User Datagram Protocol
(UDP)

14.1 INTRODUCTION

Figure 14.1 shows the relationship of the User Datagram Protocol (UDP) to the other
protocols and layers of the TCP/IP protocol suite: UDP is located between the applica-
tion layer and the IP layer, and serves as the intermediary between the application
programs and the network operations.

Figure 14.1 Position of UDP in the TCP/AP protocaol suite

Appliation| | smTp || FTP || TFTP || DNS | SNMP | «es | DHCP

Transport
Iaygr

Metwork
ayer

ARP

Daita link
e Underlying LAN or WAN I
technology —I

Pmécral

UDP is a connectionless, unreliable transport protocol. It does not add anything
to the services of IP except for providing process-to-process communication instead of
host-to-host communication.

If UDF is so powerless, why would a process want to use it? With the disadvan-
tages come some advantages. UDP is a very simple protocol using a minimum of over-
head. If a process wants to send a small message and does not care much about
reliability, it can use UDP. Sending a small message using UDP takes much less inter-
action between the sender and recelver than using TCE.

14.2 USER DATAGRAM

UDP packets, called user datagrams, have a fixed-size header of 8 bytes. Figure 14.2
shows the format of a user datagram. The fields are as follows:

Figure 14.2 User datagram format

8 to 65,535 bytes
8 bytes

s — Header Data

a. UDP user datagram

] 16 31
Source port number Destination port number

Total length Checksum

b. Header format

1 Source port number. This is the port number used by the process running on the
source host. It is 16 bits long, which means that the port number can range from 0 to
65,535, If the source host is the client (a client sending a request), the port number, in
most cases, Is an ephemeral port number requested by the process and chosen by the
UDP software running on the source host. If the source host is the server (a server
sending a response), the port number, in most cases, is a well-known port number.

1 Destination port number. This is the port number used by the process running on
the destination host. It is also 16 bits long. If the destination host is the server (a
client sending a request), the port number, in most cases, 1s a well-known port
number. If the destination host is the client (a server sending a response), the port
number, in most cases, 1s an ephemeral port number. In this case, the server coples
the ephemeral port number it has received in the request packet.

1 Length. This is a 16-bit field that defines the total length of the user datagram,
header plus data. The 16 bits can define a total length of 0 to 65,535 bytes. How-
ever, the total length needs to be much less because a UDP user datagram is stored
in an IP datagram with the total length of 65,535 bytes. The length field in a UDP
user datagram is actually not necessary. A user datagram is encapsulated in an IP
datagram. There is a field in the IP datagram that defines the total length. There is
another field in the TP datagram that defines the length of the header. So if we sub-
tract the value of the second field from the first, we can deduce the length of the
UDP datagram that is encapsulated in an IP datagram.

UDP length = IP length — IP header’s length

However, the designers of the UDP protocol felt that it was more efficient for the
destination UDPF to calculate the length of the data from the information provided

in the UDP user datagram rather than ask the IP software to supply this informa-
tion. We should remember that when the [P software delivers the UDP user data-
gram to the UDFP layer, it has already dropped the IFP header.

4 Checksum. This field is used to detect errors over the entire user datagram (header
plus data). The checksum is discussed in the next section.

14.3 UDP SERVICES

We discussed the general services provided by a transport layer protocol in Chapter 13.
In this section, we discuss what portions of those general services are provided by UDFP.

Process-to-Process Communication

UDF provides process-to-process communication discussed in Chapter 13 using sock-
ets, a combination of IF addresses and port numbers. Several port numbers used by
UDP are shown in Table 14.1.

Table 14.1 Well-known Forts used with UDP

Fort Protocol Description
7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received
11 Users Active users
13 Daytime Returns the date and the time
17 Quote Returns a quote of the day
19 Chargen Returns a string of characters
53 Domain Domain Name Service (DNS)
67 Bootps Server port to download bootstrap information
68 Bootpc Client port to download bootstrap information
69 TETP Trivial File Transfer Protocol
111 RPC Remote Procedure Call
123 NTP Network Time Protocol
161 SNMP Simple Network Management Protocol
162 SNMP Simple Network Management Protocol (trap)

Connectionless Services

As mentioned previously, UDP provides a connection/ess service. This means that each
user datagram sent by UDP is an independent datagram. There is no relationship
between the different user datagrams even if they are coming from the same source pro-
cess and going to the same destination program. The user datagrams are not numbered.
Also, there is no connection establishment and no connection termination as is the case
for TCF. This means that each user datagram can travel on a different path.

One of the ramifications of being connectionless is that the process that uses
UDP cannot send a stream of data to UDF and expect UDP to chop them into differ-
ent related user datagrams. Instead each request must be small enough to fit into one
user datagram. Only those processes sending short messages, messages less than
65,507 bytes (65,535 minus 8 bytes for the UDP header and minus 20 bytes for the
IP header), can use UDP.

Flow Control

UDP is a very simple protocol. There is no fow confrod, and hence no window mecha-
nism. The receiver may overflow with incoming messages. The lack of flow control
means that the process using UDP should provide for this service, if needed.

Error Control

There is no error controf mechanism in UDP except for the checksum. This means
that the sender does not know if a message has been lost or duplicated. When the
receiver detects an error through the checksum, the user datagram is silently dis-
carded. The lack of error control means that the process using UDP should provide for
this service if needed.

Checksam

We have already talked about the concept of the checksum and the way it is calculated
for IP in Chapter 7. UDP checksum calculation is different from the one for [P. Here the
checksum includes three sections: a pseudoheader, the UDP header, and the data com-
ing from the application layer.

The pseudoheader is the part of the header of the IP packet in which the user data-
gram is to be encapsulated with some fields filled with Os (see Figure 14.3).

Figure 14.3 Pseudoheader for checksum calculation

32-hit source IP address

32-hit destination IP address

Pseudo header

All 0s 8-bit protocel 16-bit UDP total length
Source port address Destination address
1% bits 16 Ei["'rs-t

Headier

UDP total length Checksum
16 bits 16 bits

Data
((Padding must be added to make the data a multiple of 16 bits)

If the checksum does not include the pseudoheader, a user datagram may arrive
safe and sound. However, if the IP header is corrupted, it may be delivered to the wrong
host.

The protocol field is added to ensure that the packet belongs to UDP, and not to
TCP. We will see later that if a process can use either UDP or TCP, the destination port
number can be the same. The value of the protocol field for UDF is 17. If this value is
changed during transmission, the checksum calculation at the receiver will detect it and
UDFP drops the packet. It is not delivered to the wrong protocol.

Note the similarities between the pseudoheader fields and the last 12 bytes of the

IP header.

Congestion Control

Since UDP is a connectionless protocol, it does not provide congestion control. UDP
assumes that the packets sent are small and sporadic, and cannot create congestion in
the network. This assumption may or may not be true today when UDP is used for real-
time transfer of audio and video.

