SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 11
Syllabus : Unit - 11 : Introduction To Uml

Why we model — Conceptual model of UML — Architecture - Classes - Relationships - Common
mechanisms - Diagrams — Class diagrams - Object diagrams

Introducing the UML

e A modeling language is a language whose vocabulary and rules focus on the
conceptual and physical representation of a system.
e The UML is a language for
v Visualizing
v" Specifying
v Constructing
v Documenting the artifact of a software-intensive system.
o Visualizing
o Some things are best modeled textually; others are best
modeled graphically. In all interesting system, there are
structures that transcend what can be represented in a
programming language.
o Specifying
o Specifying means building models that are precise,
unambiguous and complete. The UML addresses the
specification of all the important analysis, design and
implementation decision.
o Constructing
o The UML is not a visual programming language, but its models
can be directly connected to a variety of programming language
(Java, C++, ..)
o Documenting
o A software solution is made up by all sorts of artifacts in
addition to raw executable code. These artifacts include:
o Requirements
o Architecture
o Design
o Source code
o Project Plans
o Tests
o Prototypes
o Releases
e Benefits of UML
Enterprise information systems
Banking and financial services
Telecommunications
Transportation
Defense/aerospace
Retail
Medical electronics
Scientific
Distributed Web-based services

AN N N N N NN

1/29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

Why we model

e The UML models act as an architectural blueprint for software development.
e Good models:
v ldentify requirements and communicate information.
v Allows focus on how system components interact.
v Allows you to see relationships among design components
v" Improves communication across your team through the use of common
graphical language

Conceptual model of the UML

Conceptual Model of UML

v v v

Building Blocks Rules Common Mechanisms
v v v
Things Relationships Diagrams
A A 4 A 4
1. Association 1. Class Diagram 1. Specifications
2. Dependency 2. Object Diagram 2. Adornments
3. Generalization 3. Use Case Diagram 3. Common Divisions
4. Realization 4. Sequence Diagram 4. Extensibility
5. Collaboration Diagram Mechanisms
6. State Chart Diagram i.Stereotypes
7. Activity Diagram ii. Tagged Values
8. Component Diagram iii. Constraints
9. Denlovment Diaaram
A 4
1. Names
2. Scope
3. Visibility
4. Integrity
5. Execution
4 2 v 4
Structural Behavioral Grouping Annotational
Things Things Things Things
*Classes *Interaction *State machines *notes
*Interfaces *State machines
*Collaborations
*Use Case
*Component
*Node

2129

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

e Conceptual model of the UML cover three major elements:

1. Things
2. Relationships
3. Diagrams

e Things in the UML

v" There are four kinds of things in the UML.:
o Structural things
o Behavioral things
o Grouping things
o Annotational things
O

v’ Structural things

o Structural things are the nouns of UML models. These are the mostly
static parts of a model, representing elements that are either conceptual
or physical. In all, there are seven kinds of structural things.

Classes

Interfaces

Collaborations

Use cases

Active classes

Components

Nodes

NoogkrwbdPE

o Class is a description of a set of objects that share the same
attributes, operations, relationships, and semantics.

o A class implements one or more interfaces. Graphically, a class
is rendered as a rectangle, usually including its name, attributes,
and operations.

Window

origin
size

open()
close()
move()

display() f[

o Interface
o Interface is a collection of operations that specify a service of a
class or component.
o An interface therefore describes the externally visible behavior

of that element.

3/29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

o Collaboration

o Collaboration defines an interaction and is a society of roles
and other elements that work together to provide some
cooperative behavior that's bigger than the sum of all the
elements. Therefore, collaborations have structural, as well as
behavioral, dimensions. A given class might participate in
several collaborations.

o Graphically, a collaboration is rendered as an ellipse with
dashed lines, usually including only its name

- =~
- ~
- ~

4 N
J Chain of v
\ responsibility ,

N s

o Usecase

o Use case is a description of set of sequence of actions that a
system performs that yields an observable result of value to a
particular actor

o Use case is used to structure the behavioral things in a model.

o A use case is realized by collaboration.

o Graphically, a use case is rendered as an ellipse with solid
lines, usually including only its name

Place order

o Active class
o Active class is just like a class except that its objects represent
elements whose behavior is concurrent with other elements.
Graphically, an active class is rendered just like a class, but
with heavy lines, usually including its name, attributes, and
operations

EventManager

suspend()
flush()

o Component
o Component is a physical and replaceable part of a system that

conforms to and provides the realization of a set of interfaces.
o Graphically, a component is rendered as a rectangle with tabs.

orderform.java

4129

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

o Node
o Node is a physical element that exists at run time and
represents a computational resource, generally having at least
some memory and, often, processing capability.
o Graphically, a node is rendered as a cube, usually including
only its name.

Server

v" Behavioral Things
o Behavioral things are dynamic part of system
1. Interaction
2. State machine

o Interaction

o Interaction is a behavior that comprises a set of messages
exchanged among a set of objects within a particular context to
accomplish a specific purpose.

o An interaction involves a number of other elements, including
messages, action sequences and links.

o Graphically a message is rendered as a directed line, almost
always including the name of its operation.

display

-

o State Machine

o State machine is a behavior that specifies the sequences of
states an object or an interaction goes through during its
lifetime in response to events, together with its responses to
those events.

o State machine involves a number of other elements, including
states, transitions, events and activities.

o Graphically, a state is rendered as a rounded rectangle, usually
including its name and its sub states.

Waiting

5/29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

v" Grouping Things
o They are the organizational parts of UML models. These are the boxes
into which a model can be decomposed.
o There is one primary kind of grouping thing, namely, packages.

o Package
o A package is a general-purpose mechanism for organizing

elements into groups. Structural things, behavioral things, and
even other grouping things may be placed in a package.

]

Business rules

v" Annotational things
o Annotational things are the explanatory parts of UML models. These
are the comments you may apply to describe about any element in a
model.
o Note
o Note is simply a symbol for rendering constraints and
comments attached to an element or a collection of elements.
o Graphically, a note is rendered as a rectangle with a dog-eared
corner, together with a textual or graphical comment

return copy
of self

e Relationships
v There are four kinds of relationships in the UML.:
= Dependency
= Association
= Generalization
= Realization
v Dependency
o Dependency is a semantic relationship between two things in which a
change to one thing may affect the semantics of the other thing
o Graphically a dependency is rendered as a dashed line, possibly
directed, and occasionally including a label.

_________________ >
v' Association
o Association is a structural relationship that describes a set of links, a
link being a connection among objects.
o Graphically an association is rendered as a solid line.

0..1 *
employer employee 6/29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

o Aggregation
o Aggregation is a special kind of association,
representing a structural relationship between a whole
and its parts. Graphically, a generalization relationship
is rendered as a solid line with a hollow arrowhead
pointing to the parent
v' Generalization
o It is a specialization/generalization relationship in which the
specialized element (the child) builds on the specification of the
generalized element (the parent).
o The child shares the structure and the behavior of the parent.
o Graphically, a generalization relationship is rendered as a solid line
with a hollow arrowhead pointing to the parent.

v’ Realization
o Realization is a semantic relationship between classifiers, wherein one
classifier specifies a contract that another classifier guarantees to carry
out.
o Graphically a realization relationship is rendered as a cross between a
generalization and a dependency relationship

e Diagrams in the UML
v' A diagram is the graphical presentation of a set of elements, most often
rendered as a connected graph of vertices (things) and paths (relationships).
v' We draw diagrams to visualize a system from different perspectives, so a
diagram is a projection into a system.
v In theory, a diagram may contain any combination of things and relationships.

v' UML includes the following nine diagrams:

o Structural Diagrams
= The structural diagrams represent the static aspect of the system.
These static aspects represent those parts of a diagram, which
forms the main structure and are therefore stable.

1. Class diagram

e Class diagrams are the most common diagrams used in
UML.

e Class diagram consists of classes, interfaces, associations,
and collaboration.

e Class diagrams basically represent the object-oriented view
of a system, which is static in nature.

e Active class is used in a class diagram to represent the
concurrency of the system.

7129

http://umlguide2.uw.hu/gloss01.html#gloss01entry75

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

2. Object diagram

e Object diagrams are a set of objects and their relationship is
just like class diagrams. They also represent the static view
of the system.

e Object diagrams can be described as an instance of class
diagram. Thus, these diagrams are more close to real-life
scenarios where we implement a system.

e The usage of object diagrams is similar to class diagrams
but they are used to build prototype of a system from a
practical perspective.

3. Component diagram
e Component diagrams represent a set of components and
their relationships.
e These components consist of classes, interfaces, or
collaborations.
e Component diagrams represent the implementation view of
a system.

4. Deployment Diagram
e Deployment diagrams are a set of nodes and their
relationships. These nodes are physical entities where the
components are deployed.
e Deployment diagrams are wused for visualizing the
deployment view of a system.
e This is generally used by the deployment team.

o Behavioral Diagrams
= Behavioral diagrams basically capture the dynamic aspect of a
system. Dynamic aspect can be further described as the
changing/moving parts of a system.

5. Use case diagram
e Use case diagrams are a set of use cases, actors, and their
relationships. They represent the use case view of a system.
e A use case represents a particular functionality of a system.
e Use case diagram is used to describe the relationships
among the functionalities and their internal/external
controllers. These controllers are known as actors.

6. Sequence diagram
e A sequence diagram is an interaction diagram.
e The diagram deals with some sequences, which are the
sequence of messages flowing from one object to another.

e Sequence diagram is used to visualize the sequence of calls
in a system to perform a specific functionality.

8/29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

7. Collaboration diagram

e Collaboration diagram is another form of interaction
diagram.

e It represents the structural organization of a system and the
messages sent/received.

e Structural organization consists of objects and links.

e The purpose of collaboration diagram is similar to sequence
diagram.

8. State chart diagram

e A state diagram shows a state machine, consisting of states,
transitions, events, and activities.

e State chart diagram is used to represent the event driven
state change of a system. It basically describes the state
change of a class, interface, etc.

e State chart diagram is used to visualize the reaction of a
system by internal/external factors.

9. Activity Diagram
e Activity diagram describes the flow of control in a system.
It consists of activities and links. The flow can be
sequential, concurrent, or branched.
e Activity diagrams are used to visualize the flow of controls
in a system. This is prepared to have an idea of how the
system will work when executed.

e Rules
v" UML has a number of rules so that the models are semantically self-consistent
and related to other models in the system harmoniously. UML has semantic
rules for the following —
o Names - What you can call things, relationships, and diagrams
o Scope - The context that gives specific meaning to a name
o Visibility - How those names can be seen and used by others
o Integrity - How things properly and consistently relate to one another
o Execution - What it means to run or simulate a dynamic model

e Common Mechanisms
v" UML has four common mechanisms:
o Specifications
o Adornments
o Common Divisions
o Extensibility Mechanisms

v' Specifications
o In UML, behind each graphical notation, there is a textual statement

denoting the syntax and semantics. The specifications provide a
semantic backplane that contains all the parts of a system and the
relationship among the different paths.

9/29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

v" Adornments
o Adornments are textual or graphical items that are added to the
elements basic notation to specify extra information. When using
UML, always start with the basic notation of elements and add
adornments to specify new information.
o Example: adornments of an association.

i
g - x Client
ANonymoLs [.(1III[]-—1[[IIIHII|
bill.exe
T Lreport.exe
contacts, exe
Transaction
addAction()
ramaovaAction()
pearfarm()
rollBack(} named compartment
Exceptions /
emptyTransaction "
noSuchACEon
rescurcel ocked

v" Common Divisions
o Object-oriented systems can be divided in many ways. The two
common ways of division are:

o Division of classes and objects: A class is an abstraction of a
group of similar objects. An object is the concrete instance that
has actual existence in the system.

o Division of Interface and Implementation: An interface
defines the rules for interaction. Implementation is the concrete
realization of the rules defined in the interface.

v' Extensibility Mechanisms
o UML is an open-ended language. It is possible to extend the
capabilities of UML in a controlled manner to suit the requirements of
a system. The extensibility mechanisms are

o Stereotypes:
o It extends the vocabulary of the UML, through which

new building blocks can be created out of existing ones.
(or)

o UML provides basic notations for structural things,
behavioral things, grouping things and annotational
things. Sometimes we may need to extend i.e., create
new vocabulary and look like primitive building blocks.

o A stereotype allows us to create new building blocks.

named slaraolype

ametaclasss

" ModelEiement | Using stereotypes we can use the basic elements but
~amed stersonype with icen Wt SpeCial properties, semantics a_nd_notatiqn.
o Stereotypes are rendered as text inside guillemets(<<
wexceplions | .
Undeflow >>) or we can create new icons for stereotypes.
slereolyped element as kcon e
.,
~__HO
HumiditySensor

10/29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 11

o Tagged Values:

o It extends the properties of UML building blocks. (or)

o Every element in UML has its own properties. For
example a class has its own attributes and operations.

o Using tagged values, we can represent new properties
also called as metadata.

o These properties apply to the element itself rather than
its instance.

o Tagged values are enclosed in braces { } and are written
under the element name.

lagged value //
! Sarvar

=] [:l R0 ® J)

| alibrarys 1 value of tag
e

Irans.di

|sonverCirly] ="

o Constraints :

o It extends the semantics of UML building blocks. (or)

o A constraint is used to add new semantics or change
existing rules.

o The constraints specify rules that must be followed by
the elements in the model.

o Represented as text inside braces { } and placed near to
the associated element.

simple constraint

/

{secure) /)
constraint across multiple elements

e T

Person

Corparation

gender : {female, male}

L 0.1
wile
0.1
formal constraint using OCL husband
S {self.wife.gender = female and
T~ eself.husband gender = male)

11/29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

Architecture

e Visualizing, specifying, constructing, and documenting a software-intensive system
demands.

v’ system be viewed from a number of perspectives

e Different stakeholders, end users, analysts, developers, system integrators, testers,
technical writers, and project managers

v' each bring different agendas to a project
v’ each looks at the system in different ways at different times over the project's
life

e The most important artifact that can be used to manage these different viewpoints and
so control development of a system throughout its life cycle.

e Concerned with structure, behavior, usage, functionality, performance, resilience,
reuse, comprehensibility, economic and technology constraints and trade-offs, and
aesthetic concern.

e The architecture of a software-intensive system can best be described by five
interlocking views. Each view is a projection into the organization and structure of the
system, focused on a particular aspect of that system

vocabulary system assembly
functionality configuration management

Design view Implementation view

Use case
view

behavior

Interaction view Deployment view

performance system topology
scalability distribution
throughput delivery

installation

e Use-Case View:
v' This view showing the behavior of the system as perceived by the external
actors.
v' It exposes the requirements of the system.
v' With UML,
o The static aspects of this view are captured in use case diagrams
o The dynamic aspects of this view are captured in interaction diagrams,
statechart diagrams, and activity diagrams.
e Design View:
v This view showing how the functionality is designed inside the system, in
terms of the static structure and dynamic behaviour.
v' It captures the vocabulary of the problem space and solution space.
v' With UML,
o The static aspects of this view are captured in class and object
diagrams
o The dynamic aspects of this view are captured in interaction diagrams,
statechart diagrams, and activity diagrams.

12 /29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

e Implementation View:
v' The implementation view of a system encompasses the artifacts that are used
to assemble and release the physical system.
v This view primarily addresses the configuration management of the system's
releases.
v" With UML,
o The static aspects of this view are captured in component diagrams
o The dynamic aspects of this view are captured in interaction diagrams,
statechart diagrams, and activity diagrams.

e Interaction view (Process View):
v The interaction view of a system shows the flow of control among its various
parts, including possible concurrency and synchronization mechanisms.
v It encompasses the threads and processes that form the system's concurrency
and synchronization mechanisms.
v This view primarily addresses the performance, scalability, and throughput of
the system.
v' With UML,
o The static and dynamic aspects of this view are captured in same way
as design view, but with a focus on the active classes that represent
these threads and processes

e Deployment View:
v' This view showing the deployment of the system in terms of the physical
architecture.
v It encompasses the nodes that form the system's hardware topology on which
the system executes.
v This view primarily addresses the distribution, delivery, and installation of the
parts that make up the physical system.
v" With UML,
o The static aspects of this view are captured in deployment diagrams
o The dynamic aspects of this view are captured in interaction diagrams,
statechart diagrams, and activity diagrams.

