
1

UNIT 4 OBJECT-ORIENTED CONCEPTS USED IN PYTHON

Features of object-oriented programming-Fundamental concepts- Class- Encapsulation-

Inheritance- Polymorphism.

Object references - Turtle graphics - creating a Turtle Graphics Window - the “Default” Turtle -

Fundamental Turtle Attributes and Behavior - Additional Turtle Attributes - Creating Multiple

Turtles.

4.1 Features of object-oriented programming

 Definition: Object-oriented programming (OOP) is a method of structuring a program

by bundling related properties and behaviors into individual objects.

 Object Oriented means directed towards objects.

 Python is an Object Oriented programming (OOP).

 It is a way of programming that focuses on using objects and classes to design and build

applications.

 It is used to design the program using classes and objects.

 Advantages of oops:

 It is faster

 It is easy to execute

 It provides a clear structure for the programs

 Easy to maintain, modify and debug

 It is used to create full reusable applications with less code and shorter

development time

 Features of oops:

 Class

 Object

 Encapsulation

 Abstraction

 Inheritance

 Polymorphism

Class

 The class can be defined as a collection of objects.

 It is a logical entity that has some specific attributes and methods.

 A class is a blueprint for the object.

 A class is a template for objects

 A Class in Python is a logical grouping of data and functions.

 A class is a collection of objects

Syntax :

2

class classname:

 Class body

Object

 An object is an instance of a class.

 The objector instance contains real data or information.

 The object is an entity that has state and behaviour.

 Object as collection of both data and functions that operate on that data.

 An object is used to allocate the memory.

 Each object has own set of data members and member functions.

Syntax:

Objectname=classname()

Encapsulation

 Wrapping up of data and method into a single unit is called Encapsulation.

 It is used to restrict access to methods and variables.

 Encapsulation is a means of bundling together instance variables and methods to form a

given type (class).

 Selected members of a class can be made inaccessible (“hidden”) from its clients,

referred to as information hiding .

 Information hiding is a form of abstraction.

Abstraction

 Abstraction is used to hide internal details and show only functionalities.

 It refers to essential information without including the background details.

Inheritance

 Deriving a new class from the old class is called inheritance.

 Old class is called parent class or super class or base class.

 New class is called child class or sub class or derived class.

 Reusability of coding is the main advantages of inheritance.

3

Polymorphism

 Poly means many and morph means forms.

 It means more than one form with the same name

 It means one task can be performed in different ways.

 There are types of polymorphism

 Compile time polymorphism or Static polymorphism

 Run time polymorphism or dynamic polymorphism

 Method is invoked at compile time is called compile time polymorphism. Ex. Method

overloading

 Method is invoked at runtime is called run time polymorphism. Ex. Method overriding

4.2 Fundamental concepts

4.2.1 Class

 Class Definition: A class specifies the set of instance variables and methods that are

“bundled together” for defining a type of object.

 Python class is a blueprint of an object.

 Class is a keyword

Syntax:

Class classname:

 Variables and functions

 Object Definition: An object is simply a collection of data (variables) and methods

(functions) that act on those data.

 An object is also called an instance of a class

Syntax:

Objectname=classname()

4

 Call the variable and function in a class using the following

Objectname.variablename

Objectname.functionname()

Example:

class ruff:

 def f1(self):

 print("Hello World")

ob=ruff()

ob.f1()

Output:

Hello World

 Self definition: The self parameter is a reference to the current instance of the class. It

has to be the first parameter of any function in the class. It contains a reference to the

object instance to which the method belongs.

 Constructor Definition:

 Constructor is to initialize (assign values) to the data members of the class when

an object of class is created.

 In Python the __init__() method is called the constructor and is always called

when an object is created.

 Instance variables are initialized in the __init__ () method.

Syntax:

def __init__(self):

 # body of the constructor

Example:

class ruff:

 def __init__(self,a,b):

 self.a=a

 self.b=b

 def f(self):

 print(self.a,self.b)

ob=ruff(10,20)

 ob.f()

Output:

10 20

 There are two types of constructor:

1. default constructor

5

2. parameterized constructor

 default constructor :The default constructor is simple constructor which doesn’t

accept any arguments.

Example:

class ruff:

 def __init__(self):

 print("Hello")

ob=ruff()

Output:

Hello

 parameterized constructor :constructor with parameters is known as

parameterized constructor. First argument is self and the rest of the arguments are

provided by the programmer.