Encapsulation and Decapsulation

To send a message from one process to another, the UDP protocol encapsulates and
deransulates messases (see Floure 14.51.

Figure 14.5 Encapsulation and decapsulation

Recsiver Process

[b

| m Frame data | hesdar Frame data |
a. Encapsulation b. Decapsulation
Encapsulation

When a process has a message to send through UDP, it passes the message to UDP
along with a pair of socket addresses and the length of data. UDP receives the data and
adds the UDP header. UDF then passes the user datagram to IP with the socket
addresses. IP adds its own header, using the value 17 in the protocol field, indicating
that the data has come from the UDP protocol. The IP datagram is then passed to the
data link layer. The data link layer receives the IP datagram, adds its own header (and
possibly a trailer), and passes it to the physical layer. The physical layer encodes the
bits into electrical or optical signals and sends it to the remote machine.

Decapsulation

When the message arrives at the destination host, the physical layer decodes the signals
into bits and passes it to the data link layer. The data link layer uses the header (and the
trailer) to check the data. If there is no error, the header and trailer are dropped and the
datagram is passed to IP. The IP software does its own checking. If there is no error,
the header is dropped and the user datagram is passed to UDFP with the sender and
receiver IP addresses. UDP uses the checksum to check the entire user datagram. If
there is no error, the header is dropped and the application data along with the sender
socket address is passed to the process. The sender socket address is passed to the
process in case it needs to respond to the message recelved.

Queuing

We have talked about ports without discussing the actual implementation of them. In
UDP, queues are associated with ports (see Figure 14.6).

At the client site, when a process starts, it requests a port number from the operat-
ing system. Some implementations create both an incoming and an outgoing queue
assoclated with each process. Other implementations create only an incoming queue
associated with each process.

Figure 14.6 (Queues in UDP

Daytime Daytime
client Server

=h

Outgoing , ‘ Incoming Outgoing ’ ‘ Incoming

queue I:' g queve queus I:' g queus

Port13 = F Port13 Port 52000 =— F— Port 52000

upp upp

Note that even if a process wants to communicate with multiple processes, it
obtains only one port number and eventually one outgoing and one incoming queue.
The queues opened by the client are, in most cases, identified by ephemeral port numbers.
The queues function as long as the process is running. When the process terminates, the
queues are destroyed.

The client process can send messages to the outgoing queue by using the source
port number specified in the request. UDF removes the messages one by one, and, after
adding the UDF header, delivers them to IP. An outgoing queue can overflow. If this
happens, the operating system can ask the client process to wait before sending any
MOre Messages.

When a message arrives for a client, UDP checks to see if an incoming queue has
been created for the port number specified in the destination port number field of the
user datagram. If there is such a queue, UDP sends the received user datagram to the
end of the queue. If there is no such queue, UDP discards the user datagram and asks
the ICMP protocol to send a port unreachable message to the server. All of the incom-
ing messages for one particular client program, whether coming from the same or a
different server, are sent to the same queue. An incoming queue can overflow. If this
happens, UDP drops the user datagram and asks for a port unreachable message to be
sent to the server.

At the server site, the mechanism of creating queues is different. In its simplest
form, a server asks for incoming and outgoing queues using its well-known port when
it starts running. The queues remain open as long as the server is running.

When a message arrives for a server, UDP checks to see if an incoming queue has
been created for the port number specified in the destination port number field of the
user datagram. If there is such a queue, UDP sends the received user datagram to the
end of the queue. If there is no such queue, UDP discards the user datagram and asks
the ICMP protocol to send a port unreachable message to the client. All of the incoming
messages for one particular server, whether coming from the same or a different client,
are sent to the same queue. An incoming queue can overflow. If this happens, UDP
drops the user datagram and asks for a port unreachable message to be sent to the client.

When a server wants to respond to a client, it sends messages to the outgoing queue
using the source port number specified in the request. UDP removes the messages one
by one, and, after adding the UDP header, delivers them to IF. An outgoing queue
can overflow. If this happens, the operating system asks the server to wait before send-
ing any more messages.

Multiplexing and Demultiplexing

In a host running a TCP/IP protocol suite, there is only one UDP but possibly several
processes that may want to use the services of UDP. To handle this situation, UDP mul-
tiplexes and demultiplexes (see Figure 14.7).

Figure 14.7 Multiplexing and demulitiplexing

Processes Processes

iy
Iy
iy

=

UDFP

(Demmltiplexer)

S -

Multiplexing

At the sender site, there may be several processes that need to send user datagrams.
However, there is only one UDP. This is a many-to-one relationship and requires multi-
plexing. UDP accepts messages from different processes, differentiated by thelr
assigned port numbers. After adding the header, UDP passes the user datagram to IP.

Demultiplexing

At the recelver site, there is only one UDP. However, we may have many processes that
can receive user datagrams. This is a one-to-many relationship and requires demulti-
plexing. UDP receives user datagrams from IP. After error checking and dropping of
the header, UDP delivers each message to the appropriate process based on the port
numbers.

14.4 UDP APPLICATIONS

Although UDP meets almost none of the criteria we mentioned in Chapter 13 for a reli-
able transport-layer protocol, UDP is preferable for some applications. The reason is
that some services may have some side effects that are either unacceptable or not pref-
erable. An application designer needs sometimes to compromise to get the optimum.
For example, in our daily life, we all know that a one-day delivery of a package by a
carrier is more expensive than a three-day delivery. Although time and cost are both
desirable features in delivery of a parcel, they are in conflict with each other. We need
to choose the optimum.

In this section, we first discuss some features of UDP that may need to be con-
sldered when one designs an application program and then show some typical
applications.

UDP Features
We briefly discuss some features of UDP and their advantages and disadvantages.

Connectionless Service

As we mentioned previously, UDP is a connectionless protocol. Each UDP packet is
independent from other packets sent by the same application program. This feature can
be considered as an advantage or disadvantage depending on the application require-
ment. It is an advantage If, for example, a client application needs to send a short
request to a server and to receive a short response. If the request and response can each
fit in one single user datagram, a connectionless service may be preferable. The over-
head to establish and close a connection may be significant in this case. In the
connection-oriented service, to achieve the above goal, at least 8 packets are exchanged
between the client and the server: in connectionless service only two packets are
exchanged. The connectionless service provides less delay; the connection-oriented
service creates more delay. If delay is an important issue for the application, the
connectionless service is preferred.

Lack of Congestion Conirol

UDP does not provide congestion control. However, UDP does not create additional
traffic in an error-prone network. TCP may resend a packet several times and thus con-
tribute to the creation of congestion or worsen a congested situation. Therefore, in
some cases, lack of error control in UDP can be considered an advantage when conges-
tlon is a big issue.