13/29

http://umlguide2.uw.hu/gloss01.html#gloss01entry79
http://umlguide2.uw.hu/gloss01.html#gloss01entry90
http://umlguide2.uw.hu/gloss01.html#gloss01entry90

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

Classes

v’ Classes are the most important building block of any object-oriented system.

v' A class is a description of a set of objects that share the same attributes, operations,
relationships, and semantics.

A class implements one or more interfaces.

We use classes to capture the vocabulary of the system we are developing. These
classes may include abstractions that are part of the problem domain, as well as
classes that make up an implementation.

v We can use classes to represent software things, hardware things, and even things that
are purely conceptual.

Graphically, a class is rendered as a rectangle.

This notation permits we to visualize an abstraction apart from any specific
programming language and in a way that lets you emphasize the most important parts
of an abstraction: its name, attributes, and operations.

AN

AN

name
~——e Shape attributes
origin —
moye()
e
operations

v' Terms and Concepts
e Names

o Every class must have a name that distinguishes it from other classes.

o Aname is a textual string.

o That name alone is known as
= asimple name
= aqualified name is the class name prefixed by the name of the

package in which that class lives.
o A class may be drawn showing only its name, as Figure shows.

Customer

Temperature
Sensor simple names

Business Rules::FraudAgent

Wall

qualified names

java::awt::Rectangle

e Attributes
o An attribute is a named property of a class that describes a range of
values that instances of the property may hold.
o A class may have any number of attributes or no attributes at all.
o An attribute represents some property of the thing we are modeling
that is shared by all objects of that class.

14 /29

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

o Graphically, attributes are listed in a compartment just below the class
name. Attributes may be drawn showing only their names, as shown
in Figure

Customer

attributes
name

address ¢
phone
birthDate

o Attributes with Signatures:

Wall

height : Floal a/llrlbules
width : Float L

thickness : Float

isLoadBearing : Boolean = false

e Operations
o An operation is the implementation of a service that can be requested
from any object of the class to affect behavior.
o Aclass may have any number of operations or no operations at all.
o Graphically, operations are listed in a compartment just below the class
attributes. Operations may be drawn showing only their names, as

in Figure.
Rectangle
operations
add() /
grow() 1
move()
iSEmpty()

o We can specify an operation by stating its signature, which includes
the name, type, and default value of all parameters and a return type, as
shown in Figure.

TemperatureSensor

operations

resel() /
setAlarm(t : Temperature)

value() : Temperature

e Organizing Attributes and Operations
o To better organize long lists of attributes and operations, you can also
prefix each group with a descriptive category by using stereotypes, as
shown in Figure

15/29

SITAMS — B.Tech — Ill Year - Il Sem CSE
16CSE 324 — Object Oriented Analysis and Design (OOAD)

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
Professor in CSE,

Unit-1I

FraudAgent

«constructor» e——_|

new()
./’/,,_: N

new(p : Policy)
*Process» stereotype
process(o : Order) pals

«query» L ——
isSuspect(o : Order)
isFraudulent(o ; Order)
«helper» L 2 g

validateOrder(o : Order)

e Responsibilities

@)
@)

o

A responsibility is a contract or an obligation of a class.

When you create a class, we are making a statement that all objects of
that class have the same kind of state and the same kind of behavior.

At a more abstract level, these corresponding attributes and operations
are just the features by which the class's responsibilities are carried out.
A Wall class is responsible for knowing about height, width, and
thickness;

A TemperatureSensor class is responsible for measuring temperature
and raising an alarm if the temperature reaches a certain point.

FraudAgent

responsibilities

i

Responsibilities
-- determine the risk of a
customer order *—
-- handle customer-specific
criteria for fraud

v" Common Modeling Techniques
e Modeling the Vocabulary of a System

©)

We use classes most commonly to model abstractions that are drawn
from the problem or from the technology.

Each of these abstractions is a part of the vocabulary of the system;
they represent the things that are important to users and to
implementers.

For users, most abstractions are not that hard to identify.

They are drawn from the things that users already use to describe their
system.

Techniques such as CRC cards and use case-based analysis are
excellent ways to help users find these abstractions.

For implementers, these abstractions are typically just the things in the
technology that are parts of the solution.

16 /29

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

o To model the vocabulary of a system,

e Example

Identify those things that users or implementers use to describe
the problem or solution. Use CRC cards and use case-based
analysis to help find these abstractions.

For each abstraction, identify a set of responsibilities. Make
sure that each class is crisply defined and that there is a good
balance of responsibilities among all your classes.

Provide the attributes and operations that are needed to carry
out these responsibilities for each class.

v Figuresshow a set of classes drawn from a retail system,
including Customer, Order, and Product.

v This figure includes a few other related abstractions drawn from
the vocabulary of the problem, such as Shipment (used to track
orders), Invoice (used to bill orders), and Warehouse (where
products are located prior to shipment). There is also one solution-
related abstraction, TRansaction, which applies to orders and

shipments.
Customer Order
item
name i
quantity
address
phone X
birthData Shipment
Warehouse
Responsibilities
-- maintain the information
Product regarding products shipped
Transaction against an order
actions id -~ track the_status and location
- name of the shipped products
commit() price
roliBack() location
wasSuccessful()

e Modeling the Distribution of Responsibilities in a System
o Abstractions provide a balanced set of responsibilities. i.e. don't want
any one class to be too big or too small.

If abstract classes that are too big, we will find that the models
are hard to change and are not very reusable.

If abstract classes that are too small, we can reasonably manage
or understand.

o To model the distribution of responsibilities in a system,

Identify a set of classes that work together closely to carry out
some behavior.

Identify a set of responsibilities for each of these classes.

Look at this set of classes as a whole, split classes that have too
many responsibilities into smaller abstractions, collapse tiny
classes that have trivial responsibilities into larger ones, and
reallocate responsibilities so that each abstraction reasonably
stands on its own.

Consider the ways in which those classes collaborate with one
another, and redistribute their responsibilities accordingly so
that no class within collaboration does too much or too little.

17129

SITAMS — B.Tech — Ill Year - Il Sem CSE
16CSE 324 — Object Oriented Analysis and Design (OOAD)

Unit-1I

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

Professor in CSE,

e Example

Model

-- manage the state of
the model

Responsibilities

View

Controller

Responsibilities
-- synchronize changes
in the model and its

Responsibilities
-- render the model
on the screen
-- manage movement
and resizing of the
view
-- intercept user events

views

¢ Modeling Nonsoftware Things
o Modeling abstractions are human or hardware classes

o To model nonsoftware things,

Model the thing we are abstracting as a class.
If we want to distinguish these things from the UML's defined
building blocks, create a new building block by using
stereotypes to specify these new semantics and to give a

distinctive visual cue.

If the thing we are modeling is some kind of hardware that
itself contains software, consider modeling it as a kind of node
as well, so that we can further expand on its structure.
o Example

AccountsReceivableAgent

Robot

processOrder()
changeOrder()
status()

18/29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

Relationships
v Arelationship is a connection among things.
v In object oriented modeling, there are three kinds of relationships:
e Dependency
e Association
e Generalization
v Graphically, a relationship is rendered as a path, with different kinds of lines used to
distinguish the kinds of relationships.
v" The UML provides a graphical representation for each of these kinds of relationships,
as Figures shows.

: dependency
Window 2
/
open() /
move()
display()
o handleEvent()
generalization T
\\:\‘ e N association
L SR e 7
-~ /
/
) /
[Consolewmdow] ‘ DialogBox ‘—[Control

v" Terms and Concepts
v Dependency
o Dependency is a semantic relationship between two things in which a change
to one thing may affect the semantics of the other thing.
o Graphically a dependency is rendered as a dashed line, possibly directed, and
occasionally including a label.

o Example ~ """ T TT T T T T7 >
v" Most often, you will use dependencies between classes to show that one
class uses operations from another class or it uses variables or arguments
typed by the other class; see Figure

FilmCli dependency
P W
name o
playOn(c : Channel) //
::22(()) : ° > Channel
reset()

v Generalization
o It is a specialization/generalization relationship in which the specialized
element (the child) builds on the specification of the generalized element (the

parent).
o The child shares the structure and the behavior of the parent, but not the

reverse.

19/29

http://umlguide2.uw.hu/gloss01.html#gloss01entry140
http://umlguide2.uw.hu/ch05lev1sec2.html#ch05fig02
http://umlguide2.uw.hu/gloss01.html#gloss01entry75

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 11

o Graphically, a generalization relationship is rendered as a solid line with a
hollow arrowhead pointing to the parent.

o Example

base class

——Tr1e Shape

origin: Point

move (offset: Point)

generalization resize (ratio: Real)

(\\\"\:\‘_ display()
'\\\"\?:‘\‘_\ ~
. ——
Rectangle Circle Polygon
width: Distance radius : Distance vertexOffest: List of Point
height: Distance resize (ratio: Real) resize (ratio: Real)
resize (ratio: Real) display () display ()
display () = =
—_ =S [

=S i N

leaf class
v Association

o Association is a structural relationship that describes a set of links, a link being
a connection among objects.

o Thelink to other objects of the same class. An association that connects
exactly two classes is called a binary association.

o The links to more than two classes; these are called n-ary associations.

o Graphically an association is rendered as a solid line.

© 0.1 *

employer employee

o Beyond this basic form, there are four adornments that apply to associations.
o Name
o An association can have a name, and we use that name to
describe the nature of the relationship and we can give a
direction to the name by providing a direction triangle that
points in the direction we intend to read the name, as shown
in Figure

name direction
name

\‘Works for >'/
Person / Company

association

o Role
o When a class participates in an association, it has a specific role
that it plays in that relationship; a role is just the face the class
at the far end of the association presents to the class at the near
end of the association.

association

.

N\

Person [l b % Company |
employee emp.loyer

= -
-~ -
~

end name (role name)

20/29

http://umlguide2.uw.hu/gloss01.html#gloss01entry107

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 11
o Multiplicity
o In many modeling situations, it's important for to state how

many objects may be connected across an instance of an

association. This "how many" is called the multiplicity of an

association's role.

It represents a range of integers specifying the possible size of

the set of related objects.

o It is written as an expression with a minimum and
maximum value, which may be the same; two dots are used
to separate the minimum and maximum values.

o The number of objects must be in the given range.
We can show a multiplicity of exactly one (1), zero
or one (0..1), many (0..*), or one or more (1..%).

For example, in Figure, each company object has as employee

one or more person objects (multiplicity 1..*); each person

object has as employer zero or more company objects

(multiplicity *, which is equivalent to 0..%).

multiplicity
N\

-~
-~

® — e 53 —9

1“-

Person ¢ Company

employee // employer

/
/

association

o Aggregation

o

Aggregation is a special kind of association, representing a
structural relationship between a whole and its parts.
Graphically, a generalization relationship is rendered as a solid
line with a hollow arrowhead pointing to the parent.

——+e Company

/
whole 1} 7
=
aggregation
part .
\ODepanment

21/29

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

Common Mechanisms
v UML has four common mechanisms:
o Specifications — It is a textual statement denoting the syntax and semantics.
o Adornments - textual or graphical items that are added to the elements basic
notation to specify extra information.
o Common Divisions — Object-oriented systems can be divided in many ways.
o Extensibility Mechanisms - extend the capabilities of UML.

v' Terms and Concepts
e Notes
o Anote is a graphical symbol for rendering constraints or comments attached to an
element or a collection of elements. Graphically, a note is rendered as a rectangle
with a dog-eared corner.

N simple text
Publish this component \
in the project repository
after the next design review. embedded URL
egb 1/5/98 See http://www.gamelan.com

for an example of this applel.

N, link to document
See encrypt.doc for B

details about this algorithm,

e Other Adornments
o Adornments are textual or graphical items that are added to the elements basic
notation to specify extra information. When using UML, always start with the
basic notation of elements and add adornments to specify new information.
o Example: adornments of an association.

ANONYIMOoLS [I]III[J.’-][[I[IH]H
"y bill.exe
e _g eport.exe
contacls. exe
Transaction
addAction()
ramoveAction()
perlorm{}
roliBack() named compartment
Excaptions /
emptyTransaction —"
noSuchAction
resourcal ocked

e Stereotypes:
o It extends the vocabulary of the UML, through which new building blocks can be

created out of existing ones. (or)

o UML provides basic notations for structural things, behavioral things, grouping
things and annotational things. Sometimes we may need to extend i.e., create new
vocabulary and look like primitive building blocks.

22129

http://umlguide2.uw.hu/gloss01.html#gloss01entry112

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

o A stereotype allows us to create new building blocks. Using stereotypes we can
use the basic elements but with special properties, semantics and notation.
o Stereotypes are rendered as text inside guillemets(<< >>) or we can create new

icons for stereotypes.
stereotype definition

d

«metaclass» ¢ ‘ «stereotype»
Class Server

/ requiredCapacity: IntegerValue e— tag definition
/

base element for stereotype

stereotype constraint
B
R

e { only one kind
of server per system }

e Tagged Values:
o It extends the properties of UML building blocks. (or)
o Every element in UML has its own properties. For example a class has its own
attributes and operations.
o Using tagged values, we can represent new properties also called as metadata.
These properties apply to the element itself rather than its instance.
o Tagged values are enclosed in braces { } and are written under the element name.

o

stereolype use

tagged {Iue eV I\ ® «servers
T 1—e capacity = 50 T """"" PrintServer

stereotyped class

e Constraints :
o It extends the semantics of UML building blocks. (or)
o Aconstraint is used to add new semantics or change existing rules.
o The constraints specify rules that must be followed by the elements in the model.
o Represented as text inside braces { } and placed near to the associated element.

simple constraint
[Portfolio | /

/ Corporation - l
{secure}

constraint across multiple elemeants
| BankAccount forje— ____—

FParson

gender : {female, male}

0.1
formal constraint using OCL husband

\\\H {self.wife gender = female and 23 / 29

——esell husband . gender = male}

0..1
wile

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

Class Diagrams

v Class diagrams are the most common diagram found in modeling object-oriented
systems.

v' A class diagram shows a set of classes, interfaces, and collaborations and their

relationships.

We use class diagrams to model the static design view of a system.

Most part of class diagram involves modeling the vocabulary of the system, modeling

collaborations, or modeling schemas.

v" Class diagrams are also the foundation for component diagrams and deployment
diagrams.

v Class diagrams are important not only for visualizing, specifying, and documenting
structural models, but also for constructing executable systems through forward and
reverse engineering.

v Example Class Diagram:

== W composition

class 1 . == -

AN

name

. 1..* e multiplicity 1..* %
' 2Pa . ffi ‘E_"/
Department Locationp Oﬂffg L
<4 name:Name | —| address : String

0..1 phone : Number
_— association
—

-

\ \
\o manager

role — constraint [ﬁ generalization
member | 1..° 1 | {subsets member} Headquarters]

Person

name : Name _—— altributes
employeelD : Integer ¢
title : String

getPhoto(): Photo) P :
getPhone(): Number # Contactinformation

getContactinformation() | - - > address : String
getPersonalRecords() -

—— operations

- provided
interface

)

dependency | @xID 4

employmentHistory ——O

salary

/ ~
/ ~
~

(" —\ PersonnelRecord

ISecurelnformation

Terms and Concepts for class diagram:
v Aclass diagram is a diagram that shows a set of classes, interfaces, and collaborations
and their relationships.
v" Graphically, a class diagram is a collection of vertices and arcs.

v' Common Properties
e Aclass diagram is just a special kind of diagram and shares the same common
properties as do all other diagrams that is, a name and graphical content that
are a projection into a model. What distinguishes a class diagram from other
kinds of diagrams is its particular content.