Example:

class ruff:

 def __init__(self,a,b):

 self.a=a

 self.b=b

 print(self.a,self.b)

ob=ruff(10,20)

Output:

10 20

 del keyword is used to delete an object.

 delete properties on objects by using the del keyword

Syntax:

del objectname

del objectname.variablename

4.2.2 Encapsulation

 Encapsulation is a means of bundling together instance variables and methods to form a

given type (class).

 Selected members of a class can be made inaccessible (“hidden”) from its clients,

referred to as information hiding .

 Information hiding is a form of abstraction.

 Private members of a class begin with two underscore characters, and cannot be directly

accessed.

Example:

class ruff:

def __init__(self,x,y):

self.__a=x

self.__b=y

Output:

30 20

AttributeError: 'ruff' object has no

6

print(self.__a,self.__b)

ob=ruff(30,20)

print(ob.__a)

attribute '__a'

 In the above example __a and __b are private variables and cannot be accessed directly.

 Renaming of identifiers is called name mangling .

 Special methods in Python:

 Special methods in Python have names that begin and end with two underscore

characters, and are automatically called in Python.

 __init__() - it is automatically called whenever a new object is created.

 __str__ () - it is called when an object is displayed using print.

 __repr__() – it is called when the value of an object is displayed in the Python

shell .

Methods Meaning

a.__init__(self, args) constructor: a = A(args)

a.__del__(self) destructor: del a

a.__str__(self) pretty print: print a, str(a)

a.__repr__(self) representation: a = eval(repr(a))

a.__add__(self, b) a + b

a.__sub__(self, b) a - b

a.__mul__(self, b) a*b

a.__div__(self, b) a/b

a.__lt__(self, b) a < b

a.__gt__(self, b) a > b

a.__le__(self, b) a <= b

a.__ge__(self, b) a => b

a.__eq__(self, b) a == b

a.__ne__(self, b) a != b

4.2.3 Inheritance

 Inheritance is the ability of a class to inherit members of another class as part of its own

definition.

 The inheriting class is called a subclass (also “derived class” or “child class”), and the

class inherited from is called the superclass (also “base class” or “parent class”).

 Class hierarchy is as follows:

7

 Class A is a super class. Classes B & E are subclasses of class A, both are inherited

variables and methods of class A. Class C & D are direct subclasses of class B but

indirect subclasses of class A.

 Definition of super() : super() function that will make the child class inherit all the

methods and properties from its parent

 Types of inheritance:

1. Single inheritance

2. Multilevel inheritance

3. Multiple inheritance

4. Hierarchical inheritance

5. Hybrid inheritance

1. Single inheritance

 Only one child class inherit only one parent class is called single inheritance.

Syntax:

class parent:

 Statement

class child(parent):

 Statement

8

Example :

class one:

 def f1(self):

 print("parent class")

class two(one):

 def f2(self):

 print("child class")

ob=two()

ob.f1()

ob.f2()

Output:

parent class

child class

2. Multilevel inheritance

 Multi-level inheritance is archived when a derived class inherits another derived class. .

Syntax:

class parent:

 Statement

class child1(parent):

 Statement

class child2(child1):

 Statement

Example :

class one:

 def f1(self):

 print("parent class")

class two(one):

 def f2(self):

Output:

parent class

Intermediate parent class

child class

9

 print("Intermediate parent class")

class three(two):

 def f3(self):

 print("child class")

ob=three()

ob.f1()

ob.f2()

ob.f3()

3. Multiple inheritance

 A child class to inherit from more than one parent class is called multiple inheritance.

Syntax:

class parent 1:

 Statement

class parent 2:

 Statement

class parent n:

 Statement

class child(parent1, parent1..... parent n):

 Statement

Example :

class one:

 def f1(self):

 print("first parent class")

class two:

 def f2(self):

 print("second parent class")

class three(one,two):

 def f3(self):

 print("child class")

Output:

first parent class

second parent class

child class

10

ob=three()

ob.f1()

ob.f2()

ob.f3()

4. Hierarchical inheritance

 This inheritance allows a class to host as a parent class for more than one child class or

subclass.

