UNIT 4 OBJECT-ORIENTED CONCEPTS USED IN PYTHON

Features of object-oriented programming-Fundamental concepts- Class- Encapsulation-
Inheritance- Polymorphism.

Object references - Turtle graphics - creating a Turtle Graphics Window - the “Default” Turtle -
Fundamental Turtle Attributes and Behavior - Additional Turtle Attributes - Creating Multiple
Turtles.

4.1 Features of object-oriented programming

> Definition: Object-oriented programming (OOP) is a method of structuring a program
by bundling related properties and behaviors into individual objects.

» Object Oriented means directed towards objects.

» Python is an Object Oriented programming (OOP).

> It is a way of programming that focuses on using objects and classes to design and build
applications.

» Itis used to design the program using classes and objects.

» Advantages of oops:

It is faster

It is easy to execute

It provides a clear structure for the programs

Easy to maintain, modify and debug

It is used to create full reusable applications with less code and shorter
development time

YVVYYYV

» Features of oops:

» Class
» Object
» Encapsulation
» Abstraction
» Inheritance
» Polymorphism
Class
» The class can be defined as a collection of objects.
> ltis a logical entity that has some specific attributes and methods.
» A class is a blueprint for the object.
> A class is a template for objects
» A Class in Python is a logical grouping of data and functions.
» Aclass is a collection of objects

Syntax :

Object

YVVVVYYVY

class classname:
Class body

An object is an instance of a class.

The objector instance contains real data or information.

The object is an entity that has state and behaviour.

Obiject as collection of both data and functions that operate on that data.
An object is used to allocate the memory.

Each object has own set of data members and member functions.

Syntax:

Objectname=classname()

Encapsulation

>

Wrapping up of data and method into a single unit is called Encapsulation.

It is used to restrict access to methods and variables.

Encapsulation is a means of bundling together instance variables and methods to form a
given type (class).

Selected members of a class can be made inaccessible (“hidden”) from its clients,
referred to as information hiding .

Information hiding is a form of abstraction.

Abstraction

>

Abstraction is used to hide internal details and show only functionalities.

> It refers to essential information without including the background details.
Inheritance
» Deriving a new class from the old class is called inheritance.

>
>
>

Old class is called parent class or super class or base class.
New class is called child class or sub class or derived class.
Reusability of coding is the main advantages of inheritance.

edureka!

Types Of Inheritance

ek rrestins)

AN

I

Single Inheritance ~ Multilevel Inheritance Hierarchical Inheritance Multiple Inheritance

Polymorphism

Y YV V

A\

Poly means many and morph means forms.
It means more than one form with the same name
It means one task can be performed in different ways.
There are types of polymorphism
= Compile time polymorphism or Static polymorphism
= Run time polymorphism or dynamic polymorphism
Method is invoked at compile time is called compile time polymorphism. Ex. Method

overloading
Method is invoked at runtime is called run time polymorphism. Ex. Method overriding

4.2 Fundamental concepts

4.2.1 Class

Class Definition: A class specifies the set of instance variables and methods that are
“bundled together” for defining a type of object.

Python class is a blueprint of an object.

Class is a keyword

Syntax:

Class classname:
Variables and functions

Object Definition: An object is simply a collection of data (variables) and methods
(functions) that act on those data.

An object is also called an instance of a class
Syntax:

Objectname=classname()

e Call the variable and function in a class using the following

Objectname.variablename
Objectname.functionname()

Example: Output:
class ruff: Hello World
def f1(self):
print("Hello World™)
ob=ruff()
ob.f1()

e Self definition: The self parameter is a reference to the current instance of the class. It
has to be the first parameter of any function in the class. It contains a reference to the
object instance to which the method belongs.

e Constructor Definition:

» Constructor is to initialize (assign values) to the data members of the class when
an object of class is created.

» In Python the __init_ () method is called the constructor and is always called
when an object is created.

» Instance variables are initialized in the __init__ () method.

Syntax:
def __init_ (self):
body of the constructor

Example: Output:
class ruff: 10 20
def _init__ (self,a,b):
self.a=a
self.b=b
def f(self):
print(self.a,self.b)
ob=ruff(10,20)
ob.f()
» There are two types of constructor:

1. default constructor

4

2. parameterized constructor

» default constructor :The default constructor is simple constructor which doesn’t
accept any arguments.

Example: Output:
class ruff: Hello
def __init__(self):
print("Hello™)
ob=ruff()

» parameterized constructor :constructor with parameters is known as
parameterized constructor. First argument is self and the rest of the arguments are
provided by the programmer.