Lack of Error Control

UDP does not provide error control; it provides an unreliable service. Most applications
expect reliable service from a transport-layer protocol. Although a reliable service is
desirable, it may have some side effects that are not acceptable to some applications.
When a transport layer provides reliable services, if a part of the message is lost or cor-
rupted, it needs to be resent. This means that the receiving transport layer cannot
deliver that part to the application immediately; there is an uneven delay between dif-
ferent parts of the message delivered to the application layer. Some applications by

nature do not even notice these uneven delays, but for some they are very crucial.

Typical Applications

The following shows some typical applications that can benefit more from the services
of UDP than from those of TCF.

1 UDP is suitable for a process that requires simple request-response communication
with little concern for flow and error control. It is not usually used for a process
such as FTP that needs to send bulk data (see Chapter 21).

1 UDP is suitable for a process with internal flow and error-control mechanisms. For
example, the Trivial File Transfer Protocol (TFTP) (see Chapter 21) process
includes flow and error control. It can easily use UDP.

1 UDP is a suitable transport protocol for multicasting. Multicasting capability is
embedded in the UDP software but not in the TCP software.

J UDP is used for management processes such as SNMP (see Chapter 24).

J UDP is used for some route updating protocols such as Routing Information Proto-
col (RIP) (see Chapter 11).

1 UDP is normally used for real-time applications that cannot tolerate uneven delay
between sections of a received message.

14.5 UDP PACKAGE

To show how UDP handles the sending and recelving of UDP packets, we present a
simple version of the UDP package.

We can say that the UDP package involves five components: a control-block
table, input queues, a control-block module, an input module, and an output module.
Figure 14.8 shows these five components and their interactions.

Control-Block Table

In our package, UDP has a control-block table to keep track of the open ports. Each
entry in this table has a minimum of four fields: the state, which can be FREE or IN-USE,
the process 1D, the port number, and the corresponding queue number.

Input Queues

Our UDP package uses a set of input queues, one for each process. In this design, we
do not use output queues.

Control-Block Module

The control-block module (Table 14.2) is responsible for the management of the
control-block table. When a process starts, it asks for a port number from the operating
system. The operating system assigns well-known port numbers to servers and ephem-
eral port numbers to clients. The process passes the process ID and the port number to
the control-block module to create an entry in the table for the process. The module

does not create the queues. The field for queue number has a value of zero. Note that
we have not included a strategy to deal with a table that is full.

Input Module

The input module (Table 14.3) receives a user datagram from the IP. It searches the
control-block table to find an entry having the same port number as this user datagram.
If the entry is found, the module uses the information in the entry to enqueue the data.
If the entry is not found, it generates an ICMP message.

Figure 14.8 UDP design

Process

Processes

____opep cpom WRR) cpem o Data
U i
° BE B |
l'p Control-block l
I Queues module !
| |
| Y
| |
: Input module Control-block Ourtpurt module I
I table I
. S 4
+ P +
upp upp
User datagram User datagram
Table 14.2 Control Block Module

Il UDP_Control_Block _Module (process 1D, port number)

2 I

3 Search the table for a FREE entry.

4 if (not found)

5 Delete one entry using a predefined strategy.

6 Create a new entry with the state IN-USE

T Enter the process ID and the port number.

8 Return.

(=)

'l 1 S/ End module

Table 14.3 Input Module

UDP_INPUT _Module (user_datagram)
{
Look for the entry in the control_block table
if (found)
{
Check to see if a queue is allocated
If (queue is not allocated)

1
2
3
4
5
6
7
8

allocate a queue
else
enqueue the data
Y Afend If
else
{
Ask ICMP to send an "unreachable port” message
Discard the user datagram
Y Alend else

Return.

1 44 end module

Output Module

The output module (Table 14.4) is responsible for creating and sending user datagrams.

Table 14.4 COutput Module

i UDP_OUTPUT_MODULE (Data)

2 W

3 Create a user datagram
4 Send the user datagram
5 Return.

6 I

Iransmission Control
Protocol (TCP)

15.1

TCP SERVICES

Figure 15.1 shows the relationship of TCF to the other protocols in the TCP/IP protocol
sulte. TCP lies between the application layer and the network layer, and serves as the
intermediary between the application programs and the network operations.

Figure 15.1 TCPAP protocol suite
ﬁplfi',;'geﬂr““" SMTP || FTP || TETP || DNS || SNMP | ees
Transport
IayEr uop TCP
[GMP || ICMP
Metwork IP
layer
Data link
layer Underlying LAN or WAN
Physical technology
layer

Before discussing TCP in detail, let us explain the services offered by TCP to the
processes at the application layer.

Process-to-Process Communication

As with UDF. TCP provides process-to-process communication using port numbers
(see Chapter 13). Table 15.1 lists some well-known port numbers used by TCF.

Table 15.1 Well-known Forts used by TCP
Fort Protocol Description
T Echo Echoes a received datagram back to the sender
] Discard Discards any datagram that is received
11 Users Actlve users
13 Daytime Returns the date and the time
17 Quote Returns a quote of the day

Table 15.1 Well-known Ports used by TCP ({continued)

Fort Proiocol Description
19 Chargen Returns a string of characters
20 and 21 FTP File Transfer Protocol (Data and Control)
23 TELNET Terminal Network
25 SMTP Simple Mail Transfer Protocol
53 DNS Domain Mame Server
67 BOOTP Bootstrap Protocol
79 Finger Finger
a0 HTTP Hypertext Transfer Protocol

Stream Delivery Service

TCP, unlike UDP, is a stream-oriented protocol. In UDP, a process sends messages with
predefined boundaries to UDF for delivery. UDP adds its own header to each of these
messages and delivers it to IP for transmission. Each message from the process 1s called
a user datagram, and becomes, eventually, one IP datagram. Neither IP nor UDP recog-
nizes any relationship between the datagrams.

TCP, on the other hand, allows the sending process to deliver data as a stream of
bytes and allows the receiving process to obtain data as a stream of bytes. TCP creates
an environment in which the two processes seem to be connected by an imaginary
“tube” that carries their bytes across the Internet. This imaginary environment is
depicted in Figure 15.2. The sending process produces (writes to) the stream of bytes

and the receiving process consumes (reads from) them.

Figure 15.2 Stream delivery

Sendi Receivi
oy sezhung

2 =
TCP j Stream of bytes TCP

Sending and Receiving Buffers

Because the sending and the receiving processes may not necessarily write or read data
at the same rate, TCP needs buffers for storage. There are two buffers, the sending
buffer and the receiving buffer, one for each direction. We will see later that these buff-
ers are also necessary for flow- and error-control mechanisms used by TCP. One way to
implement a buffer is to use a circular array of 1-byte locations as shown in Figure 15.3.
For simplicity, we have shown two buffers of 20 bytes each:; normally the buffers are
hundreds or thousands of bytes, depending on the implementation. We also show the
buffers as the same size, which is not always the case.