Syntax:

class parent:

 Statement

class child1(parent):

 Statement

class child2(parent):

 Statement

class childN(parent):

 Statement

Example :

class one:

 def f1(self):

 print("parent class")

class two(one):

 def f2(self):

 print("first child class")

class three(one):

 def f3(self):

 print("second child class")

Output:

parent class

first child class

parent class

second child class

Base class

Derived class 1 Derived class 2 Derived class N

11

ob=two()

ob.f1()

ob.f2()

ob1=three()

ob1.f1()

ob1.f3()

5. Hybrid inheritance

 Combination of more than one inheritance is called hybrid inheritance.

Example :

class one:

 def f1(self):

 print("first parent class")

class two:

 def f2(self):

 print("second parent class")

class three(two):

 def f3(self):

 print("child class one")

class four(one,three):

 def f4(self):

 print("child class two")

Output:

first parent class

second parent class

child class one

child class two

Base class

Derived class 2

Derived class 4 Derived class 5

Derived class 3

12

ob=four()

ob.f1()

ob.f2()

ob.f3()

ob.f4()

4.2.4 Polymorphism

 The word polymorphism derives from Greek meaning “something that takes many

forms.”

 It means that the same function name can be used for different types.

 Types of polymorphism

 Compile time polymorphism or Static polymorphism

 Run time polymorphism or dynamic polymorphism

 Method is invoked at compile time is called compile time polymorphism. Ex. Method

overloading, Operator overloading

 Method is invoked at runtime is called run time polymorphism. Ex. Method overriding.

Built in polymorphism in python

a = 23

b = 11

c = 9.5

s1 = "Hello"

s2 = "There!"

print(a + b)

print(b + c)

print(s1 + s2)

Output:

34

20.5

HelloThere!

str = 'HiThere'

tup = ('Mon','Tue','wed','Thu','Fri')

lst = ['Jan','Feb','Mar','Apr']

dict = {'1D':'Line','2D':'Triangle','3D':'Sphere'}

print(len(str))

print(len(tup))

print(len(lst))

print(len(dict))

Output:

7

5

4

3

13

Method Overriding

 Methods in the child class that have the same name as the methods in the parent class is

known as method overriding.

Example :

class one:

 def f1(self):

 print("Good morning")

class two(one):

 def f1(self):

 print("Good afternoon")

class three(one):

 def f1(self):

 print("Good evening")

ob1=one()

ob2=two()

ob3=three()

for a in (ob1,ob2,ob3):

 a.f1()

Output:

Good morning

Good afternoon

 Good evening

Operator overloading

 Operator overloading in Python is the ability of a single operator to perform more than

one operation based on the class (type) of operands.

 For e.g: To use the + operator with custom objects you need to define a method called

__add__.

Example :

class one:

 def __init__(self,a,b):

 self.a=a

 self.b=b

 def __add__(self,other):

 a=self.a+other.a

 b=self.b+other.b

 ob3=one(a,b)

 return ob3

ob1=one(90,80)

ob2=one(40,30)

Output:

130

 110

14

ob3=ob1+ob2

print(ob3.a)

 print(ob3.b)

Method overloading

 Method Overloading is a way to create multiple methods with the same name but

different arguments. But Python not support method overloading directly. But indirectly

support method overloading.

Example :

class over:

 def sum(self, a = None, b = None, c = None):

 s = 0

 if a != None and b != None and c != None:

 s = a + b + c

 elif a != None and b != None:

 s = a + b

 else:

 s = a

 return s

ob=over()

print(ob.sum(1))

print(ob.sum(5, 5))

print(ob.sum(10, 2, 3))

Output:

1

10

 15

4.3 Object References

Definition of object : An object contains a set of attributes, stored in a set of instance

variables, and a set of functions called methods that provide its behavior.

Definition of Object references: A reference is a value that references, or “points to,” the

location of another entity. In Python, objects are represented as a reference to an object in

memory.

Definition of Garbage collection: Garbage collection is a method of determining which

locations in memory are no longer in use, and de allocating them.

15

 The value that a reference points to is called the dereferenced value .

Ex: a,b,c=10,10,20

id(a) -> 1682691264

id(b) -> 1682691264

id(c) -> 1682691426

 The dereferenced values of a and b, 10, is stored in the same memory location

(1682691264), whereas the dereferenced value of c, 20, is stored in a different location

(1682691426).

 Even though n and k are each separately assigned literal value 10, they reference the

same instance of 10 in memory (505498136).

 This saves memory and reduces the number of reference locations that Python must

maintain.

4.4 Turtle Graphics

Definition: Turtle graphics refers to a means of controlling a graphical entity (a “turtle”) in a

graphics window with x,y coordinates.

