, B, R)
da (9, 0,R) | (04 1,R) (94, ¢, R) (95, B, L)
Js - (de B, L) - -
Je (96, 0,L) | (061, L) (9e, C L) (%, B, R)
Q7 - - - (ds B, R)
*Q _ ] ] ]
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Transition Diagram:

ala— ala<
b/b— b/b«
clc— c/lc«

Tutorial Questions:

5. Design a TM to recognize the language L ={All strings must be equal number of 0’s
and 1’s}.

Design a TM to accept the language L ={All strings must be odd number of a’s}.
Design a TM to accept the language L ={ a"b"c"d"; n > 0}.

Design a TM to accept the language L ={ a"b™c™ d"; m, n > 0}.

Design a TM to accept the language L ={ a"b™; n>0and m = n+2}.

0 Design a TM to accept the language L ={ a"bcd"; n > 0}.

'—“~°.°°.\‘.C”
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Computable languages and functions

v" A Turing machine computes a function f : £* — X* if, for any input word w, it always
stops in a configuration where f(w) is on the tape.

v Problems:

1. Construct TM for concatenation of two strings of unary numbers.
String 1 : 111 and String 2: 11

Solution:

Initial content in the tape:

B 1 1 1 0 1 1 B
Step1l: M replaces the ‘0’ by ‘1’ and moves right to the leftmost ‘B’
Step 2: Move to step back, then M replaces the ‘1’ by ‘B’

Final content in the tape after concatenation:

B 1 1 1 1 1 B B

Let M = ({q0| ql,qz}l {1| O}l {1l Ol B}’ 8, qol B! {q2}) be a TM'
0 is defined by:

6(q0,1)=(0o, 1, R)
6(q0,0)=(0q,, 1, R)
6(q1,1)=(a1, L, R)
6(q1, B)=(02 L, R)

Transition Diagram:

1/1—> 1/1—>

(w2

9/19



SITAMS — B.Tech — 1l Year - 1l Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE
18CSE225 — Formal Languages and Automata Theory Professor in CSE,
Unit—V

2. Construct TM for f(x) = x + 3.

Solution:
Assume x =5 (11111)

Initial content in the tape:
B 1 1 1 1 1 + 1 1 1 B

Step 3: M replaces the ‘“+’ by ‘1’ and moves right to the leftmost ‘B’
Step4: Move to step back, then M replaces the ‘1’ by ‘B’

Final content in the tape after processing f(x) = x+3:

B 1 1 1 1 1 1 1 1 B B

Let M = ({do. d1. 92}, {1, 0}, {1, 0, B}, 8, qo, B, {02}) be a TM.
0 is defined by:

6(qo,1)=(0o, 1, R)
8 (qo, +) =(d1, L, R)
6(q1,1)=(a1, L, R)
8(q1, B)=(02 1, R)

Transition Diagram:

1/1- 1/1-

3. Construct TM for f(x,y) = x +.

Solution:
Assume x =5 (11111) and y = 3 (111)

Initial content in the tape:
B 1 1 1 1 1 + 1 1 1 B

Step5: M replaces the ‘+’ by ‘1’ and moves right to the leftmost ‘B’
Step 6 : Move to step back, then M replaces the ‘1’ by ‘B’
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Final content in the tape after processing f(x, y) =x +y:

B 1 1 1 1 1 1 1 1 B B

Let M = ({00, a1, 02}, {1, 0}, {1, 0, B}, 3, qo, B, {g2}) be a TM.
d is defined by:

6(qo, 1) =(0o, 1, R)
6 (qo, +)=(q,, 1, R)
6(q,1)=(q, L, R)
6(q1, B)=(02 1, R)

Transition Diagram:

1/1—> 1/1—>

4. Construct TM for f(X,y) =x—-y; x>y.

Solution:
Assume x =5 (11111) and y = 3 (111)

Initial content in the tape:
B 1 1 1 1 1 - 1 1 1 B

Step1: M replaces the leftmost ‘1’ by ‘B’ and moves right to the
leftmost ‘B’

Step2: Move to step back, then M replaces the ‘1’ by ‘B’

Step 3: Do the step 1 and 2, until no more 1’s after ‘-’

Step 4 : Finally M replaces the ‘-’ by ‘1’