Example: Output:
class ruff: 10 20
def __init__(self,a,b):
self.a=a
self.b=b

print(self.a,self.b)

ob=ruff(10,20)

e del keyword is used to delete an object.
e delete properties on objects by using the del keyword

Syntax:
del objectname
del objectname.variablename

4.2.2 Encapsulation

e Encapsulation is a means of bundling together instance variables and methods to form a
given type (class).

e Selected members of a class can be made inaccessible (“hidden”) from its clients,
referred to as information hiding .

e Information hiding is a form of abstraction.

e Private members of a class begin with two underscore characters, and cannot be directly

accessed.
Example: Output:
class ruff:
def __init__(self,x,y): 30 20
self. a=x
self. b=y AttributeError: 'ruff object has no

print(self.__a,self.__b) attribute ' a'
ob=ruff(30,20)
print(ob.__a)
e Inthe above example __aand __ b are private variables and cannot be accessed directly.

e Renaming of identifiers is called name mangling .

e Special methods in Python:
» Special methods in Python have names that begin and end with two underscore
characters, and are automatically called in Python.

__init__() - it is automatically called whenever a new object is created.
__str__ () - it is called when an object is displayed using print.
> __repr__() — it is called when the value of an object is displayed in the Python

shell .

Methods Meaning

a.__init__(self, args) constructor: a = A(args)

a._ del_ (self) destructor: del a

a._ str_ (self) pretty print: print a, str(a)

a.__repr__(self) representation: a = eval(repr(a))

a.__add__ (self, b) athb

a._ sub__ (self, b) a-b

a.__mul__(self, b) a*b

a. dIV ' (self, b) alb

a.__ It (self, b) a<b

a._ gt (self, b) a>b

a.__le_ (self, b) a<=b

a.__ge_ (self, b) a=>b

a.__eq__ (self, b) ==

a.__ne_ (self, b) al=b

4.2.3 Inheritance

e Inheritance is the ability of a class to inherit members of another class as part of its own

definition.

e The inheriting class is called a subclass (also “derived class” or “child class), and the
class inherited from is called the superclass (also “base class” or “parent class”).

e Class hierarchy is as follows:

Class B

var2

' method2
Class C

var3

méihodé

Class A

var1i
method1

Class D

métﬁod4

\\ Class E

method5

e Class A is a super class. Classes B & E are subclasses of class A, both are inherited
variables and methods of class A. Class C & D are direct subclasses of class B but
indirect subclasses of class A.

e Definition of super() :

methods and properties from its parent
e Types of inheritance:

1.

ok w

Single inheritance
Multilevel inheritance
Multiple inheritance
Hierarchical inheritance
Hybrid inheritance

1. Single inheritance

super() function that will make the child class inherit all the

» Only one child class inherit only one parent class is called single inheritance.

i

\

Base Class J

.

Derived Class ‘

Syntax:

class parent:
Statement

class child(parent):
Statement

Example : Output:
class one: parent class
def f1(self): child class
print(“parent class")
class two(one):
def f2(self):
print(“child class")

ob=two()
ob.f1()
ob.f2()

2. Multilevel inheritance

> Multi-level inheritance is archived when a derived class inherits another derived class. .

Classl
" v
Class2
N)
ClassN
" J
Syntax:
class parent:
Statement
class child1(parent):
Statement
class child2(child1):
Statement
Example : Output:
class one: parent class
def f1(self): Intermediate parent class
print("parent class") child class
class two(one):
def f2(self):

print("Intermediate parent class")
class three(two):
def f3(self):
print(“child class")

ob=three()
ob.f1()
ob.f2()
ob.f3()

3. Multiple inheritance

» A child class to inherit from more than one parent class is called multiple inheritance.

P

{ Base Class 1 { Base Class 2 J

Base Class N J
J

L

”
LY
N,

u) I‘

Derived Class J

-

Syntax:

class parent 1:
Statement

class parent 2:
Statement

class parent n:
Statement

class child(parentl, parentl..... parent n):

Statement
Example : Output:
class one: first parent class
def f1(self): second parent class
print("first parent class™) child class
class two:
def f2(self):

print("'second parent class™)
class three(one,two):
def f3(self):
print(*child class™)

ob=three()
ob.f1()
ob.f2()
ob.f3()

4. Hierarchical inheritance

» This inheritance allows a class to host as a parent class for more than one child class or

subclass.
Base class
Derived class 1 Derived class 2 Derived class N
Syntax:
class parent:
Statement
class child1(parent):
Statement
class child2(parent):
Statement
class childN(parent):
Statement
Example : Output:
class one: parent class
def f1(self): first child class
print("parent class™) parent class
class two(one): second child class
def f2(self):

print("first child class")
class three(one):
def f3(self):
print(*'second child class")

10

ob=two()
ob.f1()
ob.f2()
obl=three()
obl.f1()
ob1.f3()

5. Hybrid inheritance

» Combination of more than one inheritance is called hybrid inheritance.