24129

http://umlguide2.uw.hu/gloss01.html#gloss01entry31

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

v" Contents

e Class diagrams commonly contain the following things:

@)
©)
©)

Classes
Interfaces
Dependency, generalization, and association relationships

v' Common Uses
e To model the vocabulary of a system
e To model simple collaborations
e To model a logical database schema

Common Modeling Techniques for class diagram:

v" Modeling Simple Collaborations

e Identify the mechanism we had like to model.

e For each mechanism, identify the classes, interfaces, and other collaborations
that participate in this collaboration.

e Use scenarios to walk through these things.

e To populate these elements with their contents. For classes, start with getting a
good balance of responsibilities. Then, over time, turn these into concrete
attributes and operations.

e For example,

o

o

o

Figure shows a set of classes drawn from the implementation of an
autonomous robot.

The figure focuses on the classes involved in the mechanism for
moving the robot along a path.

We find one abstract class (Motor) with two concrete
children, SteeringMotor and MainMotor. Both of these classes inherit
the five operations of their parent, Motor. The two classes are, in turn,
shown as parts of another class, Driver. The class PathAgent has a one-
to-one association to Driverand a one-to-many association
to CollisionSensor. No attributes or operations are shown
for PathAgent, although its responsibilities are given.

9 -
FPathAgent 4' CollisionSensor

Responsibilities
-- sgek path

-- avoid obstacles ;' Driver

o ! |

| StearinghMotor J I Mainhdotor

“ <~

Motor

move(d : Direction, s : Speead)
stop()

resetCounter()

status(): Status

distance(): Length

25/29

http://umlguide2.uw.hu/ch08lev1sec3.html#ch08fig02

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

o Class PathAgent collaborates with at least two other classes
Environment and GoalAgent in a higher-level mechanism for
managing the conflicting goals the robot might have at a given
moment. Similarly, the classes CollisionSensor and Driver
collaborate with another class FaultAgent in a mechanism responsible
for continuously checking the robot's hardware for errors.

v" Modeling a Logical Database Schema
e Identify those classes in your model whose state must transcend the lifetime of
their applications.
e Create a class diagram that contains these classes. We can define our own set
of stereotypes and tagged values to address database-specific details.
e Expand the structural details of these classes.
e Watch for common patterns that complicate physical database design.

e Consider also the behavior of these classes by expanding operations that are
important for data access and data integrity.

e Use tools to help we transform our logical design into a physical design.

e Example
o Figure shows a set of classes drawn from an information system for a
school.

School
name : Mame
address : 5tring Department
phaone : Mumber 0.1
addStudent() H name : Name
removeStudent() o~ 85 addinstructor()
getStudenty() 1 1.7 removelnstructor() k™S
getAllStudents() getinstructor() 1.
addDepartment) getAllinstructors
remaoveDepartment()
getDepartment() 1.7
getallDepartments() A

1.7 AssignedTo

Y
Member

1.* 0.1
- 1.0 chalrperson
Student Course
Instructor
Attends p 4 Teaches

name : Name e name : Name N N
studentlD : Number courselD : Number 1.7 | name : Name

v Forward and Reverse Engineering
e Forward engineering:
o Itis the process of transforming a model into code through a mapping
to an implementation language.
o To forward engineer a class diagram,
= Identify the rules for mapping to your implementation language
or languages of choice.

26/29

http://umlguide2.uw.hu/ch08lev1sec3.html#ch08fig03
http://umlguide2.uw.hu/gloss01.html#gloss01entry73

SITAMS — B.Tech — Il Year - Il Sem CSE

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

Depending on the semantics of the languages we choose, we
may want to constrain our use of certain UML features.
Use tagged values to guide implementation choices in our
target language.
Use tools to generate code.
Example

o Figure shows a simple class diagram specifying an

instantiation of the chain of responsibility pattern.

successor

N/
«JavaTargets
EventHandler
«JavaTarget:
Client >‘ - currentEventlD : Integer

- source ; Strings

handleRequest() : void

wJavaTarget»

GUIEventHandler

o Forward engineering the class EventHandler yields the
following code.

public abstract class EventHandler {
EventHandler successor;
private Integer currentEventlD;
private String source;
EventHandler() {}
public void handleRequest() {}

¥

Reverse engineering:
o Itis the process of transforming code into a model through a mapping
from a specific implementation language.
o To reverse engineer a class diagram,

Identify the rules for mapping from your implementation
language or languages of choice.

Using a tool, point to the code we had like to reverse engineer.
Use your tool to generate a new model or modify an existing
one that was previously forward engineered.

Using our tool, create a class diagram by querying the model.
Manually add design information to the model to express the
intent of the design that is missing or hidden in the code.

27129

http://umlguide2.uw.hu/gloss01.html#gloss01entry144

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

Obiject Diagrams

v

Object diagrams model the instances of things contained in class diagrams.

v An object diagram shows a set of objects and their relationships at a point in time.

v

We use object diagrams to model the static design view or static process view of a
system. This involves modeling a snapshot of the system at a moment in time and
rendering a set of objects, their state, and their relationships.

Object diagrams are not only important for visualizing, specifying, and documenting
structural models, but also for constructing the static aspects of systems through
forward and reverse engineering.

Example Object Diagram:

c: Company
oy
/
department _—*~__ \~\\department
d1 : Department \\ d2 : Department
o~ " | name = “Sales" \ _ename = “R&D"
/ link Ve
/ 1
/ region ’\ ~
| ; ~
object g Dﬂ / ot attribute value
: name = “US Sales” / P &
~ " —~ = P .y
\ — bject
\ __— anonymous objec
\ manager / - y J
/7
\\ p:Person / (i A
Ny 7 ¢ :Contactinformation

¢ NAamMe = “Erin" ©
employeelD = 4362
title = “VP of Sales”

contact | address = “1472 Miller St” |

Terms and Concepts for object diagram:

v

v
v

An object diagram is a diagram that shows a set of objects and their relationships at a

point in time.

Graphically, an object diagram is a collection of vertices and arcs.

Common Properties

e An object diagram is a special kind of diagram and shares the same common

properties as all other diagrams that is, a name and graphical contents that are
a projection into a model. What distinguishes an object diagram from all other
kinds of diagrams is its particular content.

Contents
e Object diagrams commonly contain
o Objects
o Links

Common Uses
e To model object structures.

28129

http://umlguide2.uw.hu/gloss01.html#gloss01entry115

SITAMS — B.Tech — 111 Year - Il Sem CSE

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit-1I

Common Modeling Techniques for class diagram:

v" Modeling Object Structures

Identify the mechanism we had like to model.

Create a collaboration to describe a mechanism.

For each mechanism, identify the classes, interfaces, and other elements that
participate in this collaboration; identify the relationships among these things.
Consider one scenario that walks through this mechanism.

Expose the state and attribute values of each such object, as necessary, to
understand the scenario.

Similarly, expose the links among these objects, representing instances of
associations among them.

For example,

o

o

The figure shows a set of objects drawn from the implementation of
an autonomous robot.

This figure focuses on some of the objects involved in the mechanism
used by the robot to calculate a model of the world in which it moves.
There are many more objects involved in a running system, but this
diagram focuses on only those abstractions that are directly involved in
creating this world view.

r @ Robot [moving

s
[w - World

| _al: Area ‘ | a2 : Area

wl :Wall w2 : Wall da : Door w3 Wall

width = 36 width = 96 width = 36 width = 96

v" Reverse Engineering

It is the process of transforming code into a model through a mapping from a
specific implementation language.

To reverse engineer a object diagram,

©)
@)

o

Chose the target we want to reverse engineer.

Using a tool or simply walking through a scenario, stop execution at a
certain moment in time.

Identify the set of interesting objects that collaborate in that context
and render them in an object diagram.

As necessary to understand their semantics, expose these object's
states.

As necessary to understand their semantics, identify the links that exist
among these objects.

We will usually have to manually add or label structure that is not
explicit in the target code. The missing information supplies the design
intent that is only implicit in the final code.

29/29

SITAMS — B.Tech — Il Year - Il Sem CSE
16CSE 324 — Object Oriented Analysis and Design (OOAD)

U

nit — 11

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
Professor in CSE,

Syllabus: Unit — I11: Structural And Behavioral Modeling
Advance Classes - Advanced Relationships - Interfaces - Types &Roles - Packages - Interactions -
Usecases - Usecase diagrams.

Advance Classes

v" Class

The fundamental building block in a object-oriented system is an object or

class.
However, in UML,

= Class is not the only general building block.
= |t is only one of the general building blocks in UML, called as

classifiers.

v Classifier
A classifier is a mechanism which describes structural and behavioral features.
= Class is the frequently used classifier.
= Every classifier represents structural aspects in terms of properties and
behavioral aspects in terms of operations.
= Beyond these basic features, there are several advanced features like
multiplicity, visibility, signatures, polymorphism and others.
In general, all the modeling elements that can have instances are called

classifiers.

Class, Instance, Datatype, Signal, Component, Node, Use case, Subsystem are

classifiers. (packages are not

class

Shape

-origin

+move()
+resize()
+display()

)

use case

Process loan

interface
IUnknow O—

datatype

<<datatype>>
Int

signal

<<signal>>
OffHook

]

kernel32.dll

egb_server

<<subsystem>>
Customer Service subsystem

component

node

subsystem

v Special properties of attributes and operations

Visibility

= Public[+]: any outside classifier with visibility to the given classifier

can use this feature.

= Protected[#]: any descendant of the classifier can use the feature.
= Private[-]: only the classifier itself can use the feature.

Toolbar

public

#currentSelection|
#toolCurrent

protected .Q/’

+pickItem()
+addTool()
+removeTool()
+getTool()
t#checkOrphans()

pivate ——————

-compact()

>. protected

1/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

e Scope
= The owner scope of a feature specifies whether the feature appears in
each instance of the classifier or whether there is just a single instance
of feature for all instances of the classifier.
v" Instance: each instance holds its own value.
v’ Classifier: just one value for all instances. [static]

Frame
header : FrameHeader @

class scope ——@uniquelD : Long

| ——— instance scope

e Abstract, Root, Leaf and Polymorphic Elements
o) &

Origin : Point abstract operation
diaplay) O | ’

1D() : Integer
abstr[' etk poer st concrete operation

— " base class

‘ |
Rectangularlcon Arbitrarylcon @

height : Integer edge : LineCollection
width : Integer

isinside(p : Point) : Boolea abstract class
AN
Button @—— concrete class

polymorphic operation

display()

OKButton
s

dsplay) —— leafclass

e Multiplicity
= [t’s reasonable to assume that there may be any number of instances of
classes.
= The number of instances a class may have is called multiplicity.

singleton class multiplicity

NetworkController—@1 /| ControlRod f3

/

consolePort [2.,.*] “Port |/

\
=

e Attributes
= The syntax of an attribute in the UML is
[visibility] name [multiplicity][: type][= initial-value][{property-
string }]

= There are three defined properties
v’ changeable : no restrictions on modifying the attribute’s value

2/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 11

v addOnly : additional value may be added for attributes with a
multiplicity > 1, but once created, a value may not be removed
or altered.

v’ frozen : the attribute’s value may not be changed after object is
initialized. [const]

v Example:

Student
-sid {frozen} E”E\.ﬂ. :ameongz o
-sname argn_ ame andvisibiity
- rollno {frozen} arigin: Point Nameand type
email head: *Item Name and complex type
+marks {addOnly} name [0..1] : String Name, multiplicity and type

i origin: Point={0,0} Name, type and intial value
Hregister() \'d'glnte er{frozen} Name;:g roperty
+login() - T8 prop
+logout()

e Operations
= The syntax of an operation in UML is
[visibility] name [(parameter-list)][: return-type][{ property-string}]

[direction] name : type [= default-value]

in, out, inout : means parameter may be modified or not.

= There are five defined properties
leaf : may not be overridden
isQuery : leave the state of subsystem unchanged.
sequential : only one flow is in the object at a time.
guarded : sequentializing all calls.
concurrent : treating the operation as atomic.

» Note : 3. 4. 5. are for concurrence.
Example:

ANANENENEN

<\

display Name only

+display Name and visibility
set(n:Name, s: String) Name and parameters
getiD() :Integer Name and return type
restart() {guarded} Name and property

e Template Classes
= Like template classes in C++ and Ada.
= Cannot use a template directly; you have to instantiate it first.
template parameters

templateclass 7 _ __ _ _ _ ____

|
______]

_——® Map

+bind(in i : Item, in v : Value) : Boolean

+isBound(in i : Item) : Boolean explicit binding
"< <<bind>> (Customer, Order, 3)
implicit binding o
~
Map<Customer, Order, 3> OrderMap

3/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 11

template<class Item, class value, int Buckets>

Class Map

{

public:
virtual Boolean bind(const Items, const Values&);
virtual Boolean isBound(const Item&) const;

} Il explicit binding
M: Map<Customer, Order, 3>; // implicit binding

e Standard elements
= Metaclass : specify the classifier whose objects are all classes.
= Powertype : whose objects are the children of a given parent.
= Stereotype : may be applied to other elements.
= Utility : whose attributes and operations are all class scoped.

Advanced Relationships
v' A relationship is a connection among things. There are four most important
relationships in object-oriented modeling:
Dependencies
Generalizations
Associations
Realizations

v Dependency
e Specifying a change in the specification of one thing may affect another thing,
but not necessarily the reverse.
e Rendering as a dashed line [----- +>]
e UML defines a number of stereotypes.
e There are eight stereotypes that apply to dependency relationships among
classes and objects in class diagrams.
= «bind» — Specifies that the source instantiates the target template using
the given actual parameters.
= «derive» — Specifies that the source may be computed from the target.
= «friend» — Specifies that the source is given special visibility into the
target.
= «instanceOf» — Specifies that the source object is an instance of the
target classifier.
= «instantiate» — Specifies that the source creates instances of the target.
= «powertype» — Specifies that the target is a powertype of the source; a
powertype is a classifier whose objects are all the children of a given

parent.
= «refine» — Specifies that the source is at a finer degree of abstraction
than the target.

= «use» — Specifies that the semantics of the source element depends on
the semantics of the public part of the target.

4128

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

e There are two stereotypes that apply to dependency relationships among
packages.
= «access» — Specifies that the source package is granted the right to
reference the elements of the target package.
= «import» — A kind of access that specifies that the public contents of
the target package enter the flat namespace of the source, as if they had
been declared in the source.
e Two stereotypes apply to dependency relationships among use cases:
= «extend» — Specifies that the target use case extends the behavior of
the source.
= «include» — Specifies that the source use case explicitly incorporates
the behavior of another use case at a location specified by the source.
e There are three stereotypes when modeling interactions among objects.
= «become» — Specifies that the target is the same object as the source
but at a later point in time and with possibly different values, state, or
roles.
= «call» — Specifies that the source operation invokes the target
operation.
= «copy» — Specifies that the target object is an exact, but independent,
copy of the source.
e There is one stereotype when modeling state machine among objects.
= «send» — Specifies that the source operation sends the target event
e There is one stereotype when modeling system into sub system among objects.
= «trace» — Specifies that the target is an historical ancestor of the
source.

v Generalizations

e A generalization relationship represents generalization-specialization
relationship between classes.

e The class with the general structure and behavior is known as the parent or
superclass and the class with specific structure and behavior is known as the
child or subclass.

e Rendering as a dashed line [——]

e Consider the below class hierarchy:

InterestBearingltem | | Insurableltem

multiple inheritance

A\ aaee—— 4\
multiple inheritance | o el
= Assel I ’
\\ ——l \ /N single lnhcnlan(,(,
N % ,—/
\ t
BankAccount | RealEstate] Security

Pl / ’\
CheckingAccoun|| ’ SavingsAccount I Stock Bond

5/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

e UML defines one stereotype and four constraints that may be applied to
generalization relationships.
= «implementation» — Specifies that the child inherits the
implementation of the parent but does not make public nor support its
interfaces, thereby violating substitutability.

v' {complete} — Specifies that all children in the generalization
have been specified in the model and that no additional children
are permitted.

v' {incomplete} — Specifies that not all children in the
generalization have been specified and that additional children
are permitted.

v {disjoint} — Specifies that objects of the parent may have no
more than one of the children as a type.

v {overlapping} — Specifies that objects of the parent may have
more than one of the children as a type.

v Associations

e Association is a structural relationship which denotes a connection between
two or more things.

e The association relationship can represent either physical or logical
connections between things.

e Rendering as a dashed line [———]

e The four basic adornments for an association relationship are: name, role at
each end of the association, multiplicity at each end of the association and
aggregation.