Final content in the tape after processing f(x, y) = x - y:

B B B B 1 1 B B B B B

Let M = ({qO ql,qZ}: {1a O}a {la 0, B}a 9, qo, B, {qZ}) bea TM.
d is defined by:

5 (CIO, 1) = ( Q1 B’ R)
6(q1,1)=(dy L, R)
S(ql"):(qb'; R)
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6(q2, 1) =(02 1, R)
6 (92, B)=(0s B, L)
6(q3 1) =(gs, B, L)
6(qs 1) =(0ds, 1, L)
6 (q4, B) = (o, B, R)
6(q3-)=(0s 1L, R)

Transition Diagram:

5. Design a TM to compute f(x,y) =X *y.

Solution:
Initial content in the tape:
B|{1|1(1,*|1|1]0|B|B|B|B|B|B|B
Final content in the tape after processing f(x, y) =x *y:
B X | X|X|*|Y|]Yy|]O|l1]1]|1]|1|1,1) 8B
Let M = ({0o, 02,02}, {1, 0}, {1, 0, B}, 8, qo, B, {02}) be a TM.
0 1s defined by:
States Tape symbols
0 1 X Y * B
9qo (qlv X, R) (q4v X, R) - - - -
d1 (ql, 01 R) (q1! 1! R) - (qu Y’ R) (q31 *1 R) (Q21 *a I—)
q2 (q21 0’ L) (qZ’ 1’ L) (qOJ Xa R) (qz’ Y’ L) (qu *! L) -
Os (q3v 07 R) - - - - (q31 01 I—)
q4 - (q51 Xa R) - (q4' Y’ R) - =
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q5 (q6! 0! L) - - - (q7! O! L) -
Je - (9e, 1, L) | (96, 0,L) | (G Y, L) - (90, B, R)
*0r - (97,B,L) | (9. B, L) | (47, B, L) - -

Modifications of Turing machine
Turing Machines with Two Dimensional Tapes

This is a kind of Turing machines that have one finite control, one read-write head
and one two dimensional tape. The tape has the top end and the left end but extends
indefinitely to the right and down. It is divided into rows of small squares. For any Turing
machine of this type there is a Turing machine with a one dimensional tape that is equally
powerful, that is, the former can be simulated by the latter.

To simulate a two dimensional tape with a one dimensional tape, first we map the
squares of the two dimensional tape to those of the one dimensional tape diagonally as shown

in the following tables:

v v v v v v v ]|
h 12 J6 |7 15]16].. . .|
13
]
]

5

HEREEE
H B EE S

NN
HESEIN

One Dimensional Tape

v[1]v2l3lnl4]s]e]v|7]golzolhfa1]. . J. .|

The head of a two dimensional tape moves one square up, down, left or right. Let us simulate
this head move with a one dimensional tape. Let i be the head position of the two dimensional
tape.

Multitape TM

A multi-tape Turing machine is like an ordinary Turing machine with several tapes. Each
tape has its own head for reading and writing. Initially the input appears on tape 1, and the
others start out blank.

Universal TM
Universal Turing machine (UTM) is a Turing machine that can simulate an arbitrary Turing
machine on arbitrary input.
Turing Machines with Multiple Tapes :

This is a kind of Turing machines that have one finite control and more than one tapes
each with its own read-write head. It is denoted by a 5-tuple (Q , ¥, ', qo, 0 ) . Its
transition function is a partial function
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0:Qx( T UL{AI)>(QU{hI)x(T U{A})x{R,L,S}".
A configuration for this kind of Turing machine must show the current state the machine is in
and the state of each tape.

Turing Machines with Multiple Heads :
This is a kind of Turing machines that have one finite control and one tape but more than one
read-write heads. In each state only one of the heads is allowed to read and write. It is

denoted by a 5-tuple (Q, ¥, I, go, #). The transition function is a partial function

G Qx{Hi , Ho H3Ix( [ U{ A} >Q U{hH)x( [ U{A¥x{R,L,S}
where H; , H; ..., H, denote the tape heads.

Turing Machines with Infinite Tape :

This is a kind of Turing machines that have one finite control and one tape which
extends infinitely in both directions. It turns out that this type of Turing machines are only as
powerful as one tape Turing machines whose tape has a left end.