Base class

[

Derived class 2

|

Derived class 3

I
I I

Derived class 4 Derived class 5
Example : Output:
class one: first parent class
def f1(self): second parent class
print("first parent class™) child class one
class two: child class two
def f2(self):

print("second parent class™)
class three(two):
def f3(self):
print("child class one™)
class four(one,three):
def f4(self):
print(*child class two")

11

ob=four()
ob.f1()
ob.f2()
ob.f3()
ob.f4()

4.2.4 Polymorphism

The word polymorphism derives from Greek meaning “something that takes many
forms.”
It means that the same function name can be used for different types.
Types of polymorphism
= Compile time polymorphism or Static polymorphism
= Run time polymorphism or dynamic polymorphism
Method is invoked at compile time is called compile time polymorphism. Ex. Method
overloading, Operator overloading
Method is invoked at runtime is called run time polymorphism. Ex. Method overriding.

Built in polymorphism in python

a=23 str = 'HiThere'
b=11 tup = (‘Mon','Tue','wed’," Thu','Fri’)
c=95 Ist = ['Jan’,'Feb’,'Mar",'Apr’]
sl = "Hello" dict = {"1D"'Line','2D":'Triangle','3D":'Sphere'}
s2 = "There!" print(len(str))
print(a + b) print(len(tup))
print(b + c) print(len(lst))
print(sl + s2) print(len(dict))
Output: Output:
34 7
20.5 5
HelloThere! 4
3

12

Method Overriding

e Methods in the child class that have the same name as the methods in the parent class is
known as method overriding.

Example : Output:
class one: Good morning
def f1(self): Good afternoon
print("Good morning") Good evening
class two(one):
def f1(self):

print("Good afternoon™)

class three(one):
def f1(self):

print("Good evening™)
obl=one()
ob2=two()
ob3=three()
for ain (obl,0b2,0b3):

a.f1()

Operator overloading

e Operator overloading in Python is the ability of a single operator to perform more than
one operation based on the class (type) of operands.

e For e.g: To use the + operator with custom objects you need to define a method called

__add__.
Example : Output:
class one: 130
def _init__ (self,a,b): 110
self.a=a
self.b=b

def _add__(self,other):
a=self.a+other.a
b=self.b+other.b
ob3=one(a,b)
return ob3

ob1=0ne(90,80)
ob2=0ne(40,30)

13

ob3=o0bl+ob2
print(ob3.a)
print(ob3.b)

Method overloading

e Method Overloading is a way to create multiple methods with the same name but
different arguments. But Python not support method overloading directly. But indirectly

support method overloading.

Example :
class over:
s=0

sza+b+c

elif a '= None and b !'= None:
s=a+b

else:
s=a

return s

ob=over()
print(ob.sum(1))
print(ob.sum(5, 5))
print(ob.sum(10, 2, 3))

def sum(self, a = None, b = None, ¢ = None):

if a = None and b != None and ¢ != None;:

Output:

1
10
15

4.3 Object References

Definition of object : An object contains a set of attributes, stored in a set of instance
variables, and a set of functions called methods that provide its behavior.

Definition of Object references: A reference is a value that references, or “points to,” the
location of another entity. In Python, objects are represented as a reference to an object in

memory.

Definition of Garbage collection: Garbage collection is a method of determining which

locations in memory are no longer in use, and de allocating them.

14

nams = ‘Chen’ | .

mamss

n = 10 E

ThaTTee

nums

= [10, 20, 30] E_.l (10, 20, 30] |

Object References to Python Values

The value that a reference points to is called the dereferenced value .

Ex: a,b,c=10,10,20

id(a) -> 1682691264

id(b) -> 1682691264

id(c) -> 1682691426

The dereferenced values of a and b, 10, is stored in the same memory location
(1682691264), whereas the dereferenced value of c, 20, is stored in a different location
(1682691426).

Even though n and k are each separately assigned literal value 10, they reference the
same instance of 10 in memory (505498136).

This saves memory and reduces the number of reference locations that Python must
maintain.

4.4 Turtle Graphics

Definition: Turtle graphics refers to a means of controlling a graphical entity (a “turtle”) in a
graphics window with X,y coordinates.