Association Name
J /—, Multiplicity
1.% worksin 1
Person Company
employee employer
|
Roles

e Over these basic features, there are other advanced features like: navigation,
visibility, qualification, composition and association classes.

= Navigation: Unless otherwise specified, navigation across an

association is bidirectional. Unidirectional navigation is also possible

where reverse navigation is not desirable such as where security

concern is an important thing. A Unidirectional navigation is shown in

Figure
association navigation

*

1 \: :l
User » Password
owner /

association

6/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

= Visibility: Objects at that end are not accessible to any objects outside
the association
v’ Three levels of visibility for an association possible in UML.

» Public visibility indicates that objects can access any
one. (default)

» Private visibility indicates that objects at that end are
not accessible to any objects outside the association;

» Protected visibility indicates that objects at that end are
not accessible to any objects outside the association,
except for children of the other end.

association

———

—~ - 1

» > .
@—b— User Password
: user :owner - key
S \.
- N

association visibility

= Qualification: This is an attribute whose values partition the set of
objects related to an object across an association.

qualifier association
\\ 5
/) : i 0..1
WorkDesk 'jobID :Int [g Returneditem

= Composition: A form of an aggregation with strong ownership and
coincident lifetime of the parts by the whole

composition

= Association Classes: In an association between two classes, the
association itself might have properties. An association class can be
seen as an association that also has class properties, or as a class that
also has association properties. We render an association class as a
class symbol attached by a dashed line to an association.

| %5
Company I T [Person
employer 1 employee

:
g
association c! 85/5// 2
\\ 1

5

~

™® Job

description
dateHired
salary

7128

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

v' Five constraintsthat can be applied to association
relationships.

» {implicit} — Specifies that the relationship is not
manifest but, rather, is only conceptual.

» {ordered} — Specifies that the set of objects at one end
of an association are in an explicit order.

v’ Constraints that relate to the changeability of the instances of
an association.

» {changeable} — Links between objects may be added,
removed, and changed freely.

» {addOnly} — New links may be added from an object
on the opposite end of the association.

» {frozen} — A link, once added from an object on the
opposite end of the association, may not be modified or
deleted.

v Constraint for managing related sets of associations.
» {xor} — Specifies that, over a set of associations, exactly
one is manifest for each associated object.
v" Realizations
e A realization is a semantic relationship between classifiers in which one
classifier specifies a contract that another classifier guarantees to carry out
e Used in two circumstances
= |n the context of interfaces
= In the context of collaborations
e Graphically rendered as dashed directed line with a large open arrowhead

[]

= Realization of an Interface

«interface» realization
IRuleAgent)
///
addRule() K- - o=~ { AccountBusinessRules
changeRule()
explainAction() canonical form

acctrule.dll

provided interface

O

IRuleAgent

= Realization of a Use Case

Ty
Validate \ _ realization
user /‘Z //
7 AP RETEE s
\/~ \./ .

e i

Validation

8/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

Interfaces - Types &Roles
v Interface
e An interface is a collection of operations that are used to specify a service of a
class or a component.
v’ Type
e A type is a stereotype of a class used to specify a domain of objects, together
with the operations (but not the methods) applicable to the object.
v" Role
e A role is the behavior of an entity participating in a particular context. An
interface may be rendered as a stereotyped class in order to expose its
operations and other properties.
v" Names
e Every interface must have a name that distinguishes it from other interfaces.
e A name is a textual string. That name alone is known as a simple name;
e A path name is the interface name prefixed by the name of the package.

IUnknown N
O
Q simple names Networking::IRouter
ISpell O path names O
ISensor

Sensors::ITarget
v Operations

e An interface is a named collection of operations used to specify a service of a
class or of a component.

e Unlike classes or types, interfaces do not specify any structure, nor do they
specify any implementation

e These operations may be adorned with visibility properties, concurrency
properties, stereotypes, tagged values, and constraints.

e We can render an interface as a stereotyped class, listing its operations in the
appropriate compartment. Operations may be drawn showing only their name,

or they may be augmented to show their full signature and other properties.
stereotype — —~_

“e «interface»
| URLStreamHandler

| openConnection()
| parse URL()

| setURL() ey o)

| toExternalForm() operations

v Relationships
e Like a class, an interface may participate in generalization, association, and
dependency relationships. In addition, an interface may participate in
realization relationships.
e An interface specifies a contract for a class or a component without dictating
its implementation. A class or component may realize many interfaces.
e We can show that an element realizes an interface in two ways.
= First, you can use the simple form in which the interface and its
realization relationship are rendered as a lollipop sticking off to one
side of a class or component.

9/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 11

= Second, you can use the expanded form in which you render an
interface as a stereotyped class, which allows you to visualize its
operations and other properties, and then draw a realization
relationship from the classifier or component to the interface.

— required interface

L
N

Tracker
Observer

_—provided interface
>

/

/

‘ 1
Q+ TargetTracker |
Observer ‘\

™ realization (simple form)

interface definition

| Java::Util::Observable l usage j

N\ (requires /
[dependency) 7
[7 A
Target / s
[«interface»
id [Observer

currentPosition

setPosition()
setVelocity()
expectedPosition()

v Understanding an Interface

e Inthe UML, you can supply much more information to an interface in order to
make it understandable and approachable.

e First, you may attach pre- and postconditions to each operation and invariants
to the class or component as a whole. By doing this, a client who needs to use
an interface will be able to understand what the interface does and how to use
it, without having to dive into an implementation.

e We can attach a state machine to the interface. You can use this state machine
to specify the legal partial ordering of an interface's operations.

e We can attach collaborations to the interface. You can use collaborations to
specify the expected behavior of the interface through a series of interaction
diagrams.

K= <| TargetTracker
X

e

update()

realization (prodees dependency)

v' Types and Roles

e A role names a behavior of an entity participating in a particular context.
Stated another way, a role is the face that an abstraction presents to the world.

e For example, consider an instance of the class Person. Depending on the
context, that Person instance may play the role of Mother, Comforter,
PayerOfBills, Employee, Customer, Manager, Pilot, Singer, and so on.

e When an object plays a particular role, it presents a face to the world, and
clients that interact with it expect a certain behavior depending on the role that
it plays at the time.

¢ An instance of Person in the role of Manager would present a different set of
properties than if the instance were playing the role of Mother.

10/ 28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 11

e In the UML, you can specify a role an abstraction presents to another
abstraction by adorning the name of an association end with a specific

interface.
iniea‘:ar.e associalion %
_s «interfaces .':
Employee 1.0 /T
| # Person | L Company e
i e : Employee

gelEmploymentHistory() % ¢

getCompensation() \\ \ﬁ role class

getBenefits() class

v' Common Modeling Techniques
e Modeling the Seams in a System modeling the Seams in a System
e Modeling Static and Dynamic Types modeling Static and Dynamic Types

Packages
v A package is a general-purpose mechanism for organizing elements into groups.
v Graphically, a package is rendered as a tabbed folder.

v" Names
e Every package must have a name that distinguishes it from other packages. A
name is a textual string. That name alone is known as a simple name; a path
name is the package name prefixed by the name of the package in which that
package lives
e We may draw packages adorned with tagged values or with additional
compartments to expose their details.

Client

simple names O
| + TrackingForm
- Order

Business rules
extended packages

enclosing package name

] package name
o— e
Sensors::Vision path names

{version = 2.24}

v" Owned Elements

e A package may own other elements, including classes, interfaces, components,
nodes, collaborations, use cases, diagrams, and even other packages.

e Owning is a composite relationship, which means that the element is declared
in the package. If the package is destroyed, the element is destroyed. Every
element is uniquely owned by exactly one package.

e Elements of different kinds may have the same name within a package. Thus,
you can have a class named Timer, as well as a component named Timer,
within the same package.

e Packages may own other packages. This means that it's possible to decompose
your models hierarchically.

11/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

We can explicitly show the contents of a package either textually or
graphically.

graphical nesting

Client

Client | +OrderForm
+ OrderForm - Order

+ TrackingForm
+TrackingForm

- Order

textual nesting

v Visibility

We can control the visibility of the elements owned by a package just as you
can control the visibility of the attributes and operations owned by a class.
Typically, an element owned by a package is public, which means that it is
visible to the contents of any package that imports the element's enclosing
package.

Conversely, protected elements can only be seen by children, and private
elements cannot be seen outside the package in which they are declared.

We specify the visibility of an element owned by a package by prefixing the
element's name with an appropriate visibility symbol.

v Importing and Exporting

In the UML, you model an import relationship as a dependency adorned with

the stereotype import.

Actually, two stereotypes apply here

= import and access and both specify that the source package has access
to the contents of the target.

v Import adds the contents of the target to the source's namespace
v Access does not add the contents of the target

The public parts of a package are called its exports.

The parts that one package exports are visible only to the contents of those

packages that explicitly import the package.

Import and access dependencies are not transitive.

Server
+ Database Client
*LogaingPaivics i@ + OrderForm

i@ + TrackingForm
- Order

I
I
Policies | «import»
I
I
1

exports

'e+ OrderRules
- GUI:Window K----

import

|

|

b s

1 «import»
|

|

|

EventHandler

12 /28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

v Generalization

e There are two kinds of relationships you can have between packages: import and
access dependencies used to import into one package elements exported from
another and generalizations, used to specify families of packages

e Generalization among packages is very much like generalization among classes

e Packages involved in generalization relationships follow the same principle of
substitutability as do classes. A specialized package (such as Windows GUI) can
be used anywhere a more general package (such as GUI) is used.

GUI

+ Window
+ Form
EventHandler

generalization

WindowsGUI

+ GUI:Window

+ Form

GUI:EventHandler
+VBForm

MacGUI

v Standard Elements
e All of the UML's extensibility mechanisms apply to packages. Most often, you'll
use tagged values to add new package properties (such as specifying the author of
a package) and stereotypes to specify new kinds of packages (such as packages
that encapsulate operating system services).

e The UML defines five standard stereotypes that apply to packages:

facade - Specifies a package that is only a view on some other package.
Framework - Specifies a package consisting mainly of patterns.

Stub - Specifies a package that serves as a proxy for the public contents of
another package.

Subsystem - Specifies a package representing an independent part of the
entire system being modelled.

System - Specifies a package representing the entire system being
modelled.

v" Common Modeling Techniques

e Modeling Groups of Elements

The most common purpose for which you'll use packages is to organize
modeling elements into groups that you can name and manipulate as a set.
There is one important distinction between classes and packages:
Packages have no identity (meaning that you can't have instances of
packages, so they are invisible in the running system);
Classes do have identity (classes have instances, which are elements of a
running system).
To model groups of elements,
v Scan the modeling elements in a particular architectural view and
look for clumps defined by elements that are conceptually or
semantically close to one another.

v Surround each of these clumps in a package.

v' For each package, distinguish which elements should be
accessible outside the package. Mark them public, and all others
protected or private. When in doubt, hide the element.

13/28

SITAMS — B.Tech — Il Year - Il Sem CSE

16CSE 324 — Object Oriented Analysis and Design (OOAD)
Unit — 11

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
Professor in CSE,

v Explicitly connect packages that build on others via import

dependencies

v In the case of families of packages, connect specialized packages

to their more general part via generalizations
e Modeling Architectural Views
We can use packages to model the views of architecture.

Remember that a view is a projection into the organization and structure
of a system, focused on a particular aspect of that system.
This definition has two implications. First, you can decompose a system
into almost orthogonal packages, each of which addresses a set of
architecturally significant decisions.(design view, a process view, an
implementation view, a deployment view, and a use case view)

Second, these packages own all the abstractions germane to that

view.(Implementation view)
To model architectural views,

v ldentify the set of architectural views that are significant in the
context of your problem. In practice, this typically includes a
design view, a process view, an implementation view, a

deployment view, and a use case view.

v' Place the elements (and diagrams) that are necessary and
sufficient to visualize, specify, construct, and document the
semantics of each view into the appropriate package.

v' As necessary, further group these elements into their own

packages.

v' There will typically be dependencies across the elements in
different views. So, in general, let each view at the top of a system
be open to all others at that level.

1

Design View

[1

1

[

Implementation View

Use Case View

Process View

1

Deployment View

14 /28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 111
Interactions
v" An interaction is a behavior that contains a set of messages exchanged among a set of

objects within a context to accomplish a purpose. A message is specification of a
communication between objects that conveys information with the expectation that
the activity will succeed.

In UML, the dynamic aspects of a system can be modeled using interactions.
Interactions contain messages that are exchanged between objects.

A message can be an invocation of an operation or a signal. The messages may also
include creation and destruction of other objects.

We can use interactions to model the flow of control within an operation, a class, a
component, a use case or the system as a whole.

Using interaction diagrams, we can model these flows in two ways: one is by focusing
on how the messages are dispatched across time and the second is by focusing on the
structural relationships between objects and then consider how the messages are
passed between the objects.

Graphically a message is rendered as a directed line with the name of its operation as
show below:

_—7 message
send Details(u,p) =
_—
u: User T v: Validator
Link

object object

Objects and Roles
e The objects that participate in an interaction are either concrete things or
prototypical things. As a concrete thing, an object represents something in the
real world. For example, p an instance of the class Person, might denote a
particular human. Alternately, as a prototypical thing, p might represent any
instance of Person.
Links
e Alink is a semantic connection among objects. In general, a link is an instance
of association. Wherever, a class has an association with another class, there
may be a link between the instances of the two classes. Wherever there is a
link between two objects, one object can send messages to another object. We
can adorn the appropriate end of the link with any of the following standard

stereotypes:
association | Specifiesthatthe corresponding objectis visible by association
self Specifies that the corresponding objectis visible as it is the dispatcher of the operation
global Specifies that the corresponding objectis visible as it is in an enclosing scope
local Specifies that the corresponding objectis visible as it is in local scope

parameter | Specifiesthat the corresponding objectis visible as it is a parameter

15/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 111
Person
1.* i
Company
+setSalary(s @ String) employee employer
+assign(d : Department)

assign(development)

p:Person - Company

v' Messages

A message is the specification of communication among objects that conveys
information with the expectation that activity will succeed. The receipt of a
message instance may be considered an instance of an event.

When a message is passed, the action that results is an executable statement
that forms an abstraction of a computational procedure. An action may result
in a change of state. In UML, we can model several kinds of actions like:

Call Invokes an operation onan object
Retun | Refurnsavalueto the caller

Send Sends asignal to the object
Create | Createsanabject

Destroy | Destroys anobject

~—
c: Client *¥| \ \-p : PlanningAssistant

(:reale"'_ﬁ): goresian . TicketAgent

—_—

— T —»
actual parameter 1 setlinerary(i)

calculateRoute()

\ call

return - (local invocation)

1
\rome B .
bl = = R e e .

- adastroys 4
—'—LX send
nolify() \ i

i
call =

return value

]
[}
i
]
]
]
L]
]
]
]
]
;
destroy =~ :

v/ Sequencing

When an object passes a message to another object, the receiving object might
in turn send a message to another object, which might send a message to yet a
different object and so on.

This stream of messages forms a sequence. So, we can define a sequence as a
stream of messages. Any sequence must have a beginning. The start of every
sequence is associated with some process or thread.

To model the sequence of a message, we can explicitly represent the order of
the message relative to the start of the sequence by prefixing the message with
a sequence number set apart by a colon separator.

Most commonly, we can specify a procedural or nested flow of control,
rendering using a filled solid arrowhead. Less common but also possible, you
can specify a flat flow of control, rendered using a stick arrowhead.

16/ 28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

We will use flat sequences only when modeling interactions in the context of
use cases that involve the system as a whole, together with actors outside the
system.

In all other cases, we will use procedural sequences, because they represent
ordinary, nested operation calls of the type we find in most programming
languages.

1:liftHandset() 2 assertCall()
—_— 3

¢:Caller :Telephone :Exchange

v" Representation

When we model an interaction, we typically include both objects and
messages.