Nondeterministic Turing Machines

A nondeterministic Turing machine is a Turing machine which, like nondeterministic
finite automata, at any state it is in and for the tape symbol it is reading, can take any action
selecting from a set of specified actions rather than taking one definite predetermined action.
Even in the same situation it may take different actions at different times. Here an action
means the combination of writing a symbol on the tape, moving the tape head and going to a
next state. For example let us consider the language L={ww:w e {a,b} }.

Chomsky hierarchy of languages & Grammars and their machine
recognizers

v' Chomsky Hierarchy (Types of grammars)

Class | Chomsky | Grammars and their | Rules
hierarchy | machine recognizers
of
languages
Type-0 | Recursively | Unrestricted | Turing Rules are of the form:
enumerable Grammar machine a — B, where a and B are arbitrary
Language strings over a vocabulary Vand a # ¢
Type-1 | Context- Context- Linear- Rules are of the form:
sensitive sensitive bounded aAp — oBp orS — ¢
Language Grammar automaton where A, S e N
a, B, Be(NUT)*B#£¢
Type-2 | Context-free | Context-free | Pushdown Rules are of the form:
Language Grammar automaton A — awhere A e N,ae (NuUT)x*
Type-3 | Regular Regular Finite Rules are of the form:
Language Grammar automaton A—¢
A—a
A—oB
where A,B eNanda €T
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v Scope of each type of grammar
A figure shows the scope of each type of grammar:

Recursively Enumerable
S

~
/ \
f Context-Sensitive \ \
| |
| / ’ - \ |
| [ \ |
\ “ Context - Free ‘l /

\ \
\ \ \ |
\ il \ /

/
/
\
\

\ \ "/Regular\‘w ) /

/

v' Type - 3 Grammar
e Type-3 grammars generate regular languages. Type-3 grammars must have a
single non-terminal on the left-hand side and a right-hand side consisting of a
single terminal or single terminal followed by a single non-terminal.
e The productions must be in the form
X—a
X —aY

where X, Y € N (Non terminal) and a € T (Terminal)
e Therule S — gis allowed if S does not appear on the right side of any rule.
e Example

X—e

X —alaY

Y—b

v' Type - 2 Grammar
e Type-2 grammars generate context-free languages. These languages generated by
these grammars are be recognized by a non-deterministic pushdown automaton.
e The productions must be in the form
A—y
where A € N (Non terminal) and y € (T U N)*.
e Example
S—Xa
X—a
X —aX
X — abc
X—¢

v' Type - 1 Grammar
e Type-1 grammars generate context-sensitive languages.
e The productions must be in the form
aAB—ayp
Where A € N (Non-terminal) and a, B,y € (T U N)*
e The strings o and B may be empty, but y must be non-empty.
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e TheruleS — ¢is allowed if S does not appear on the right side of any rule. The
languages generated by these grammars are recognized by a linear bounded
automaton.

e Example

AB — AbBc
A — bcA
B—b

v' Type - 0 Grammar
e Type-0 grammars generate recursively enumerable languages. The productions
have no restrictions. They are any phase structure grammar including all formal
grammars.
e They generate the languages that are recognized by a Turing machine.

e The productions can be in the form of

a—pB

where a is a string of terminals and non-terminals with at least one non-
terminal and a cannot be null. B is a string of terminals and non-terminals.
e Example

S — ACaB

Bc — acB

CB — DB

aD — Db

Undecidability
Phrase Structure Grammar
v" It consists of four components G= (V, T,P,S)
Recursive Language
v A language is recursive if there exists a Turing Machine that accepts every
string of the language and reject every string that is not in the language.

W > Yes
> No
Recursively Enumerable Language
v A language is recursive enumerable if there exists a Turing Machine that
accepts every string of the language and does not accept strings that are not in

the language. The strings that are not in the language may be rejected and it
may cause the TM to go to an infinite loop.

W Yes
ERANEEE
S Infinite loop
Decidability

v A language is decidable (recursive) if and only if there isa TM M such that M
accepts every string in L and rejects every string not in L (or)

v A problem whose language is recursive is said to be a decidable.

Example :

e The strings over {a,b} that consists of alternating a’s and b’s.

e The strings over {a,b} that contains an equal number of a’s and b’s
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Undecidability

v A problem is undecidable, if there is no algorithm, that can take as input an
instance of the problem and determines whether the answer to that instance is
‘Yes’ or ‘No’.