Figure 15.3 Sending and receiving buffers

Sending % Receiving
process == process

Stream of bytes

The figure shows the movement of the data in one direction. At the sender, the
buffer has three types of chambers. The white section contains empty chambers that
can be filled by the sending process (producer). The colored area holds bytes that have
been sent but not yet acknowledged. The TCP sender keeps these bytes in the buffer
until it receives an acknowledgment. The shaded area contains bytes to be sent by the
sending TCP. However, as we will see later in this chapter, TCP may be able to send
only part of this shaded section. This could be due to the slowness of the receiving pro-
cess, or congestion in the network. Also note that after the bytes in the colored cham-
bers are acknowledged, the chambers are recycled and available for use by the sending
process. This 1s why we show a circular buffer.

The operation of the buffer at the receiver is simpler. The circular buffer is divided
into two areas (shown as white and colored). The white area contains empty chambers
to be filled by bytes received from the network. The colored sections contain received
bytes that can be read by the receiving process. When a byte is read by the receiving

process, the chamber is recycled and added to the pool of empty chambers.

Segments

Although buffering handles the disparity between the speed of the producing and con-
suming processes, we need one more step before we can send data. The IP layer, as a
service provider for TCP, needs to send data in packets, not as a stream of bytes. At the
transport layer, TCP groups a number of bytes together into a packet called a segment.
TCP adds a header to each segment (for control purposes) and delivers the segment to
the IP layer for transmission. The segments are encapsulated in an IP datagram and
transmitted. This entire operation is transparent to the recelving process. Later we will
see that segments may be received out of order, lost, or corrupted and resent. All of these
are handled by the TCP sender with the receiving application process unaware of TCP's
activities. Figure 15.4 shows how segments are created from the bytes in the buffers.

Note that segments are not necessarily all the same size. In the figure, for simplic-
ity, we show one segment carrying 3 bytes and the other carrying 5 bytes. In reality,
segments carry hundreds, if not thousands, of bytes.

Figure 15.4 TCP segments

Receiving | =5
process” ==

Segment ¥ Segment 1

qo0og --- Elood

Full-Duplex Communication

TCP offers full-duplex service, where data can flow in both directions at the same time.
Each TCP endpoint then has its own sending and receiving buffer, and segments move in
both directions.

Multiplexing and Demultiplexing

Like UDP, TCP performs multiplexing at the sender and demultiplexing at the receiver.
However, since TCP is a connection-oriented protocol, a connection needs to be estab-
lished for each pair of processes. This will be more clear when we discuss the client/
server paradigm in Chapter 17.

Connection-Oriented Service

TCP, unlike UDFP, is a connection-oriented protocol. As shown in Chapter 13, when a
process at site A wants to send to and receive data from another process at site B, the
following three phases occur:

1. The two TCPs establish a virtual connection between them.

2. Data are exchanged in both directions.

3. The connection is terminated.
Note that this is a virtual connection, not a physical connection. The TCP segment is
encapsulated in an IP datagram and can be sent out of order, or lost, or corrupted, and
then resent. Each may be routed over a different path to reach the destination. There is
no physical connection. TCP creates a stream-oriented environment in which it accepts
the responsibility of delivering the bytes in order to the other site.

Reliable Service

TCP is a reliable transport protocol. It uses an acknowledgment mechanism to check
the safe and sound arrival of data. We will discuss this feature further in the section on
error control.

15.2 TCP FEATURES

To provide the services mentioned in the previous section, TCP has several features that
are briefly summarized in this section and discussed later in detail.

Numbering System

Although the TCP software keeps track of the segments being transmitted or received,
there is no field for a segment number value in the segment header. Instead, there are
two fields called the sequence number and the acknowledgment number. These two
fields refer to a byte number and not a segment number.

Byte Number

TCP numbers all data bytes (octets) that are transmitted in a connection. Numbering is
independent in each direction. When TCF recelves bytes of data from a process, TCP
stores them in the sending buffer and numbers them. The numbering does not necessar-
ily start from 0. Instead, TCP chooses an arbitrary number between 0 and 232 _ 1 for
the number of the first byte. For example, if the number happens to be 1,057 and the
total data to be sent is 6,000 bytes, the bytes are numbered from 1,057 to 7,056. We will
see that byte numbering is used for flow and error control.

The bytes of data being transferred in each connection are numbered by TCP.
The numbering starts with an arbitrarily generated number.

Sequence Number

After the bytes have been numbered, TCP assigns a sequence number to each segment
that is being sent. The sequence number for each segment is the number of the first byte
of data carried in that segment.

The value in the sequence number field of a segment defines the number assigned to the
first data byte contained in that segment.

When a segment carries a combination of data and control information (piggy-
backing), it uses a sequence number. If a segment does not carry user data, 1t does not
logically define a sequence number. The field is there, but the value is not valid. How-
ever, some segments, when carrying only control information, need a sequence number
to allow an acknowledgment from the receiver. These segments are used for connection
establishment, termination, or abortion. Each of these segments consume one sequence
number as though it carries one byte, but there are no actual data. We will elaborate on
this issue when we discuss connections.

Acknowledement Number

As we discussed previously, communication in TCF is full duplex; when a connection
Is established, both parties can send and receive data at the same time. Each party num-
bers the bytes, usually with a different starting byte number. The sequence number in
each direction shows the number of the first byte carried by the segment. Each party
also uses an acknowledgment number to confirm the bytes it has received. However, the
acknowledgment number defines the number of the next byte that the party expects to
receive. In addition, the acknowledgment number is cumulative, which means that the
party takes the number of the last byte that it has received. safe and sound, adds 1 to it,
and announces this sum as the acknowledgment number. The term cumulative here
means that if a party uses 5,643 as an acknowledgment number, it has received all bytes
from the beginning up to 5,642. Note that this does not mean that the party has received
5,642 bytes because the first byte number does not have to start from 0.

The value of the acknowledgment field in a segment defines the number of the next byte
a party expects to receive. The acknowledgment number is cumulative.

Flow Control

TCP, unlike UDP, provides flow control. The sending TCP controls how much data can
be accepted from the sending process; the recelving TCP controls how much data can
to be sent by the sending TCP (See Chapter 13). This is done to prevent the receiver
from being overwhelmed with data. The numbering system allows TCP to use a byte-
oriented flow control, as we discuss later in the chapter.

Error Control

To provide reliable service, TCP implements an error control mechanism. Although
error control considers a segment as the unit of data for error detection (loss or cor-
rupted segments), error control is byte-orlented, as we will see later.

Congestion Control

TCP, unlike UDF, takes into account congestion in the network. The amount of data
sent by a sender is not only controlled by the receiver (flow control), but is also deter-
mined by the level of congestion, if any, in the network.