We can visualize those objects and messages involved in an interaction in two
ways: by emphasizing the time ordering of messages and by emphasizing the
structural organization of the objects that send and receive messages.

In UML, the first kind of representation is called a sequence diagram and the
second kind of representation is called a collaboration diagram. Both sequence
and collaboration diagrams are known as interaction diagrams.

Sequence diagrams and collaboration diagrams are isomorphic, meaning that
we can take one and transform it into the other without loss of information.
Sequence diagram lets us to model the lifeline of an object.

An object’s lifeline represents the existence of the object at a particular time.
A collaboration diagram lets us to model the structural links that may exist
among the objects in the interaction.

v" Common Modeling Techniques

Modeling a flow of control

= Set the context for the interaction, whether it is the system as a whole,
a class or an individual operation.

= Identify the objects and their initial properties which participate in the
interaction.

= |Identify the links between objects for communication through
messages.

= In time order, specify the messages that pass from object to object. Use
parameters and return values as necessary.

= To add semantics, adorn each object at every moment in time with its
state and role.

17 /28

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

e Consider the following example of railway reservation system’s sequence

diagram:
P: Passenger R: Railway T: Ticket

System
1- login() |

2: Validate()
PR

6: Submit Details() |

T: Create Ticket()

8. Send Details()

9: Ticket Created

;
J
|
i)
ﬁ 1
5: Create Form()
| <
|
)
i
|
|
T

|11: Take Print()

P

A
|
|
|
|
|
|
|
i
e ey

e Consider the following example of railway reservation system’s collaboration

diagram:
2: Validate()
5. Create Form ()
11: Take Pnnt() T: Create Ticket()
— —
1: login()
4: Request Form() If\'
6 Submit Detais() | |I
P: > R: Ralway
Passenger < System
3: Retum Status -
10: Acknowledge /"

/’,,

9: Ticket Q’?a/
i

/@ﬁ;el ails ()

-
o

18/ 28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

Interaction diagrams

v" An interaction diagram represents an interaction, which contains a set of objects and
the relationships between them including the messages exchanged between the
objects.

v" A sequence diagram is an interaction diagram in which the focus is on time ordering
of messages.

v' Collaboration diagram is another interaction diagram in which the focus is on the
structural organization of the objects.

v Both sequence diagrams and collaboration diagrams are isomorphic diagrams.
v' Common Properties
e Interaction diagrams share the properties which are common to all the
diagrams in UML. They are: a name which identifies the diagram and the
graphical contents which are a projection into the model.
v' Contents
e Interaction diagrams commonly contain:
= Objects
= Links
= Messages

v' Sequence Diagrams
e A sequence diagram is one of the two interaction diagrams. The sequence
diagram emphasizes on the time ordering of messages.
e In a sequence diagram, the objects that participate in the interaction are
arranged at the top along the x-axis.
e Generally, the object which initiates the interaction is placed on the left and
the next important object to its right and so on.
e The messages dispatched by the objects are arranged from top to bottom along
the y-axis. This gives the user the detail about the flow of control over time.
e Sequence diagram has two features that distinguish them from collaboration
diagrams.
= First, there is the object lifeline, which is a vertical dashed line that
represents the existence of an object over a period of time. Most of the
objects are alive throughout the interaction. Objects may also be
created during the interaction with the receipt of the message
stereotyped with create. Objects may also be destroyed during the
interaction with the receipt of the message stereotyped with destroy.
= Second, there is focus of control which is represented as a thin
rectangle over the life line of the object. The focus of control
represents the points in time at which the object is performing an
action. We can also represent recursion by using a self message.
e Consider the following example of railway reservation system’s sequence
diagram:

19/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

P: Passenger R: Railway T: Ticket

I:——:—H:I—I:}_———‘
T —

System

1: login() |
=l

2: Validate()

5: Create Fom()

6 Submit Details()

T Create Ticket()

8: Send Details()

9: Ticket Created J

|11: Take Print()

=

v Collaboration Diagrams

A collaboration diagram is one of the two interaction diagrams. The
collaboration diagram emphasizes on the structural organization of the objects
in the interaction.
A collaboration diagram is made up of objects which are the vertices and these
are connected by links. Finally, the messages are represented over the links
between the objects. This gives the user the detail about the flow of control in
the context of structural organization of objects that collaborate.
Collaboration diagram has two features that distinguish them from the
sequence diagrams.

= First, there is a path which indicates one object is linked to another.

= Second, there is a sequence number to indicate the time ordering of a

message by prefixing the message with a number.

Consider the following example of railway reservation system’s collaboration
diagram:

20/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 11
2: Validate()
5. Create Fom ()
11: Take I?nnl{] 7: Create T!?ke1(]
1: login()

Passenger

4: Request Form() [
G- Submit Detais() | 1
> R: Railway
- System
3: Retum Status -)
10: Acknowledge

9 Ticket Grsated —

6 sénd Detais)

[T: Ticket|

v' Common Uses
e To model flows of control by time ordering
e To model flows of control by organization

v' Common Modeling Techniques
e Modeling flow of control by time ordering

Set the context for the interaction, whether it is a system, subsystem,
operation or class or one scenario of a use case or collaboration.
Identify the objects that take part in the interaction and lay them out at
the top along the x-axis in a sequence diagram.

Set the life line for each object.

Layout the messages between objects from the top along the y-axis.

To visualize the points at which the object is performing an action, use
the focus of control.

To specify time constraints, adorn each message with the time and
space constraints.

To specify the flow of control in a more formal manner, attach pre and
post conditions to each message.

e Modeling flow of control by organization

Set the context for the interaction, whether it is a system, subsystem,
operation or class or one scenario of a use case or collaboration.
Identify the objects that take part in the interaction and lay them out in
a collaboration diagram as the vertices in a graph.

Set the initial properties of each of these objects.

Specify the links among these objects.

Starting with the messages that initiate the interaction, attach each
subsequent message to the appropriate link, setting its sequence
number, as appropriate. Use Dewey numbering system to specify
nested flow of control.

To specify time constraints, adorn each message with the time and
space constraints.

To specify the flow of control in a more formal manner, attach pre and
post conditions to each message.

21/28

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

Use cases

v The use cases represent aspects of the behavior of the class.

v A use case involves the interaction of actors and the system or other subject.

v" An actor represents a coherent set of roles that users of use cases play when
interacting with these use cases. Actors can be human or they can be automated
systems.

v For example, in modelling a bank, processing a loan involves, among other things, the
interaction between a customer and a loan officer.

v" The UML provides a graphical representation of a use case and an actor.

use case
actor <

/- \\

(Y6 N
L/ /

[®Process loan
/% N/ p

o Ty
LoanOfficer e_
~~name~”

v" Terms and Concepts

e Ause case is a description of a set of sequences of actions, including variants
that a system performs to yield an observable result of value to an actor.
e Graphically, a use case is rendered as an ellipse.

e Name:

= Every use case must have a name that distinguishes it from other use
cases. A name is a textual string. That name alone is known as a simple
name; a qualified name is the use case name prefixed by the name of
the package in which that use case lives.

simple name — \
/ e Place order
[\ /
/ [== —
A _—
Validate user
\ > /‘K. Sensors:: >
ion

U / Qlibrate locati

qualified name

e Actors:

= An actor represents a coherent set of roles that users of use cases play
when interacting with these use cases.

= Typically, an actor represents a role that a human, a hardware device,
or even another system plays with a system.

= Actors are not actually part of the software application. They live
outside the application within the surrounding environment.

= Example: bank_customer, bank_manager and load_officer

= Graphically represented as stick man

O

actor ; ;

Q Customer

i /Q generalization

Commercial
Customer

actor

22128

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit — 11

e Flowevents:

= A flow of events is a textual description embodying sequence of
events with regards to the use case and is part of the use case
specification.

= Flow of events is understood by the customer.

= Flow of events describes how and when the use case starts and ends,
when the use case interacts with the actors, and the information
exchanged between an actor and the use case.

= Types Flow of Events

v" Main flow of events

» The use case starts when the system prompts
the Customer for a PIN number. The Customer can now
enter a PIN number via the Kkeypad.
The Customer commits the entry by pressing the Enter
button. The system then checks this PIN number to see
if it is valid. If the PIN number is valid, the system
acknowledges the entry, thus ending the use case.

v Exceptional flow of events

» 1. The Customer can cancel a transaction at any time by
pressing the Cancel button, thus restarting the use case.
No changes are made to the Customer's account.

» 2. The Customer can clear a PIN number anytime
before committing it and re-enter a new PIN number.

» 3. If the Customer enters an invalid PIN number, the
use case restarts. If this happens three times in a row,
the system cancels the entire transaction, preventing
the Customer from interacting with the ATM for 60
seconds.

e Collaborations

= A use case captures the intended behavior of the system (or subsystem,
class, or interface) we are developing, without having to specify how
that behavior is implemented.

= That's an important separation because the analysis of a system should,
as much as possible, not be influenced by implementation issues.

= Ultimately, however, we have to implement our use cases, and we do
so by creating a society of classes and other elements that work
together to implement the behavior of this use case.

= This society of elements, including both its static and dynamic
structure, is modelled in the UML as collaboration.

= As figure shows, you can explicitly specify the realization of a use case
by collaboration.

use case

N collaboration
///T\\ _\‘ .
Place 4 Pl b= Sz
order 2 “7 et Order "\
|
/ \ management
\\ = /// /“ . g 5 /l
realization " i

23128

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

e Organizing Use Cases

Sy e :i «include» /
x\ —
< Track \ \ S Check password

We can also organize use cases by specifying generalization, include,
and extend relationships among them.

Generalization among use cases is just like generalization among
classes. Here it means that the child use case inherits the behavior and
meaning of the parent use case; the child may add to or override the
behavior of its parent; and the child may be substituted any place the
parent appears.

For example, in a banking system, we might have the use case Validate
User, which is responsible for verifying the identity of the user. You
might then have two specialized children of this use case (Check
password and Retinal scan).

As shown in Figure generalization among use cases is rendered as a
solid directed line with a large triangular arrowhead, just like
generalization among classes.

<<include>> Specifies that the source use case explicitly incorporates
the behaviour of another use case at a location specified by the source
<<extend>> Specifies that the target use case extends the behaviour of
the source.

extend relationship
)

/

e N «extend» N
14 .:Ij::, :::::, N (set p.nomy) Ph'acz \
rush order
\ set priority e~ 74 ‘
Do S ,/ ~ extension points

include relationship ?

_— —

\/

order /)d‘ >‘,l.- _\\A/(\\ /

S N\
includen Y N\
«include (VaL::’;le > generalization

N Y

—~ — {

\Relinal scan

v' Common Modeling Techniques
e Modeling the Behavior of an Element

Identify the actors that interact with the element. Candidate actors
include groups that require certain behavior to perform their tasks or
that are needed directly or indirectly to perform the element's
functions.

Organize actors by identifying general and more specialized roles.

For each actor, consider the primary ways in which that actor interacts
with the element. Consider also interactions that change the state of the
element or its environment or that involve a response to some event.
Consider also the exceptional ways in which each actor interacts with
the element.

Organize these behaviors as use cases, applying include and extend
relationships to factor common behavior and distinguish exceptional
behavior.

24128

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

~ xincludes —

- T
o Bill
- _“‘-‘.\\ customer
< Place order . i -

?/ Validate
customer
/’ \ mclude»’ =
Track “;1

\ rd .
\q_ oo ”,/:‘«mcludg)

-

- —

_ — o
Ship order / Shi \
ip

[extension pelnts RS T rde partial order
\Ttenals ready «extend
(materials ready)

—_ — I

Use case diagrams

v' Ause case diagramis a diagram that shows a set of use cases, actors and their
relationships.

v Use case diagrams to visualize the behavior of a system, subsystem, or class so that
users can comprehend how to use that element, and so that developers can implement
that element.

v As Figure shows, we can provide a use case diagram to model the behavior of a
cellular phone.

subject boundary—_
N\
N

Cellular Telephone e — subject
= = o Sarem= 7\
@) TN
J Place Place
Qhone call / S N \conference call
| /
Cellujar extend rel'monshxp
network
L]
\ = s (
/ Receive \ \ / Receive
acior \hone call s \iddmonal call
. \ y
O N/
X _ use case
\ /
/ Use
User Kschedulcr/

v" Terms and Concepts
e Common Properties
= A use case diagram is just a special kind of diagram and shares the
same common properties as do all other diagrams a name and
graphical contents that are a projection into a model.

e Contents
= Use case diagrams commonly contain
v Subject
v Use cases
v Actors

v Dependency, generalization, and association relationships
e Common Uses
= To model the context of a subject
= To model the requirements of a subject

25/28

SITAMS — B.Tech — Il Year - Il Sem CSE

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

v' Example for Use case diagram for Hospital Management System

Lab Technician

Y

-

S

Patient

N\
U/

Doctor

C
\

)
J

Admit to
ward

X inciude”
Registers for <«
treatment
"TA .

—

')

Ny
T

Get <<include>
discharged /N
Receptionist
Prescribes to

patient
<<include= .
Prescribe
Medicine

Performs
operation

. e>
<<includ Generate

Visitlab for
report

test

v" Common Modeling Techniques
Modeling the Context of a System

Identify the boundaries of the system by deciding which behaviors is
part of it and which are performed by external entities. This defines the
subject.

Identify the actors that surround the system by considering which
groups require help from the system to perform their tasks, which
groups are needed to execute the system's functions, which groups
interact with external hardware or other software systems, and which
groups perform secondary functions for administration and
maintenance.

Organize actors that are similar to one another in a generalization-
specialization hierarchy.

Where it aids understand ability, provide a stereotype for each such
actor.

For example, Figure shows the context of a credit card validation
system, with an emphasis on the actors that surround the system. We
will find Customers, of which there are two kinds (Individual
customer and corporate customer). These actors are the roles that
humans play when interacting with the system. In this context, there
are also actors that represent other institutions, such as Retail
institution (with which a Customer performs a card transaction to buy
an item or a service) and sponsoring financial institution (which serves
as the clearinghouse for the credit card account). In the real world,
these latter two actors are likely software-intensive systems
themselves.

26/28

SITAMS — B.Tech — Il Year - Il Sem CSE

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD)

Unit — 111

Professor in CSE,

Customer
;;‘I‘_‘\
R
/ \
/ \
O O
|
/\
Individual Corporate
customer customer

Credit Card Validation System

———

Parform Ty
card transaction — S

\‘_
\//I;rocess

custum@r bill

Institution

V Reconcile ./_\
\ransacmns

Sponsonng
financial
Institution

Manage
customer account

¢ Modeling the Requirements of a System
= Establish the context of the system by identifying the actors that

surround it.

= For each actor, consider the behavior that each expects or requires the

system to provide.

= Name these common behaviors as use cases.
= Factor common behavior into new use cases that are used by others;
factor variant behavior into new use cases that extend more main line

flows.

= Model these use cases, actors, and their relationships in a use case

diagram.

= Adorn these use cases with notes or

constraints that assert

nonfunctional requirements; you may have to attach some of these to

the whole system.

Yy

L/ Credit Card Validation System

A

Customer

N

N
/ Process
'\cu stomer bill

Retail institution
N
Sponsoring
financial institution

card rransac"y

Reconcile
transaclions

Perform \
Report on \

S account stalfy

Detect \\
card fraud’/

/ Manage
Manage network outage
customer accimt/ \

27128

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit — 111

e Forward Engineering

Identify the objects that interact with the system. Try to identify the
various roles that each external object may play.

Make up an actor to represent each distinct interaction role.

For each use case in the diagram, identify its flow of events and its
exceptional flow of events.

Depending on how deeply you choose to test, generate a test script for
each flow, using the flow's preconditions as the test's initial state and
its postconditions as its success criteria.

As necessary, generate test scaffolding to represent each actor that
interacts with the use case. Actors that push information to the element
or are acted on by the element may either be simulated or substituted
by its real-world equivalent.

Use tools to run these tests each time you release the element to which
the use case diagram applies.

e Reverse Engineering

Identify each actor that interacts with the system.