 Python provides the capability of turtle graphics in the turtle Python standard library

module.

 There may be more than one turtle on the screen at once.

 Each turtle is represented by a distinct object. Thus, each can be individually controlled

by the methods available for turtle objects.

4.4.1 Creating a Turtle Graphics Window

 import turtle module

 turtle graphics methods called in the form turtle. methodname .

 setup() - creates a graphics window of the specified size (in pixels).

 Screen() –set the title of the window.

 bgcolor('color') - The background color of the window can be changed

 Example : turtle.setup(800,600)

16

 Window of size 800 pixels width by 600 pixels height is created.

 The center point of the window is at coordinate (0,0).

 x-coordinate values to the right of the center point are positive values, and left are

negative values.

 y-coordinate values above the center point are positive values, and below are negative

values.

4.4.2 The “Default” Turtle

 A “turtle” is an entity in a turtle graphics window

 getturtle() - returns the reference to the default turtle.

 The initial position of all turtles is the center of the screen at coordinate (0,0)

 The default turtle shape is an arrowhead.

4.4.3 Fundamental Turtle Attributes and Behavior

 Turtle objects have three fundamental attributes:

1. position,

2. heading (orientation)

17

3. pen attributes.

Position

 turtle’s position can be changed using absolute positioning by use of method

setposition().

 hideturtle() - The turtle is made invisible

Example:

import turtle

t=turtle.getturtle()

t.hideturtle()

t.setposition(100,0)

t.setposition(100,100)

t.setposition(0,100)

 t.setposition(0,0)

Heading and Relative Positioning

 A turtle’s position can also be changed through relative positioning .

 A turtle’s heading can be changed by turning the turtle a given number of degrees left,

left(90), or right, right(90).

 forward() - Moves the turtle forward by the specified amount

 backward()- Moves the turtle backward by the specified amount

 left() - Turns the turtle counter clockwise based on angle

 right() - Turns the turtle clockwise based on angle

Example:

import turtle

t=turtle.getturtle()

t.forward(100)

t.left(90)

t.forward(100)

t.left(90)

t.forward(100)

t.left(90)

t.forward(100)

Pen Attributes

 The pen attribute of a turtle object is related to its drawing capabilities.

18

 attributes is whether the pen is currently “up” or “down,” controlled by methods penup()

and pendown().

 penup()- Picks up the turtle’s Pen

 pendown()-Puts down the turtle’s Pen

 color()-Changes the color of the turtle’s pen

 fillcolor()-fill the shapes with color

 pensize() - determines the width of the lines drawn

Example:

import turtle

t=turtle.getturtle()

t.penup()

t.setposition(0,0)

t.pendown()

 t.setposition(0,250)

4.4.4 Additional Turtle Attributes

Turtle visibility

hideturtle() – invisible of the turtle

showturtle() - visible of the turtle

Turtle size

turtlesize(width,length)– change the size of the turtle based on width and length.

Turtle Speed

speed(value) - To set the speed of the turtle. Range of speed values from 0 to 10.

The following speed values can be set using a descriptive rather than a numeric value,

10: 'fast' , 6: 'normal' , 3: 'slow' , 1: 'slowest' , 0: 'fastest'

Turtle Shape

shape('value')- shape of the turtle can be changed. value may be 'arrow', 'turtle', 'circle', 'square',

'triangle' and 'classic'.

fillcolor('color') – filled the color in the shape. Color can be red, blue, green, etc.

default shape of turtle is arrow and fill color is black.

19

Example:

import turtle

t=turtle.getturtle()

t.turtlesize(2,5)

t.shape('triangle')

t.fillcolor('green')

t.speed(5)

4.4.5 Creating Multiple Turtles

 To create and control any number of turtle objects.

 To create a new turtle, the Turtle() method is used.

 turtle1 = turtle.Turtle()

 turtle2 = turtle.Turtle()

Example:

import turtle

t = turtle.Turtle()

win=turtle.Screen()

win.setup(500,400)

t.pencolor('blue')

t.pensize(4)

t.shape('turtle')

#draw circle with radius 60 pixels

t.circle(60)

t.clear()

#draw square

for i in range(4):

 t.left(90)

 t.forward(100)

t.clear()

#draw triangle

for i in range(3):

 t.left(120)

 t.forward(100)

Output:

	Class
	Object