15.3 SEGMENT

Before discussing TCP in more detail, let us discuss the TCP packets themselves. A
packet in TCP is called a segment.

Format

The format of a segment is shown in Figure 15.5. The segment consists of a header of
20 to 60 bytes, followed by data from the application program. The header is 20 bytes if
there are no options and up to 60 bytes if it contains options. We will discuss some of
the header fields in this section. The meaning and purpose of these will become clearer
as we proceed through the chapter.

Figure 15.5 TCP segment format

2010 B0 bytes_
<= Header Data
a. Segment
1 16 il
Source port address Destination port address
16 bits 16 bits
Sequence numboer
32 bits
Acknowledgment number
32 bits
HLEN (IR U AP R SIF Window size
4 bits ebits HIEIEME 16 bits
Checksum Urgent pointer
16 bits 16 bits
{ Options and padding {
b. Header

 Source port address. This is a 16-bit field that defines the port number of the
application program in the host that is sending the segment. This serves the
same purpose as the source port address in the UDP header discussed in
Chapter 14.

J Destination port address. This is a 16-bit field that defines the port number of the
application program in the host that is recelving the segment. This serves the same
purpose as the destination port address in the UDP header discussed in Chapter 14.

U Sequence number. This 32-bit field defines the number assigned to the first byte
of data contained in this segment. As we said before, TCP Is a stream transport pro-
tocol. To ensure connectivity, each byte to be transmitted i1s numbered. The
sequence number tells the destination which byte in this sequence is the first byte
in the segment. During connection establishment (discussed later) each party uses
a random number generator to create an initial sequence number (ISN), which is
usually different in each direction.

U Acknowledgment number. This 32-bit field defines the byte number that the
receiver of the segment s expecting to receive from the other party. If the recelver
of the segment has successfully received byte number x from the other party, it
returns x + 1 as the acknowledgment number. Acknowledgment and data can be
plgaybacked together.

U Header length. This 4-bit field indicates the number of 4-byte words in the TCP
header. The length of the header can be between 20 and 60 bytes. Therefore, the
value of this field is always between 5 (5 x 4= 20) and 15 (15 x 4 = 60).

J Reserved. This is a 6-bit field reserved for future use.

1 Control. This field defines 6 different control bits or flags as shown in Figure 15.6.
One or more of these bits can be set at a time. These bits enable flow control,
connectlon establishment and termination, connectlon abortion, and the mode of
data transfer in TCP. A brief description of each bit is shown in the figure. We will
discuss them further when we study the detailed operation of TCP later in the
chapter.

Figure 15.6 Control field

URG: Urgent pointer is valid RST: Reset the connection
ACK: Acknowledgment is valid SYN: Synchronize sequence numbers
PSH: Request for push FIN: Terminate the connection

URG ACK PEH RST S¥YN FIN

|‘ & bits |

U Window size. This field defines the window size of the sending TCP in bytes. Note
that the length of this field is 16 bits, which means that the maximum size of the
window is 65,535 bytes. This value is normally referred to as the receiving window
(rwnd) and is determined by the receiver. The sender must obey the dictation of the
receiver in this case.

J Checksum. This 16-bit field contains the checksum. The calculation of the check-
sum for TCP follows the same procedure as the one described for UDP in Chapter 14.

However, the use of the checksum in the UDP datagram is optional, whereas the
use of the checksum for TCP is mandatory. The same pseudoheader, serving the
same purpose, is added to the segment. For the TCP pseudoheader, the value for
the protocol field is 6. See Figure 15.7.

Figure 15.7 Pseudoheader added to the TCP datagram

|-

32-bit source |P address
32-bit destination |P address
All Os B-bit protocol | 16-bit TCP total length

Peeudahaackr

1

Source port number Destination port number
Sequence number
Acknowledgment number
HLEN | Reserved | Control | Window size
Checksum UIrgent pointer

Header

Data and option

(Padding must be added to make
the data a mmltiple of 16 bits)

The use of the checksum in TCP is mandatory.

d Urgent pointer. This 16-bit field, which is valid only if the urgent flag is set, is
used when the segment contains urgent data. It defines a value that must be added
to the sequence number to obtain the number of the last urgent byte in the data sec-
tion of the segment. This will be discussed later in this chapter.

 Options. There can be up to 40 bytes of optional information in the TCP header. We
will discuss the different options currently used in the TCP header later in the chapter.

Encapsulation

A TCP segment encapsulates the data received from the application layer. The TCP
segment is encapsulated in an IP datagram, which in turn is encapsulated in a frame at
the data-link layer as shown in Figure 15.8.

Figure 15.8 Encapsulation

TCP | Application-layer data

TCP payioad

IP payload
Diata-link layer payload

154 ATCP CONNECTION

TCP is connectlon-oriented. As discussed in Chapter 13, a connection-oriented transport
protocol establishes a virtual path between the source and destination. All of the segments
belonging to a message are then sent over this virtual path. Using a single virtual path-
way for the entire message facilitates the acknowledgment process as well as retrans-
mission of damaged or lost frames. You may wonder how TCPF, which uses the services
of IF, a connectionless protocol, can be connection-oriented. The point is that a TCP
connection is virtual, not physical. TCP operates at a higher level. TCP uses the ser-
vices of IP to deliver individual segments to the receiver, but it controls the connection
itself. If a segment is lost or corrupted, it is retransmitted. Unlike TCP, IP is unaware of
this retransmission. If a segment arrives out of order, TCP holds it until the missing seg-
ments arrive; IP is unaware of this reordering.

In TCF, connection-oriented transmission requires three phases: connection estab-
lishment, data transfer, and connection termination.

Connection Establishment

TCP transmits data in full-duplex mode. When two TCPs in two machines are con-
nected, they are able to send segments to each other simultaneously. This implies that
each party must initialize communication and get approval from the other party before
any data are transferred.

Three-Way Handshaking

The connection establishment in TCP is called three-way handshaking. In our exam-
ple, an application program, called the client, wants to make a connection with another
application program, called the server, using TCP as the transport layer protocol.

The process starts with the server. The server program tells its TCP that it is ready
to accept a connection. This request is called a passive open. Although the server TCP
is ready to accept a connection from any machine in the world, it cannot make the
connection itself.

The client program issues a request for an actfve open. A client that wishes to con-
nect to an open server tells its TCP to connect to a particular server. TCP can now start
the three-way handshaking process as shown in Figure 15.9.

To show the process we use time lines. Each segment has values for all its header
fields and perhaps for some of its option fields too. However, we show only the few
fields necessary to understand each phase. We show the sequence number, the acknowl-
edgment number, the control flags (only those that are set), and window size If relevant.
The three steps in this phase are as follows.