For each actor, consider the manner in which that actor interacts with
the system, changes the state of the system or its environment, or
responds to some event.

Trace the flow of events in the executable system relative to each
actor. Start with primary flows and only later consider alternative
paths.

Cluster related flows by declaring a corresponding use case. Consider
modeling variants using extend relationships, and consider modeling
common flows by applying include relationships.

Render these actors and use cases in a use case diagram, and establish
their relationships.

28128

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

Syllabus: Unit — 1V: Advanced Behavioral And Architectural Modeling
Activity diagrams - Events and Signals — State chart diagrams - Components and Component
diagrams - Deployment and Deployment diagrams.

Activity diagrams

v An activity diagram shows the flow from activity to activity.

v/ An activity is an ongoing non-atomic execution within a state machine.

v' The execution of an activity ultimately expands into the execution of
individual actions, each of which may change the state of the system or communicate
messages.

v Actions encompass calling another operation, sending a signal, creating or destroying

an object, or some pure computation such as evaluating an expression.
Graphically, an activity diagram is a collection of nodes and arcs.
Contents
e Activity diagrams commonly contain

= Actions

= Activity nodes

= Flows

= Object values

AN

v Actions

e We might evaluate some expression that sets the value of an attribute or that
returns some value.
simple action

(Bid plan '3/

actions
expression

(index := lookup(e) + 7 0>/
v’ Activity nodes

e An activity node is an organizational unit within an activity. In general,
activity nodes are nested groupings of actions or other nested activity nodes.

(Do construction()

: .
Process bill {b)

v" Control Flows

¢ When an action or activity node completes execution, flow of control passes
immediately to the next action or activity node. You specify this flow by using
flow arrows to show the path of control from one action or activity node to the

next action or activity node.
initialization

action state

completion

\—/.

1/24

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

v" Forking and Joining
e Inthe UML, we use a synchronization bar to specify the forking and joining of
these parallel flows of control.

e A synchronization bar is rendered as a thick horizontal or vertical line.

Q’repare f?r speegh) ok

| A
\ \/ ’ . p /,/
Vv /
(Decompress) /

NN L /

\
(Gesture) \[/ - '/

\l/

4 =\
L Synch mouth) C Stream audio b

(Cleanup)
v" Swimlanes

e To partition the activity states on an activity diagram into groups, each group
representing the business organization responsible for those activities.

e Inthe UML, each group is called a swimlane because, visually, each group is
divided from its neighbor by a vertical solid line,

Customer -\7_\ Sales 0_\ Warehouse 0\
\ T T \
(Requesl product) = "R ——\"‘>~-.‘_\~
—[—— e === swimlane
-~
\~>
\

—
" Pull materials

| Ship order

_

\l/
Receive order Bill customer

N/ v
(Pay bill)
—
=z
(O]

v" Obiject Flow
e Objects may be involved in the flow of control associated with an activity
diagram.

2124

SITAMS — B.Tech — Ill Year - Il Sem CSE
16CSE 324 — Object Oriented Analysis and Design (OOAD)

Unit—- IV

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

Professor in CSE,

Customer

Request product

Sales

s{ Process order)

Warehouse

object flow
\

4
— o : Order
| [in progress]

Pull materials

(Ship order)

}

|

o : Order
ffilled)
\
object

(Receive order)

y b-Bil |
state [unpaid]je. |

v Common Uses

1. To model a workflow
2. To model an operation

v' Example for ATM Machine

Insert the card

Select type of Transac tion

Take the card

3/24

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

v' Common Modeling Techniques
e Modeling a Workflow

Establish a focus for the workflow. For nontrivial systems, it's
impossible to show all interesting workflows in one diagram.

Select the business objects that have the high-level responsibilities for
parts of the overall workflow. These may be real things from the
vocabulary of the system, or they may be more abstract. In either case,
create a swimlane for each important business object or organization.
Identify the preconditions of the workflow's initial state and the post
conditions of the workflow's final state. This is important in helping
you model the boundaries of the workflow.

Beginning at the workflow's initial state, specify the actions that take
place over time and render them in the activity diagram.

For complicated actions or for sets of actions that appear multiple
times, collapse these into calls to a separate activity diagram.

Render the flows that connect these actions and activity nodes. Start
with the sequential flows in the workflow first, next consider
branching, and only then consider forking and joining.

If there are important object values that are involved in the workflow,
render them in the activity diagram as well. Show their changing
values and state as necessary to communicate the intent of the object
flow.

e Modeling an Operation

Collect the abstractions that are involved in this operation. This
includes the operation's parameters (including its return type, if any),
the attributes of the enclosing class, and certain neighboring classes.
Identify the preconditions at the operation's initial state and the post
conditions at the operation's final state. Also identify any invariants of
the enclosing class that must hold during the execution of the
operation.

Beginning at the operation's initial state, specify the activities and
actions that take place over time and render them in the activity
diagram as either activity states or action states.

Use branching as necessary to specify conditional paths and iteration.
Only if this operation is owned by an active class, use forking and
joining as necessary to specify parallel flows of control.

4124

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

Events and signals

v Events

e Aneventis the specification of a significant occurrence that has a location in
time and space. In the context of state machines, an event is an occurrence of a
stimulus that can trigger a state transition.

e Asignal is a kind of event that represents the specification of an asynchronous
message communicated between instances.

e Events may be external or internal: External events are those that pass
between the system and its actors.

e For example, the pushing of a button and an interrupt from a collision sensor
are both examples of external events. Internal events are those that pass among
the objects that live inside the system. An overflow exception is an example of
an internal event.

event declaration Idle
R
e «signal» A8 = -

OffHook

O)

Active

Ol’ftiook / dropConnection()

/
7

event

v Signals
e A message is a hamed object that is sent asynchronously by one object and
then received by another. A signal is a classifier for messages; it is a message

type.
MovementAgent
signal
// send dependency position
“e «signal» (aand velocity
parameters Collision L =2 - - moveTo()
.8 force : Float
v Call Events

e Just as a signal event represents the occurrence of a signal, a call event
represents the receipt by an object of a call request for an operation on the
object. A call event may trigger a state transition in a state machine or it may
invoke a method on the target object. The choice is specified in the class
definition for the operation.

event
/

/4 N\ (/’
Automatic

] ® startAutopilot(normal)

L Manual ~
[
pa ré meter ;/

5/24

http://umlguide2.uw.hu/gloss01.html#gloss01entry64
http://umlguide2.uw.hu/gloss01.html#gloss01entry152

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD)
Unit— IV

Professor in CSE,

v' Time and Change Events

e Atime event is an event that represents the passage of time.
e at (11:48PM) / selfTest()

. <
time event
(absolute) \
when (altitude < 100&
o \

change event

time event
(relative)

after (2 seconds) &
/ dropConnection()

Active

v Sending and Receiving Events

e Signal events and call events involve at least two objects: the object that sends
the signal or invokes the operation and the object to which the event is
directed. Because signals are asynchronous, and because asynchronous calls
are themselves signals, the semantics of events interact with the semantics of

active objects and passive objects.

v' Common Modeling Techniques
e Modeling a Family of Signals

Consider all the different kinds of signals to which a given set of active
objects may respond.

Look for the common kinds of signals and place them in a
generalization/specialization hierarchy using inheritance. Elevate more
general ones and lower more specialized ones.

Look for the opportunity for polymorphism in the state machines of
these active objects. Where you find polymorphism, adjust the
hierarchy as necessary by introducing intermediate abstract signals.
Figure models a family of signals that may be handled by an
autonomous robot. Note that the root signal (RobotSignal) is abstract,
which means that there may be no direct instances. This signal has two
immediate concrete specializations (Collision and HardwareFault), one
of which (HardwareFault) is further specialized. Note that
the Collision signal has one parameter.

e:5|'g nal:
RobotSignal
«gignal» wsignals
Collision HardwareFault
sensor : Integer .f";\
«signals= «signal= esignals cesignal-
BatteryFault MovementFault VisionFault RangingFault

«signals
MotorStall

6/24

http://umlguide2.uw.hu/ch21lev1sec3.html#ch21fig06

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit— IV

e Modeling Abnormal Occurrences

= For each class and interface, and for each operation of such elements,
consider the normal things that happen. Then think of things that can
go wrong and model them as signals among objects.

= Arrange the signals in a hierarchy. Elevate general ones, lower
specialized ones, and introduce intermediate exceptions as necessary.

= For each operation, specify the abnormal occurrence signals that it may
raise. You can do so explicitly (by showing send dependencies from an
operation to its signals) or you can use sequence diagrams illustrating
various scenarios.

SetError

setHandler()
firstHandler()
lastHandler()

L \'\
I
[
Duplicate l ‘
Vo ! . AN Overflow
[ser Llemd - |
' "’:\ Underflow l
'
send= " ! 7
add() ~~ -~ ftooooooo Loowsendy 1 i)
Emove() - - - -4 - - - - mmmm e m e e e m e]

State machines
v' A state machine is a behavior that specifies the sequences of states an object goes
through during its lifetime in response to events, together with its responses to those
events.

v A state is a condition or situation during the life of an object during which it satisfies

some condition, performs some activity, or waits for events.

v An event is the specification of a significant occurrence that has a location in time and

space.

v In the context of state machines, an event is an occurrence of a stimulus that can

trigger a state transition.

v/ Atransition is a relationship between two states indicating that an object in the first
state will perform certain actions and enter the second state when a specified event
occurs and specified conditions are satisfied.

An activity is ongoing non-atomic execution within a state machine.

An action is an executable computation that results in a change in state of the model

or the return of a value.

v’ Graphically, a state is rendered as a rectangle with rounded corners. and a transition is
rendered as a solid directed line or path from the original state to the new state.

v' The UML provides a graphical representation of states, transitions, events, and
effects, as Figure shows.

AN

7124

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit - IV
: ___— final state
o ‘, - Sl“‘:"())(.) -«
//"' Y //ﬁ shutDown aevent parameter
/ . (o ‘ - ' trigger
initial state ‘l Idle ™ tooCold(desiredTemp) e— -~

tooHot(desiredTemp
° \ / ~—— evenlt type
\; SO
= event ~— LB, —initial state
TeatTemp atTemp : /
- ‘/Heatmg L4 acyon\
.
‘ 4 ready / turnOn()
tooHot(desiredTemp) Activating =

Cooling
\ . /\/ e 1 R Active
e \ o
N NS —
state /,//,'-_ = ,—f—’>\» 7 =
L v
—— tooCold(desiredTemp) nested state

v’ States

e A state is a condition or situation during the life of an object during which it
satisfies some condition, performs some activity, or waits for some event.

e An object remains in a state for a finite amount of time.

e For example, a Heater in a home might be in any of four states: Idle (waiting
for a command to start heating the house), Activating (its gas is on, but it's
waiting to come up to temperature), Active (its gas and blower are both on),
and ShuttingDown (its gas is off but its blower is on, flushing residual heat
from the system).

initial state
//'. s ,_// -@ *__ final state
\ shutDown
\ keyPresi w
Idle [Cooling #———_
/ o) tamed \9 | rame
N b >—/
/ \\

/ - B,
d T gtate=
name

e A state has several parts:
= 1. Name

v A textual string that distinguishes the state from other states; a
state may be anonymous, meaning that it has no name.

= 2. Entry/exit effects

v Actions executed on entering and exiting the state, respectively.

= 3. Internal transitions

v Transitions that are handled without causing a change in state.

= 4. Substates — may sequential or concurrent

v' The nested structure of a state, involving non-orthogonal
(sequentially active) or orthogonal (concurrently active) sub-
states.

= 5. Deferred events - (infrequently used)

v A list of events that are not handled in that state but, rather, are
postponed and queued for handling by the object in another
state.

= Special categories of states

v Initial state - indicates the initial starting state for the state
machine or a substate.

v' Final state - indicates the state machine’s execution has
completed.

8/24

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit— IV

v' Transition
e Adirected relationship between two states.
e A flow of control through a statechart diagram.
e A Transition has five parts:
1. Source state - current state before transition fires.
2. Event trigger - external stimulus that has the potential to cause a
transition to fire.
3. Guard condition - a condition that must be satisfied before a transition
can fire.
4. Action - an executable atomic computation.
5. Target state - new state after transition fires.

o time event
7~ _——— send signal

L d
after (2 seconds) / send c.isAlive

/\ ____— self-transition
e
(

_— event trigger

noise P completion transition
idle T Searching 7

——— event trigger with parameters
— guard condition

&
targetAt(p) [isThreat] T T —
t.addTarget(p) conlacl
?\ Tracking
—~ action

v Advanced States and Transitions
e Entry action - Upon each entry to a state, a specified action is automatically
executed.

@

Engaging
= o

entry / action
e Exit action - Just prior to leaving a state, a specified action is automatically

executed.
exit / action
e Internal Transitions - The handling of an event without leaving the current
state.

event / action
e Activities - Ongoing work that an object performs while in a particular state.
The work automatically terminates when the state is exited.
do / activity
e Deferred Event - An event whose occurrence is responded to at a later time.
event / defer

/ Tracking -—“5-_ name

entry action ————a entry / setMode(onTrack)
exit action —————ae 6xit / setMode(offTrack)
internal transition ——-enewTarget / tracker.Acquire()
activity —— o do /followTarget
deferred event —ce selfTest / defer Y,

9/24

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit— IV

e Simple state - A state that contains no substates.
o Composite state - A state that contains substates.
e Substate - A state that is nested inside another state.
= Substates allow state diagrams to show different levels of abstraction.
= Substates may be sequential or concurrent.
= Substates may be nested to any level.
e Sequential Substates - The most common type of substate. Essentially, a state
diagram within a single state.
= The “containing” state becomes an abstract state.
= The use of substates simplifies state diagrams by reducing the number
of transition lines.
= A nested sequential state diagram may have at most one initial state
and one final state.

transition to
composite state
) /
f /’(- -

transition from

% composite state
composite state v

‘,/ nono;thogonal state
/

" / Active / \
/
7 | card | / «..\
\ inserted | | g \
ldle = [/ Vaideting initial state
Ay
\ ——— | [more]
cancel \ ; i —
maintain | | \’\L Selecting] > Processing]
\
Ls_é [finished) p
& Printing]
X entry / readCard /
‘ el exit / ejectCard
. N K

transition from substate

e History States - Allows an object to remember which substate was last active
when the containing state was exited.

initial state for first entry

\

/BackingUN

Copying
CleaningUp

- J

Command

shallow history state

e Concurrent Substates (Fork and Join) - Used when two or more state diagrams
are executing concurrently within a single object.
= Allows an object to be in multiple states simultaneously.
= The concurrent state diagrams within a “containing” state must begin
and end execution simultaneously.
= |f one concurrent state diagram finishes first, it must wait for the others
to complete before exiting the containing state.

10/ 24

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit -1V
join
fork
composite state
maintain)

concurrent substate / Maintenance v \

Le Testing

Testing Self
devices diagnosis

re Commanding [continue]

.——)LWaiting %ommand)%@

Ne keyPress [not continuey

‘

State chart diagrams

v A state diagram shows a state machine, emphasizing the flow of control from state to
state.

v/ A state machine is a behavior that specifies the sequences of states an object goes
through during its lifetime in response to events, together with its responses to those
events.

v’ A state is a condition or situation in the life of an object during which it satisfies some
condition, performs some activity, or waits for some event.

v An event is the specification of a significant occurrence that has a location in time and
space.

v In the context of state machines, an event is an occurrence of a stimulus that can
trigger a state transition.

v/ Atransition is a relationship between two states indicating that an object in the first
state will perform certain actions and enter the second state when a specified event
occurs and specified conditions are satisfied.

v An activity specifies an ongoing execution within a state machine. An action specifies
a primitive executable computation that results in a change in state of the model or the
return of a value.

v' Graphically, a state diagram is a collection of nodes and arcs.

initial state
=2t transition | ﬁeceiving nested state\

\

ringing /

- _4“
completion

lransitions

//)

headerOk

=

Connected Processing

hangUpe-_|

T [‘] /1 kSumOk
> event |Cleaning up b SO
g \

~~ event

error entry / pickUp ¢ action '
/ printReport ¢ witldisggqectd Z /

7/
composite state

action —

11/24

http://umlguide2.uw.hu/gloss01.html#gloss01entry157
http://umlguide2.uw.hu/gloss01.html#gloss01entry158
http://umlguide2.uw.hu/gloss01.html#gloss01entry156
http://umlguide2.uw.hu/gloss01.html#gloss01entry64
http://umlguide2.uw.hu/gloss01.html#gloss01entry184
http://umlguide2.uw.hu/gloss01.html#gloss01entry06
http://umlguide2.uw.hu/gloss01.html#gloss01entry03

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit— IV

v/ Common Properties
e A state diagram is just a special kind of diagram and shares the same common
properties as do all other diagrams that is, a name and graphical contents that
are a projection into a model. What distinguishes a state diagram from all
other kinds of diagrams is its content.

v' Contents
e State diagrams commonly contain
= Simple states and composite states
= Transitions, events, and actions

v" Common Uses
e To model the dynamic aspects of a system

v' Common Modeling Techniques
e Modeling Reactive Objects

= Choose the context for the state machine, whether it is a class, a use
case, or the system as a whole.