Example :

e Given a TM M and an input string w, does M halt on input w? (Halting
Problem)

e For a fixed machine M, given an input string w, does M halt on input w?

e Membership problem is undecidable.

e State entry problem is undecidable.

Properties of Recursive and Recursively Enumerable Languages
v' Complement of a recursive language is recursive.
v"Union of two recursive languages is recursive.
v Union of two recursive enumerable languages is also recursively enumerable.
v Lif L and complement of L (L) are recursively enumerable is recursive.

Theorem :
The Complement of recursive language is recursive.
Proof :
Let L be a recursive language. Then there exists a TM M that halts on every string on L.
L=*-L
Since L is recursive there is an “algorithm” (TM M) to accept L. Now construct an
“algorithm” (TM M”) for L is as follows.

M’

w Yes q

T - ND

= Yes

If M halts without accepting the string, then M’ halts accepting that string and if M halts on
accepting it, M’ enters into the final state without accepting it.
Clearly L(M’) is the complement of L and thus L is a recursive language.

Theorem :
If L; and L, are two recursive languages then L; U L, is also a recursive
language.

Proof :
v Let L; and L, be recursive languages accepted by the TMs M; and M, respectively.
v' Construct a new TM M which first simulates M;. If M; accepts, then M accepts. If M;
reject, the simulates M, and accepts if and only if M, accepts.
v" Thus M has both accepting and rejecting criterion. So, M accepts L; U L.

recursive M

Yes
. — | ——— Yes
s No vl
| . l—-""‘es recursive
—— ———No

recursive
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Theorem :
If L, and L, are two recursively enumerable languages then L; U L, is also a
recursively enumerable language.

Proof :
v Let L; and L, be recursively enumerable languages accepted by the TMs M; and M,
respectively.
v Construct a new TM M which simultaneously simulates M; and M, on different tapes.
v If My or M, accepts, the M accepts.

recursively enumerable M

| I et

—1 Yes
L

recursively enumerable

Recursive enumerable
— Yes —

Theorem :
L if L and complement of L (L) are recursively enumerable is recursive.

Proof :
v' Let M1 and M2 be the TMs designed for the languages L and L respectively.
v' Construct a new TM M which simulates M1 and M2 simultaneously.
v If M accepts w if M1 accepts w, M rejects w if M2 accepts w.

M

N L
W - Yes Yes
-_> Yes -1 NO

Post Correspondence Problem (PCP)
The Post Correspondence Problem (PCP), introduced by Emil Post in 1946, is an
undecidable decision problem. The PCP problem over an alphabet )’ is stated as follows —
Given the following two lists, M and N of non-empty strings over > —

Recursive

M= (Xl, X2y, X3peeevnennn 5 Xn)

N = (yj_, Y2, ¥Y35eeennnnn. , yn)

We can say that there is a Post Correspondence Solution, if for some
[T P ix, where 1 <ij <n, the condition Xii ....... Xik = Vil eveeens yik satisfies.

Example:
Find whether the lists M = (abb, aa, aaa) and N = (bba, aaa, aa) have a Post Correspondence
Solution?
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X1 X2 X3
M Abb aa aaa
N Bba aaa aa
Here,

XoX1X3 = ‘aaabbaaa’ and y,y;y; = ‘aaabbaaa’
We can see that

XoX1X3 = Y2Y1Ys
Hence, the solutionisi=2,j=1,and k= 3.

Modified Post Correspondence Problem

v" We have seen an undecidable problem, that is, given a Turing machine M and an
input w, determine whether M will accept w (universal language problem).
v" We will study another undecidable problem that is not related to Turing machine
directly.
v Given two lists A and B:
A:W1,W2,...,Wk B:X1,X2,...,Xk
The problem is to determine if there is a sequence of one or more integers iy, iy, ..., im
such that:
WiWitWip. .. Wim = X1Xj1Xi2. . . Xim
(w;, X;) is called a corresponding pair.

v' Example
A B
i W, X
| 11 I
2 I 111
3 0111 10
1 10 0

This MPCP instance has a solution: 3, 2, 2, 4:
W W3 WL WaW, = X X3X,XX, = 1101111110
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