1. The client sends the first segment, a SYN segment, in which only the SYN flag is
set. This segment is for synchronization of sequence numbers. The client in our
example chooses a random number as the first sequence number and sends this
number to the server. This sequence number is called the initial sequence number
(ISN). Note that this segment does not contain an acknowledgment number. It does
not define the window size either: a window size definition makes sense only when
a segment includes an acknowledgment. The segment can also include some

Figure 15.9 Connection establishment using three-way handshaking

“Client Client transport Server transport Smmrﬁ
process layer gl; ACK flag layer Process ‘

Time Time Time Time

options that we discuss later in the chapter. Note that the SY'N segment is a control
segment and carries no data. However, it consumes one sequence number. When
the data transfer starts, the ISN is incremented by 1. We can say that the SYN seg-
ment carries no real data, but we can think of it as containing one imaginary byte.

A SYN segment cannot carry data, but it consumes one sequence number.

2. The server sends the second segment, a SYN + ACK segment with two flag bits set:
SY'N and ACK. This segment has a dual purpose. First, it is a SYN segment for com-
munication in the other direction. The server uses this segment to initialize a sequence
number for numbering the bytes sent from the server to the client. The server also
acknowledges the receipt of the SYN segment from the client by setting the ACK flag
and displaying the next sequence number it expects to recelve from the client.
Because it contains an acknowledgment, it also needs to define the receive window
slze, rwnd (to be used by the client), as we will see in the flow control section.

A SYN + ACK segment cannot carry data,
but does consume one sequence number.

3. The client sends the third segment. This is just an ACK segment. It acknowledges
the receipt of the second segment with the ACK flag and acknowledgment number
field. Note that the sequence number in this segment is the same as the one in the
SYN segment; the ACK segment does not consume any sequence numbers. The
client must also define the server window size. Some implementations allow this
third segment in the connection phase to carry the first chunk of data from the

client. In this case, the third segment must have a new sequence number showing
the byte number of the first byte in the data. In general, the third segment usually
does not carry data and consumes no sequence numbers.

An ACK segment, if carrying no data, consumes no sequence number.

Simultaneous Open

A rare situation may occur when both processes issue an active open. In this case, both
TCPs transmit a SYN + ACK segment to each other and one single connection is estab-
lished between them. We will show this case when we discuss the transition diagram in
the next section.

SYN Flooding Aftack

The connection establishment procedure in TCP is susceptible to a serlous securlty prob-
lem called SYN flooding attack. This happens when one or more malicious attackers
send a large number of SYN segments to a server pretending that each of them is coming
from a different client by faking the source [P addresses in the datagrams. The server,
assuming that the clients are issuing an active open, allocates the necessary resources,
such as creating transfer control block (TCB) tables (explained later in the chapter) and
setting timers. The TCP server then sends the SYN + ACK segments to the fake clients,
which are lost. When the server waits for the third leg of the handshaking process, how-
ever, resources are allocated without being used. If, during this short period of time, the
number of SYN segmenits is large, the server eventually runs out of resources and may be
unable to accept connection requests from valid clients. This SYN flooding attack
belongs to a group of security attacks known as a denial of service attack, in which an
attacker monopolizes a system with so many service requests that the system overloads
and denies service to valid requests.

Some implementations of TCF have strategies to alleviate the effect of a SYN attack.
Some have imposed a limit of connection requests during a specified period of time. Oth-
ers try to filter out datagrams coming from unwanted source addresses. One recent strat-
egy is to postpone resource allocation until the server can verify that the connection
request Is coming from a valid IP address, by using what is called a cookie. SCTP, the
new transport-layer protocol that we discuss in the next chapter, uses this strategy.

Data Transfer

After connection is established, bidirectional data transfer can take place. The client
and server can send data and acknowledgments in both directions. We will study the
rules of acknowledgment later in the chapter; for the moment, it is enough to know that
data traveling in the same direction as an acknowledgment are carried on the same seg-
ment. The acknowledgment is piggybacked with the data. Figure 15.10 shows an example.
In this example, after a connection is established, the client sends 2,000 bytes of
data in two segments. The server then sends 2,000 bytes in one segment. The client
sends one more segment. The first three segments carry both data and acknowledgment,
but the last segment carries only an acknowledgment because there is no more data to
be sent. Note the values of the sequence and acknowledgment numbers. The data seg-
ments sent by the client have the PSH (push) flag set so that the server TCP tries to
deliver data to the server process as soon as they are received. We discuss the use of this

Figure 15.10 Data transfer

Client CIiEnE transport 'SEWHI transport Server
0CESS r OCESS
”% e P: PSH flag A: ACK flag o p'%
Connection Establishment

s

—
| Daa ——[™=»——0_ | Rectiwe
| tl_'."[E' Boo 9000 I -------- -

Dagg ————— > —————— | Recive_;

L bytes: 900110009 |

Time Time Time Time

flag in more detail later. The segment from the server, on the other hand, does not set
the push flag. Most TCP implementations have the option to set or not set this flag.

Pushing Data

We saw that the sending TCP uses a buffer to store the stream of data coming from the
sending application program. The sending TCF can select the segment size. The receiv-
ing TCP also buffers the data when they arrive and delivers them to the application pro-
gram when the application program is ready or when it is convenient for the receiving
TCP. This type of flexibility increases the efficiency of TCP.

However, there are occasions in which the application program has no need for this
flexibility. For example, consider an application program that communicates interac-
tively with another application program on the other end. The application program on
one site wants to send a keystroke to the application at the other site and receive an
immediate response. Delayed transmission and delayed delivery of data may not be
acceptable by the application program.

TCP can handle such a situation. The application program at the sender can request
a push operation. This means that the sending TCP must not wait for the window to be
filled. It must create a segment and send it immediately. The sending TCP must also set

the push bit (PSH) to let the receiving TCP know that the segment includes data that
must be delivered to the receiving application program as soon as possible and not to
walit for more data to come.

Although the push operation can be requested by the application program, most current
TCP implementations ignore such requests. TCP can choose whether or not to use this feature.

Urgent Data

TCP is a stream-oriented protocol. This means that the data is presented from the appli-
cation program to TCP as a stream of bytes. Each byte of data has a position in the
stream. However, there are occaslons in which an application program needs to send
urgent bytes, some bytes that need to be treated in a special way by the application at
the other end. The solution is to send a segment with the URG bit set. The sending
application program tells the sending TCP that the piece of data is urgent. The sending
TCP creates a segment and inserts the urgent data at the beginning of the segment. The
rest of the segment can contain normal data from the buffer. The urgent pointer field in
the header defines the end of the urgent data (the last byte of urgent data).

When the receiving TCP recelves a segment with the URG bit set, it informs the
receiving application of the situation. How this is done, depends on the operation sys-
tem. It is then to the discretion of the recelving program to take an action.