= Choose the initial and final states for the object. To guide the rest of
your model, possibly state the pre-and post conditions of the initial and
final states, respectively.

= Decide on the stable states of the object by considering the conditions
in which the object may exist for some identifiable period of time.
Start with the high-level states of the object and only then consider its
possible substates.

= Decide on the meaningful partial ordering of stable states over the
lifetime of the object.

= Decide on the events that may trigger a transition from state to state.
Model these events as triggers to transitions that move from one legal
ordering of states to another.

= Attach actions to these transitions (as in a Mealy machine) and/or to
these states (as in a Moore machine).

= Consider ways to simplify your machine by using substates, branches,
forks, joins, and history states.

= Check that all states are reachable under some combination of events.

= Check that no state is a dead end from which no combination of events
will transition the object out of that state.

= Trace through the state machine, either manually or by using tools, to
check it against expected sequences of events and their responses.

12 /24

SITAMS — B.Tech — Ill Year - Il Sem CSE
16CSE 324 — Object Oriented Analysis and Design (OOAD)

Unit—- IV

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
Professor in CSE,

put(c) [c ==]

put(c) [c =="<T] { return true

GettingToken

pullc) [c ==">]

put(c) [c /=)

/ token.append(c); return false

putic) [c /= "<"]
! return false

put(c) [c/="]
! body.append(c); return false

v" Example for phone call

on-hook f_—m on-hook
N

e time-out -
;

time-out
digit(n)
digit(n) :z/Tla Recorded

g Jnvalid number _ Message

. valid number
Connecting
message
Fast trunk busy done
busy tone

routed

13 /24

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

v' Example for ATM

' (Reading card | Card not readable

-
L

card read sucessfully

Reading Pin cancel pressed

L

pin read sucessfully

|
i

Choosing Transaction cancel pressed

.

transaction choosen
customer wants to do another

@ <<include>>
k Performing transcaction

abort due to too many invalid pin card retained
customer finished

Ejecting Card

v' Example for Library Management System

_ ,{ Validae .v»;«-b:"l Ridmembar] [lssing

{book avaiabla)

s rvabd ireenber

merbar request for hook M.
neber request r ook £ manber ratums bodk |

_1"'_21'.-3:!r'g(c'nala:;m‘-'Jl‘u.';.‘-"l__ ‘ Idke] | cautrcFRe |

AR
|/ no fire/member pays fine

[bock rat awalable]/ [Retmingbook |

Component

v

v

A component is a physical replaceable part of a system that complies with and
provides the realization of a set of interfaces.

We use components to model the physical things that may reside on a node, such as
executables, libraries, tables, files and documents.

A component typically represents the physical packaging of otherwise logical
elements such as classes, interfaces and collaborations.

We do logical modeling to visualize, specify, and document our decisions about the
vocabulary of our domain and the structural and behavioral way those things
collaborate.

We do physical modeling to construct the executable system. Object libraries,
executables, COM+ components and Enterprise Java Beans are all examples of
components.

14/ 24

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit - IV
name
kernel32.dlle}-
fraudagent.dll
simple names
Realizes
FraudAgent
agent.java FraudPolicy
PatternSearch

extended components

system::dialog.dll
{version = 2.0.1.75}

v" Components and Classes
o In many ways, components are like classes. Both have names, both may
realize a set of interfaces, both may participate in dependency, generalization
and association relationships, both may be nested, and both may have
instances. However, there are some significant differences between
components and classes:
= Classes represent logical abstractions, components represent physical
things that live in the world of bits. In short, components may live on
nodes, classes may not.
= Components represent the physical packaging of otherwise logical
components and are at a different level of abstraction.
= (Classes may have attributes and operations directly. In general,
components only have operations that are reachable only through their
interfaces.
o The relationship between a component and the classes it implements can be
shown explicitly by using a dependency relationship as shown below:

fraudagent.dll component
[—-—
s £ ’ : i 7 b
’ B : . ~
L i %
FraudAgent \'/ PatternSearch
FraudPolicy
classes

15/ 24

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

v' Components and Interfaces
o An interface is a collection of operations that are used to specify a service of a
class or a component.
o We can show the relationship between a component and its interfaces in one
of the two ways.
= The first style renders the interfaces in its elided, iconic form. The
component that realizes the interfaces is connected to the interface
using an elided realization relationship.
= The second style renders the interface in its expanded form, perhaps
revealing its operations. The component that realizes the interface is
connected to the interface using a full realization relationship.
o Inboth cases, the component that accesses the services of the other component
through the interfaces is connected to the interface using a dependency
relationship.

iconic form

image.java component.java
L - ==
/ ImageObserver

dependency interface realization

expanded form
ainterfaces
ImageQObserver

abort : int {final static} (<} -
error : int {final static}

imageUpdate() : Boolean

image.java

v' Binary Replaceability

o The basic intent of every component-based operating system facility is to
permit the assembly of systems from binary replaceable parts.

o This means that we can create a system out of components and then evolve the
system by adding new components and replacing the old ones, without
rebuilding the system.

= First, a component is physical. It lives in the world of bits, not
concepts.

= Second, a component is replaceable. A component is substitutable
means it is possible to replace a component with another that conforms
to the sane interfaces.

= Third, a component is part of a system. A component rarely stands
alone. Rather, a given component collaborates with other components
and in so doing exists in the architectural or technology context in
which it is intended to be used.

= Fourth, a component conforms to and provides the realization of a set
of interfaces.

16 / 24

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

v" Kinds of Components
o Three kinds of components may be distinguished.

First, there are deployment components. These are the components
necessary and sufficient to form an executable system, such as
dynamic libraries (DLLs) and executables (EXES).

Second, there are work product components. These components are
generally the residue of the development process, consisting of things
such as the source code files and data files from which deployment
components are created.

Third are execution components. These components are created as a
consequence of an executing system, such as COM+ object, which is
instantiated from a DLL.

v Standard Elements
o All the UML’s extensibility mechanisms apply to components. Most often,
we’ll use tagged values to extend the component properties and stereotypes to
specify new kind of components.
o The UML defines five standard stereotypes that apply to components:

executable Specifies acomponent that may be executed onanode

library Specifies a static or dynamicobjectlibrary

table Specifies acomponentthatrepresents a database table

file Specifies a componentthat represents a document containing code or data
document Specifies a component thatrepresents addocument

v Common Modeling Technigues

o Modeling Executables and Libraries

Identify the partitioning of the physical system. Consider the impact of
the technical, configuration management and reuse issues.

Model any executables and libraries as components, using the
appropriate standard elements.

Model the significant interfaces that some components use and others
realize.

As necessary to communicate your intent, model the relationships
among these executables, libraries and interfaces.

dlog.dll
animator.exe
{version=501}- - - - - - — - _>,
: U,
1 -~
% N wrfrme.dll
render.dll
raytrce.dll L

-

=

17 /24

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit - IV

o Modeling Tables, Files and Documents
= |dentify the components that are part of the physical implementation of
your system.
= Model these things as components.
= As necessary to communicate your intent, model the relationships
among these components and other executables, libraries and
interfaces in the system

animator.hip
dlog.dil
animator.exe
{version = 5.0.1|

=3 wrfrme.dil

N
rendear.dil

raytrce. dil . -
D B =
L shapes.tbl

o Modeling an API

= |dentify the programmatic seems in the system and model each seem
as an interface.

= Expose only those properties of the interface that are important to
visualize the given context. Otherwise, hide these properties, keeping
them in the interface’s specification for reference, as necessary.

= Model the realization of each API only as it is important to show the
configuration of a specific implementation.

animator.exe -
{version = 5.0.1} |Scripts

40

IRendering

|Application IModels

o Modeling Source Code

= Depending on the constraints imposed by your development tools,
model the files used to store the details of all your logical elements,
along with their compilation dependencies.

= Use tagged values if you want to use configuration management and
version control tools.

= As far as possible, let your development tools manage the relationships
among these files, and use the UML only to visualize and document
these relationships.

render.h render.cpp
{wersion = 5.3} {version = 5.3.7}

_ - =

rengine.h —
{version = 4.6}

K colortab.h
poly.h T~ {version = 4.1}
{version = 4.1}

18/ 24

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

Component diagrams
v" Component diagrams are one of the two kinds of diagrams for modeling the physical
aspects of object-oriented software systems.
v' A component diagram shows the organization and dependencies among a set of
components.
v" We use component diagrams to model the static implementation view of a software
system.

page find.html
executable

find.exe

3

.
nateng.dll

library

component
—

e

v' Common Properties
o A component is just a special kind of a diagram and shares the same common
properties as the other diagrams like: a name and graphical contents. What
distinguishes a component diagram from the rest of the diagrams is its content.
v' Content
o Component diagram commonly contain:
= Components
= Interfaces
= Dependency, generalization, association and realization relationships.
v" Common Uses
o When modeling the static implementation view of a system, we will typically
use component diagrams in one of four ways:
1. To model source code.
2. To model executable releases.
3. To model physical databases.
4. To model adaptable systems.

v' Common Modeling Techniques
o Modeling source code

= Either by forward or reverse engineering identifies the set of source
code files of interest and model them as components stereotypes as
files.

= For larger systems, use packages to show groups of source code files.

= Consider using tagged values indicating such information as the
version number of the source code file, its author, and the date it was
last changed.

= Model the compilation dependencies among these files using
dependencies.

o Modeling an executable release

= Identify the set of components you’d like to model.
= Consider the stereotype of each component in this set.

19/ 24

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

= For each component in this set, consider its relationship to its
neighbors. Most, often this will involve interfaces that are realized by
certain components and then imported by others.

signal.h signal.h signal.h
{version = 3.5} {version = 4.0} {version = 4.1}

«parent»

«parent»

I
I
I

~

T . signal.cpp

-

in(erp.cpe/ {version =4.1)

i

Il

irg.h

~. device.cpp

I

o Modeling a physical database

= |dentify the classes in your model that represent your logical database
schema.

= Select a strategy for mapping these classes to tables. You have to also
consider the physical distribution of your databases.

= To visualize, specify, construct and document your mapping, create a
component diagram that contains components stereotyped as tables.

= Where possible, use tools to help you transform your logical design

into a physical design.
school.db

\ | I | |

course department instructor school student

HH B HEH BEE BE

o Modeling adaptable systems

= Consider the physical distribution of the components that may migrate
from node to node. We can specify the location of a component
instance by marking it with a location tagged value.

= |f you want to model the actions that cause a component to migrate,
create a corresponding interaction diagram that contains component
instances. We can illustrate a change of location by drawing the same
instance more than once, but with different values for its location

tagged value.
The school database
on Server B replicates
the database on Server A.

- ~
- ~
- ~
- ~
- ~

: schoolidb : schoél.db

{location = Server A} {location = Server B}
«copy»
__’

20/24

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

Deployment

v" A node is a physical element that exists at runtime and represents a computational
resource, generally having atleast some memory and, often, processing capability. We use
nodes to model the topology of the hardware on which our system executes. A node
typically represents a processor or a device on which components may be deployed.

v" When we architect a software-intensive system, we have to consider both its logical and
physical dimensions. On the logical side, you’ll find things such as classes, interfaces,
collaborations, interactions and state machines. On the physical side you’ll find
components and nodes.

v" In UML, a node is represented as a cube as shown below. Using stereotypes we can tailor
this notation to represent specific kinds of processors and devices.

name simple names sales

Deploys
egb_server — i puBe
kiosk_7 contacts.exe

extended nodes

server::backup
{remoteAdministrationOnly}

v" Nodes and Components
o In many ways, nodes are like components: Both have names, both may participate
in dependency, generalization and association relationships. Both may be nested,
both may have instances, both may be participants in interactions. However, there
are significant differences between nodes and components:
= Components are things that participate in the execution of a system. Nodes
are things that execute components.
= Components represent the physical packaging of logical elements, nodes
represent the physical deployment of components.
o This first difference is the most important. Simply put, nodes execute components;
components are things that are executed by nodes.
o A set of objects or components that are allocated to a node as a group is called a
distribution unit.

sales node

.
pos.exe E contacts.exe

— components —

v Connections
o The most common kind of relationship we’ll use among nodes is an association.
In this context, an association represents a physical connection among nodes, such
as an Ethernet connection, a serial line, or a shared bus as shown below. We can
even use associations to model indirect connections, such as a satellite link
between distant processors.

21/24

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

connection

kioak «10-T Ethernet» _/»/-',’/"" 3

~ ,»/'/’ \\.
4
\Q server \ RAID farm
(
//

—1~ «RS-232»

console

v" Common Modeling Techniques
o Modeling processors and devices
= Identify the computational elements of your system’s deployment view
and model each as a node.
= |f these elements represent generic processors and devices, then stereotype
them as such. If they are kinds of processors and devices that are part of
the vocabulary of your domain, then specify an appropriate stereotype with
an icon for each.
= As with class modeling, consider the attributes and operations that might
apply to each node.

«10-T Ethernet»

«Processors
server

«RS-232» RAID farm

console

o Modeling the distribution of components
= For each significant component in your system, allocate it to a given code.
= Consider duplicate locations for components.
= Render this allocation in one of the three ways:
1. Don’t make the allocation visible, but leave it as part of the
backplane of your model that is, in each node’s specification.
2. Using dependency relationships, connect each node with the
components it deploys.
3. List the components deployed on a node in an additional

compartment.
thiosk «10-T Ethernets
Deploys ™~
user.exe \

S | server : RAID farm
processorSpeed = 300 mHz
memory = 128 meg

¢ console / Deploys
Deploys “ «RS-232» dbadmin.exe
admin.exe tkimsir.exe
config.exe

22124

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

Deployment diagrams

v Deployment diagrams are one of the two kinds of diagrams used in modeling the physical
aspects of an object-oriented system. A deployment diagram shows the configuration of
run time processing nodes and the components that live on them.

v" We use deployment diagrams to model the static deployment view of a system. A
deployment diagram is a diagram that shows the configuration of run time processing
nodes and the components that live on them.

Internet node
(/‘" e, Modem bank
/L/‘:]
/"_‘ ’:-\ .
O iory «Processors «PrOCESSOrs
Yy caching server caching server
/ -
."i Sl node
/
f
| I [P, N
‘\\| «network» local network - D \\
3 | i)
«pProcessors «Processors «pProcessors «processorn»
primary server server server server

v/ Common Properties
o A deployment is just a special kind of diagram that shares the same properties as
all other diagrams like: a name and graphical contents. What distinguishes a
deployment diagram from the rest of the diagrams is its content.
v" Contents
o A deployment diagram commonly contains:
= Nodes
= Dependency and association relationships
v" Common Uses
o When modeling the static deployment view of a system, we’ll typically use
deployment diagrams in one of the three ways:
1. To model embedded systems.
2. To model client/server systems.
3. To model fully distributed systems.

v' Common Modeling Techniques
o Modeling an embedded system

= |dentify the devices and nodes that are unique to your system.