Python provides the capability of turtle graphics in the turtle Python standard library
module.

There may be more than one turtle on the screen at once.

Each turtle is represented by a distinct object. Thus, each can be individually controlled
by the methods available for turtle objects.

4.4.1 Creating a Turtle Graphics Window

import turtle module

turtle graphics methods called in the form turtle. methodname .

setup() - creates a graphics window of the specified size (in pixels).
Screen() —set the title of the window.

bgcolor(‘color') - The background color of the window can be changed
Example : turtle.setup(800,600)

15

e Window of size 800 pixels width by 600 pixels height is created.

e The center point of the window is at coordinate (0,0).

e Xx-coordinate values to the right of the center point are positive values, and left are
negative values.

e y-coordinate values above the center point are positive values, and below are negative

values.
My First Tuitle Grephics Program
(-400, 300) (400, 300)
(0,0) 60
(-400, -300) (400, -300)
200

FIGURE 6-18 Python Turtle Graphics Window (of size 800 > 600)

4.4.2 The “Default” Turtle

e A “turtle” is an entity in a turtle graphics window
e getturtle() - returns the reference to the default turtle.
e The initial position of all turtles is the center of the screen at coordinate (0,0)

e The default turtle shape is an arrowhead.
e =T

4.4.3 Fundamental Turtle Attributes and Behavior

e Turtle objects have three fundamental attributes:
1. position,
2. heading (orientation)

16

3. pen attributes.
Position

e turtle’s position can be changed using absolute positioning by use of method
setposition().
e hideturtle() - The turtle is made invisible

Example:
import turtle

t=turtle.getturtle()
t.hideturtle()
t.setposition(100,0)
t.setposition(100,100)
t.setposition(0,100)
t.setposition(0,0)

Heading and Relative Positioning

e A turtle’s position can also be changed through relative positioning .

e A turtle’s heading can be changed by turning the turtle a given number of degrees left,
left(90), or right, right(90).

e forward() - Moves the turtle forward by the specified amount

e backward()- Moves the turtle backward by the specified amount

e left() - Turns the turtle counter clockwise based on angle

e right() - Turns the turtle clockwise based on angle

Example:
import turtle

t=turtle.getturtle()
t.forward(100)
t.1eft(90)
t.forward(100)
t.1eft(90)
t.forward(100)
t.1eft(90)
t.forward(100)

Pen Attributes

e The pen attribute of a turtle object is related to its drawing capabilities.

17

e attributes is whether the pen is currently “up” or “down,” controlled by methods penup()
and pendown().

e penup()- Picks up the turtle’s Pen

e pendown()-Puts down the turtle’s Pen

e color()-Changes the color of the turtle’s pen

e fillcolor()-fill the shapes with color

e pensize() - determines the width of the lines drawn

Example: ”
import turtle

t=turtle.getturtle()
t.penup()
t.setposition(0,0)
t.pendown()
t.setposition(0,250)

4.4.4 Additional Turtle Attributes

Turtle visibility

hideturtle() — invisible of the turtle

showturtle() - visible of the turtle

Turtle size

turtlesize(width,length)— change the size of the turtle based on width and length.
Turtle Speed

speed(value) - To set the speed of the turtle. Range of speed values from 0 to 10.

The following speed values can be set using a descriptive rather than a numeric value,
10: fast', 6: 'normal’, 3: 'slow', 1: 'slowest', O: ‘fastest’

Turtle Shape

shape('value')- shape of the turtle can be changed. value may be 'arrow', 'turtle’, ‘circle’, 'square’,
'triangle’ and ‘classic'.

fillcolor(‘color) — filled the color in the shape. Color can be red, blue, green, etc.
default shape of turtle is arrow and fill color is black.

18

Example:

import turtle
t=turtle.getturtle()
t.turtlesize(2,5)
t.shape(‘triangle’)
t.fillcolor('green’)
t.speed(5)

4.4.5 Creating Multiple Turtles

To create and control any number of turtle objects.
To create a new turtle, the Turtle() method is used.

turtlel = turtle. Turtle()
turtle2 = turtle. Turtle()

Example:

import turtle

t = turtle. Turtle()
win=turtle.Screen()
win.setup(500,400)

t.pencolor(‘blue’)
t.pensize(4)
t.shape(‘turtle’)

#draw circle with radius 60 pixels
t.circle(60)
t.clear()

#draw square

for i in range(4):
t.1eft(90)
t.forward(100)

t.clear()

#draw triangle

for i in range(3):
t.left(120)
t.forward(100)

Output:

7 Python Turtle Graphics

19

	Class
	Object