It is important to mention that TCP’s urgent data is neither a priority service nor an
expedited data service. Rather, TCP urgent mode is a service by which the application
program at the sender side marks some portion of the byte stream as needing special
treatment by the application program at the receiver side.

Thus, signaling the presence of urgent data and marking its position in the data
stream are the only aspects that distinguish the delivery of urgent data from the delivery of
all other TCP data. For all other purposes, urgent data is treated identically to the rest
of the TCP byte stream. The application program at the receiver site must read every byte
of data exactly in the order it was submitted regardless of whether or not urgent mode is
used. The standard TCP, as implemented, does not ever deliver any data out of order.

Connection Termination

Any of the two parties involved in exchanging data (client or server) can close the con-
nection, although it is usually initlated by the client. Most implementations today allow
two options for connection termination: three-way handshaking and four-way hand-
shaking with a half-close option.

Three-Way Handshaking

Most implementations today allow three-way handshaking for connection termination
as shown in Figure 15.11.

1. In a common situation, the client TCP, after receiving a close command from the
client process, sends the first segment, a FIN segment in which the FIN flag is set.
Note that a FIN segment can include the last chunk of data sent by the client or it
can be just a control segment as shown in the figure. If it is only a control segment,
it consumes only one sequence number.

The FIN segment consumes one sequence number if it does not carry data.

Figure 15.11 Connection termination using three-way handshaking

Client Client transport Server transport Server
process layer A: ACK flag F: FIN flag process

2 [B

Passive
close

Time Time Time Time

2. The server TCP, after receiving the FIN segment, informs its process of the situation
and sends the second segment, a FIN+ACK segment, to confirm the receipt of the
FIN segment from the client and at the same time to announce the closing of the con-
nection in the other direction. This segment can also contain the last chunk of data
from the server. If it does not carry data, it consumes only one sequence number.

3. The client TCP sends the last segment, an ACK segment, to confirm the receipt of
the FIN segment from the TCP server. This segment contains the acknowledgment
number, which is one plus the sequence number received in the FIN segment from
the server. This segment cannot carry data and consumes no sequence numbers.

Hali~-Clase

In TCP, one end can stop sending data while still receiving data. This is called a half-
close. Either the server or the client can issue a half-close request. It can occur when the
server needs all the data before processing can begin. A good example is sorting. When
the client sends data to the server to be sorted, the server needs to receive all the data
before sorting can start. This means the client, after sending all data, can close the con-
nection in the client-to-server direction. However, the server-to-client direction must
remain open to return the sorted data. The server, after receiving the data, still needs
time for sorting; its outbound direction must remain open.

The FIN + ACK segment consumes one sequence
number if it does not carry data.

Figure 15.12 shows an example of a half-close. The data transfer from the client to
the server stops. The client half-closes the connection by sending a FIN segment. The
server accepts the half-close by sending the ACK segment. The server, however, can
still send data. When the server has sent all of the processed data, it sends a FIN
segment, which is acknowledged by an ACK from the client.

Figure 15.12 Halfclose

S

Client Client tramsport
process layer A: ACK flag F: FIN flag

Time Time Time Time

After half closing the connection, data can travel from the server to the client and
acknowledgments can travel from the client to the server. The client cannot send any
more data to the server. Note the sequence numbers we have used. The second segment
(ACK) consumes no sequence number. Although the client has received sequence num-
ber y— 1 and is expecting y. the server sequence number is still y— 1. When the connec-
tion finally closes, the sequence number of the last ACK segment is still x, because no
sequence numbers are consumed during data transfer in that direction.

Connection Reset

TCP at one end may deny a connection request, may abort an existing connection, or
may terminate an idle connection. All of these are done with the RST (reset) flag.
Denying a Connection

Suppose the TCF on one side has requested a connection to a nonexistent port. The
TCP on the other side may send a segment with its RST bit set to deny the request. We
will show an example of this case in the next section.

Aborting a Connection

One TCP may want to abort an existing connection due to an abnormal situation. It can
send an RST segment to close the connection. We also show an example of this case in
the next section.

Terminating an Iidle Connection

The TCP on one side may discover that the TCP on the other side has been idle for a
long time. It may send an RST segment to end the connection. The process is the same
as aborting a connection.

15.5 STATE TRANSITION DIAGRAM

To keep track of all the different events happening during connection establishment,
connection termination, and data transfer, TCP Is specified as the finite state machine
shown in Figure 15.13.

Figure 15.13 State transition diagram

— Clicnt transition
....... = Server transition
e (Ci2N O SEOVE transition

oy 1
|
I i
| .
Passive open/ — I T Active open/ SYN I
|
,1, RST /- Close [- :
I___S_\';ngtpii&g}i__ LISTEN !
! RST /- y Send | SYN I
Timﬁﬁm”ﬁ‘ﬁ SYN/SYN + ACK T |
) . + (M S¥N-
SM Simultaneous open SYN ﬂSE NT t_t: lose or i
IME-
Close / FIN L__flgﬁf_—____(ESTABLISHED) ACK/ACK or RSTI-I
|
Close / FIN | Data transfer !_ _____ FIN/ ACK |
1 |
] |
FIN- FIN/ACK CLOSE- !
[—mm Simultaneous | =02 G WAIT !
close Close /| !
ACK/-| | FIN+ACKIACK |ACK/- Fin I
Three-
Handshals A i
FIN. Y FINJACK (TivE. | __ACK/- |
WAIT-2 WAIT
Time-out (2MSL)

15,6 WINDOWS IN TCP

Before discussing data transfer in TCP and the issues such as flow, error, and conges-
tion control, we describe the windows used in TCP. TCP uses two windows (send win-
dow and receive window) for each direction of data transfer, which means four
windows for a bidirectional communication. However, to make the discussion simple,
we make an unrealistic assumption that communication is only unidirectional (say from
client to server); the bidirectional communication can be inferred using two unidirec-
tional communications with piggybacking.

Send Window

Figure 15.22 shows an example of a send window. The window we have used is of size
100 bytes (normally thousands of bytes), but later we see that the send window size Is
dictated by the receiver (flow control) and the congestion in the underlying network
(congestion control). The figure shows how a send window opens, closes, or shrinks.

Figure 15.22 Send window in TCP

FirSEI . [Ner.t lcE:
i ose Timer ()
Sy Sy
eee (200 2010 eee [O(2ET] ... [3000307;--.
Bytas that cannot be
Bytes that are acknowledged Outstanding bytas Bytes that can be sant sent until the right edge
{can b purged from buffer) | (sent by not acknowledged) {Usabla window) mives to the right
Send window size (advertised by the receiver)
4 Send window
Left wall Right wall
Closes Shrinks - | p- Opens

v (200 2011 eee J26OI261] ... [300[307;...

b. Opening, closing, and shrinking send window

The send window in TCP is similar to one used with the Selective Repeat protocol
(Chapter 13}, but with some differences:

1. One difference is the nature of entities related to the window. The window in SR

numbers pockets, but the window in the TCF numbers bytes. Although actual

transmission in TCP occurs segment by segment, the variables that control the
window are expressed in bytes.