= Provide visual cues, especially for unusual devices, by using stereotypes.

= Model the relationships among these processors and devices in a
deployment diagram. Similarly, specify the relationship between
components and nodes.

= As necessary, expand on the intelligent devices by modeling their structure
with a more detailed deployment diagram.

23/24

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—- IV

Ultrasonic
sonar sensor

Timer Serial IO port
ks

s Y
fai s
&

| ==
N

N
. 1
T
o
7

8

«RS232»

«processor»
Pentium
motherboard

Left P‘M \ Right position encoder
Steering motor Drive motor

o Modeling a client/server system
= Identify the nodes that represent your system’s client and server
processors.
= Highlight those devices that are relevant to the behavior of your system.
= Provide visual cues for these processors and devices via stereotyping.
= Model the topology of these nodes in a deployment diagram.

Digital 1/O port

servers |
[clients |
2.7 <processors”

«processor» o % &

caching server =
console ploys
hitp Dnplinye dbadmin.exe

kiosk rting.exe :ktmslr.exe

ogexc.exe

o Modellng a fully distributed system

Identify the system’s devices and processors as for simpler client/server
systems.

= If you need to reason about the performance of the system’s network or the
impact of changes to the network, be sure to model these communication
devices to the level of detail sufficient to make assessments.

= Pay close attention to logical groupings of nodes, which you can specify
by using packages.

= Model these devices and processors using deployment diagrams.

= If you need to focus on the dynamics of the system, introduce use case
diagrams to specify the kind of behavior you are interested in, and expand
on these use cases with interaction diagrams.

Note: country servers
E are reachable to one
another via the company's
E isonsgle i console private network,
L4

: console z ¢
P : regional ‘

. Internet
" alind / server

. country

server
. regional \
server B
hang : logaing
3 i:ag:onal o

24124

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—V

Syllabus: Unit — V: Case Studies

Analysis and Design of ATM system using object oriented approach - Analysis and Design of
Library management system using object oriented approach - Analysis and Design of Online
Railway reservation system using object oriented approach

ATM (Automatic Teller Machine)
Use Case Diagram:

<<uses=>

Bank ATM Transaction

Approval process

<<extends>>

<<extends>>

CheckingTran

<<actor>>
Bank Client
<<extends>>

<<extends>>

Saving Transaction History

Activity Diagram for Overall ATM Machine

Z<extends>>

Deposit Amount

Withdrawl Amount

Insert the card

Enter Password N

password not accepted

Password accepted

Select type of Transaction

7

more transaction

: Perform the transaction

Mo more transaction

i Take the card :

1/16

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—V

Activity Diagram for Verify Password ATM Machine
@

BankClient=+verifyPassword(cardhumber:String, aPIN: String): aClient:BankClient

Cclient=retriveClient(CardNumber,aPIND

< nil Pin not valid /Display“lncorrectPIN,Please try again")

PIN valid

C Provide access to the account >

Activity Diagram for ATM Machine

customer ATM machine Bank.

wvalidate ATM Card

invalid

Insert ATM Card

walid

Pin Entered (Enter Pin) { Return ATM Card i

e

walid pin invalid pin

Amount Entered (Enter Amount) Return ATM Card

Check Balan:ej\

Find Status i

(Receive Cash

:

(Return ATM Card)

2/16

SITAMS — B.Tech — Il Year - Il Sem CSE
16CSE 324 — Object Oriented Analysis and Design (OOAD)
Unit—V

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

Professor in CSE,

Class Diagram

Transfer Transaction

Pin validation Transaction

+old pin
+new pin

+pin change()

i n Maintains 1
— Bank ATM Info
:caﬂddfess ! +oacation
+Has +managedby
+manages() +identifies()
+maintains() +transactions()
Manages| 1.*
1
L customer
+0wns +name
+address
+dob
+owns() +Identifies
1. I*
1 0.* Owns @
1. .*
Debit Card +Provides Access to Account 1 * | ATM Transaction
+card no ¥ 1% | +type Modifies +transaction id
+owned by +owner +date
+access() ype
+modifies()
Current Account Saving Account Withdrawl Transaction Query Transaction
+account no +accoutn no RN +query +amount
+balance +balance +type +account no
+debit)) +debit() IR
i >
+credit() +credit() fayeryprocessnal
State diagram for One Transaction ATM machine
' GETTING SPECIFICS cancelled
specifics enterd
SENDING TO BANK
Approved
Invalid Pin
HANDLING INVALID PIN Apiroved {COMPLETING TRANSACTION

cancelled

Disapproved{except Invalid Pin)ohcancelled

ASKING IF CUSTOMER WANTS ANOTHER

PRINTING RECEIPT

not cancelled

7

Disapproved{except Invalid Pin}

3/16

SITAMS — B.Tech — Il Year - Il Sem CSE

16CSE 324 — Object Oriented Analysis and Design (OOAD)

Unit—V

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

Professor in CSE,

State diagram for one Session ATM Ma

. Reading card
| S

Reading Pin
.)

customer wants to do another

Choosing Transaction
e 4

chine

Card not readable

card read sucessfully

cancel pressed

pin read sucessfully

cancel pressed

transaction choosen

{ <<include>>]

L Performing transcaction

abort due to too many invalid pin card retained

Sequence diagram for ATM Machine

Ejecting Card

customer finished

Client

AT Madhine

' 1 : Insert ATM Card()

2 : Request PIMN{)

3 : Request PI Mumber{)

BankClient

4 : Verify PIMN Mumber()

P oo 8 : Request Take Card()

s 9 : Take Card()

2

LI
H 10 : Display Main Screeni)
i

S : Bad PIN Mumber()

4/16

SITAMS —B.Tech — Il Year -

Il Sem CSE

16CSE 324 — Object Oriented Analysis and Design (OOAD)
Unit—V

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
Professor in CSE,

Sequence Diagram for Invalid Pin ATM Machine

Bank Client

ATM Machine

Account

Checkin Account

- 1 : Request Kind{)

- |
l—l 2 : Enter Kind() e :

g
3 : Request Amount() I-v-l

I—I‘-
- 4 : Enter Amount()

<
9 : Dispense Cash() l_[

8 : Transaction Successful() |—|

.

6

: Withdraw from Checking Account()

7 : Withdraw Successful() [—v-]

L_l 10 : Request Take Cash{)

|_|‘12 : Requst Continuation()

“ f
L.I‘ 11 : Take Cash() ;

=
l—_| 13 : Terminate()

-+ :
LI 14 : Print Receipt() f

Sequence Diagram ATM withdrawal

Bank Client

ATM Machine

1 : Request Kind()

il

Account

Checkin Account

I_.J 2 : Enter Kind()

-
3 : Request Amount() l—v-|

I—I-
4 : Enter Amount()

9 : Dispense Cash{)

S : Process Transaction()

4

6 : Withdraw from Checking Account()

ll

7 & Withdraw Successful() |—v-|

-
8 : Transaction Successful() l——|

|—|=

-
U 10 : Request Take Cash{)
-t

I_,_]‘ 11 : Take Cash{)

-t
I_I_.IZ : Requst Continuation{)

13 : Terminate()

B

4

i

&
-
U 14 : Print Receipt()

5/16

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—V

Collaboration Diagram for ATM machine

2+ Enter Kind()
4 : Enter Amount()
13 : Terminate()

5 : Process Transaction()

-—
Account i ATM Machine Bank Client
— —
8 : Transaction Successful()
1 : Reqgest Kind()
3 : Request Amount()
]) 9: Dispense Cash()
6 : Withdraw from Checking Account()
10 : Request Take Cash()
\ \ 11 : Take Cash()
7 1 Withdrawal Successful{) 12 : Request Continuation()
14 : Print Receipt()
Checking Account
Collaboration Diagram for ATM withdrawal
6 : Withdraw Checking Account()
Account — Checking Account

-
9 ; Withdrawd Successful()

5 Process Transaction(V
/ 10 : Transaction Successful()

ATM Machine

8 : Withdrawal Savings Successful()T 17 + Withdraw Savings()

1 : Request Kind()

2+ Enter Kind
0 T l 31 Request Amount()

uEnkacAmoun) 11 : Dispense Cash()
15 : Terminate()
12 : Request Take Cash()

13 : Take Cash()
Bank Client 14 : Request Continuation() 2avings Account

16 : Print Receipt()

6/16

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—V

Component diagram

ATM Machine O
ATM Transaction

customer console . /O
Bank Database Account Information
2 $ Employee Console
% Card Reader

= Client Desktop
Web Page

Wweb Merchant Transaction 4)

CLient DesktopTransaction

Online Transaction

Deployment Diagram

“ATM_Machine

o

Customer romnlo' ‘
\

‘ Chent Desktop 1
[Employcc, ('.nmole[

L .

x**———W : Voin”
Card_Reador | —— { Bank Database | |

-

A

i Web_Page

7116

SITAMS — B.Tech — Il Year - Il Sem CSE
16CSE 324 — Object Oriented Analysis and Design (OOAD)

Unit—V

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
Professor in CSE,

Library Management System
Use Case Diagram:

System

Register Member
<indudes>
7 =<irdude=>
o Yerify Member
i

Issue Book

% // «mwb;\\\ \ 5

Check Availability of Book ; :.
Librarian \ /
\ / Member

= <indude=>

I

Calculate Fine

Maintaining Books

Activity Diagram for Issue Book

b

Enguiry about books

Ghed< availability ok booD

Not available

Book not availablke

Avaiable
valdate merber

Mot valid

Register menber

vald
Ghed«'l nurber of books ssued to n'errb@

Max imum Quota exceed

(Book not issued)

C Issu1 book)&——

Gdd member, book and issue detail

Update book status

8/16

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—V

Activity Diagram for Return Book

Validate member

Getmember type

@splay meszame “Mof avalid membexb

L

[no fire]

Gdﬂ fine,member details to b@

(Create bill)

(Collect fine D
L

C Update book status)

@pdate EnnRber e ool =k drs mernba

Class Diagram

Book i Transaction
+bookId trans
+author e :memllcirld
+rame +passward & +bookld
“+price issues +searchB ook() _ﬁL_ +dateOflssue
+rackiNo +verifylviember() +dueDate
+status +issueB ook :
+edition e +createTransaction()
+dateOfPurchase +createBill) +del¢te'1‘r_?nsa ction()
+displyB ookDetails() +retumB ook() Seeexe TR0
+updateStatas)
requests creates
refers
MemberRecord
Jourmak StudyBooks +mernberld

+type Bill

+date Ofiviernbership +hillN

+noP ooklssued +date 2

Maginios mﬂlm{Bm.e ookl it pays +mermberld
“+armount

+address -

+phoneNo +hillCreate()

+retrivelvlernber() PHiltpaie)

+increaseB ookIssued)

+decreaseB ooklssued()

+payBill()

Stxlent Faculty

9/16

SITAMS — B.Tech — Ill Year - Il Sem CSE
16CSE 324 — Object Oriented Analysis and Design (OOAD)

Unit—-V

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
Professor in CSE,

State diagram for Book

Available
o
\ 2

member. returne 4he book memoer requast for book

[lssued to member |

P
=

)

State diagram for Librarian

‘I‘:\"ifr:&t- Merrber | ,E"RM o] - lesuing

{bodk avaiable]

s, rvabd ieenber

e request Tor o0k Ny & manter ratums badk

_l"v-thecir-sga,augllit(ot‘w:f.‘l‘ I Idia ; [cambtrgFre)

e ——

R
"‘._ /1o fee/member pays fine

[bock rot svaldble]/

\ i Retumingbock |

Sequence diagram for issuing book

Librarian Book MemberRecord Transaction

T T
' '
'

11 : check availabiity of boo

2 book avalable()

3 vdidae member()

4 : check number of books issued()

5 : book can be issued() l-—|

A

U 6 <<create>>

7+ ald member and book detals()

8 : update book status()

J

9 : updae member record()

10/16

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—-V

Collaboration diagram for issuing Book

3 1 vatdste member() T

lh : book can be ssued()
4 : check ro, of book Bsused() T

8 update book states()

7+ ad mamber and book datads() 4 4
AN M\ St check availability of bock()
Koo 2 : book availasie) ™\
4 & <ooreates> z
TaEaston Bock

Sequence diagram for returning book

Lbraian Book MemberRecord Transaction

o0
=

1 : vdida:e member()

2 1 get issue detal()

4 <<rede s>

3 : get member type()

5 : cdculate fine()

6 : add fine and memberideta‘ls()

7 fine pad()

—

o Sl o o o e et b . o o9 e e e oo

Eupdae book statug

TR e e o el e e e

VI._|9 : update member recordd)

11/16

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD)
Unit—V

Professor in CSE,

Collaboration diagram for returning Book

9 1 calcuatng fine()
—

2 g8t isaue detaddd) X
o 1 vaxiate member()
-

Tracsaction Lizeanzn > MemosRecod
y < —-

21 get member type()

& add fire and member detak() _' N

; / 27 fne pad()

£ . N8 ¢ update book status()
» O

Vi ST IR

Component diagram

LMS Database |, i Book
B e e

| < <dependss >
Search 7
£ <<dependss >
' Transacticn | Member
Eill
Deployment Diagram
DatabaseServer
ApplicationServer
WebServer
Client1 Client2 ClientN

12 /16

SITAMS — B.Tech — Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit—V

Online Railway reservation system

Use Case Diagram:

-

Enquire Ticket Availability

D
=
M Fil Form
e
X S o
= .
f
Book Tickets i oss {f Pt
B y oy

[

Customer

k<include>>

Print Fomn Cb\ __ <<nclude>>
Clerk S
Cancel Ticket TR \SQ

Refund Money

Activity Diagram:

Search Train

Ckeck Tickets
Avaiability
—— ()
> Logout O
Yes
(Book Tickets >
(Fill Details >
(Submit Details
Make
Payment
< Print Ticket

i

13/16

SITAMS — B.Tech — Il Year - Il Sem CSE

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 — Object Oriented Analysis and Design (OOAD)

Unit

-V

Professor in CSE,

Class Diagram:

Train

trainNo

Clerk

id
name

form_detail()
cancellation_form()| .

works

RailwaySystem

Passenger i id

trainName

State diagram

cancels

name
address
age
gender

response()

/

searchTrain()

bookTicket() |1 makes
Payment

cancelTicket()
payCharges()
modifyForm()

1=

1 amount

1

1%

books

Ticket

pniNo
status

noofPersons
chargeType

newTicket()
deleteTickel...

Enter login details

Entertrandetails

Enter self details

Validation ‘

Avalabilty
Check

Booking
Ticket

Booking successiil

-

Logout

Printing

®

14 /16

SITAMS — B.Tech — Il Year - Il Sem CSE

16CSE 324 — Object Oriented Analysis and Design (OOAD)

Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

Professor in CSE,

Unit-V
Sequence diagram:
P: Passenger R: Railway T: Ticket
System
1: login() |
1
2: Validate()
==
3: Retum Status

_____________ T

4: Request Form() |

6

- Submit Details() |

5: Create Form()

1

| 11: Take Print()

L‘@

Collaboration Diagram:

11: Take Pnnt()

0

7: Create Ticket()

8: Send Details()
9: Ticket Created
= — — — — —
10: Acknowledge

]

|

|

|

|

1: login()

4: Request Form()
6: Submit Details()
e

1

2: Validate()
5: Create Form()

7: Create Ticket()

ﬁ’

R: Railway

Passenger

3: Retum Status
10: Acknowledge

9: Ticket ated
/%

8: Sénd Details()

T: Ticket

System

15/16

SITAMS - B.Tech—Ill Year - Il Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,
16CSE 324 — Object Oriented Analysis and Design (OOAD) Professor in CSE,
Unit -V

Component diagram:

Homepage
%Cﬁeck éﬂ-w-’”’##gf
Availability P
y] %
I B
o / I A,
» F \ %
P 7 7 l !
/ \ N
& v [NModify
A Cancel 'I Fom
7 &2 Ticket l
Book | o
Ticket X | '
S~ X \ /
s % l /
e Fill Form

Deployment Diagram:

Printer

Application Sever

Database Server

16 /16