2. The second difference is that, in some implementations, TCP can store data
received from the process and send them later, but we assume that the sending TCP
is capable of sending segments of data as soon as it receives them from its process.

3. Another difference is the number of timers. The theoretical Selective Repeat proto-
col may use several timers for each packet sent, but the TCP protocol uses only one
timer. We later explain the use of this timer in error control.

Receive Window

Figure 15.23 shows an example of a receive window. The window we have used is of
slze 100 bytes (normally thousands of bytes). The figure also shows how the receive
window opens and closes; in practice, the window should never shrink.

Figure 15.23 Receive window in TCP

Naxt byte Mext byte
to be pulled expected to
by the process receive
| :
|t W00 ees [O[261] ... [I00[30T ...
Eytes received,
and acknowledged Buytes that can be
Eiytas that have alroady waiting to be recaived from sender Eiytas that cannot ba
pulled by the process .| consumed by process Receive window size {rwnd) . recaived from sendar
‘ Allocated buffer
a. Receive window and allocated buffer
Laft wall Riight wall

’—} 0
Closes pens

b. Opening and closing of receive window

There are two differences between the receive window in TCFP and the one we used
for SR in Chapter 13.

1. The first difference is that TCP allows the receiving process to pull data at its own
pace. This means that part of the allocated buffer at the recelver may be occupied
by bytes that have been recelved and acknowledged, but are waiting to be pulled by
the receiving process. The receive window size is then always smaller or equal to the
buffer size, as shown in the above figure. The recelver window size determines the
number of bytes that the receive window can accept from the sender before being

overwhelmed (flow control). In other words, the recelve window size, normally
called rwnd, can be determined as:

rwnd = buffer size — number of waiting bytes to be pulled

. The second difference is the way acknowledgments are used in the TCF protocol.
Remember that an acknowledgement in SR is selective, defining the uncorrupted
packets that have been received. The major acknowledgment mechanism in TCP is a
cumulative acknowledgment announcing the next expected byte to receive (in this
way TCP looks like GBN discussed in Chapter 13). The new versions of TCF, how-
ever, uses both cumulative and selective acknowledgements as we will discuss later
in the option section.

15.7 FLOW CONTROL

As discussed in Chapter 13, flow control balances the rate a producer creates data with
the rate a consumer can use the data. TCF separates flow control from error control. In
this section we discuss flow control, ignoring error control. We temporarily assume that
the logical channel between the sending and receiving TCF 1s error-free.

Figure 15.24 shows unidirectional data transfer between a sender and a receiver;
bidirectional data transfer can be deduced from unidirectional one as discussed in
Chapter 13.

Figure 15.24 Data flow and flow control feedbacks in TCP

Sender - Receiver
. —pe L Flow -
Application| Mo s Flowi corirol foadback Consumer | | APRlication
layer layer
Messa Flow control Messages
wepusted [@ O] fuaciback L3] Py o
k4
Tr?rtspm. Consumier Producer Transport
ayer (2] JC layar
Producer Segemerts are pushed i e
1) |

_
Flow control feedback

The figure shows that data travel from the sending process down to the sending
TCP, from the sending TCP to the receiving TCP, and from receiving TCP up to the
recelving process (paths 1, 2, and 3). Flow control feedbacks, however, are traveling
from the receiving TCP to the sending TCP and from the sending TCP up to the sending
process (paths 4 and 5). Most implementations of TCP do not provide flow control feed-
back from the receiving process to the receiving TCF; they let the recelving process pull
data from the recelving TCP whenever it is ready to do so. In other words, the receiving
TCP controls the sending TCP; the sending TCP controls the sending process.

Flow control feedback from the sending TCP to the sending process (path 5) is
achieved through simple rejection of data by sending TCP when its window is full. This
means that our discussion of flow control concentrates on the feedback sent from the
recelving TCP to the sending TCP (path 4).

Opening and Closing Windows

To achieve flow control, TCP forces the sender and the receiver to adjust their window
sizes, although the size of the buffer for both parties is fixed when the connection is
established. The receive window closes (moves its left wall to the right) when more
bytes arrive from the sender; it opens (moves its right wal | to the right) when more
bytes are pulled by the process. We assume that it does not shrink (the right wall does
not move to the left).

The opening, closing, and shrinking of the send window is controlled by the
recelver. The send window closes (moves its left wall to the right) when a new
acknowledgement allows it to do so. The send window opens (its right wall moves to
the right) when the recelve window size (rwnd) advertised by the receiver allows it to
do so. The send window shrinks on occaslon. We assume that this situation does not
occur.

Shrinking of Windows

As we sald before, the recelve window cannot shrink. But the send window can shrink
If the recelver defines a value for rwnd that results in shrinking the window. Some
implementations do not allow the shrinking of the send window. The limitation does
not allow the right wall of the send window to move to the left. In other words, the
recelver needs to keep the following relationship between the last and new acknowledg-
ment and the last and new rwnd values to prevent the shrinking of the send window:

new ackNo + new rwnd = last ackNo + last rwnd

The left side of the inequality represents the new position of the right wall with
respect to the sequence number space; the right side shows the old position of the right
wall. The relationship shows that the right wall should not move to the left. The inequality
is a mandate for the recelver to check its advertisment. However, note that the lnegua]lty
is valid only if 5¢ < 5,,; we need to remember that all calculations are in modulo 2%,

15.8 ERROR CONTROL

TCP is a reliable transport layer protocol. This means that an application program that
delivers a stream of data to TCP relies on TCP to deliver the entire stream to the appli-
cation program on the other end in order, without error, and without any part lost or
duplicated.

TCP provides reliability using error control. Error control includes mechanisms for
detecting and resending corrupted segments, resending lost segments, storing out-of-
order segments until missing segments arrive, and detecting and discarding duplicated
segments. Error control in TCP is achieved through the use of three simple tools:
checksum, acknowledgment, and time-out.

Checksum

Each segment includes a checksum field, which is used to check for a corrupted segment.
If a segment is corrupted as deleted by an invalid checksum, the segment 1s discarded by
the destination TCP and is considered as lost. TCP uses a 16-bit checksum that is manda-
tory in every segment. We discussed how to calculate checksums earlier in the chapter.

Acknowledgment

TCP uses acknowledgments to confirm the receipt of data segments. Control segments
that carry no data, but consume a sequence number, are also acknowledged. ACK seg-
ments are never acknowledged.

ACK segments do not consume sequence numbers and
are not acknowledged.

Acknowledament Type

In the past, TCP used only one type of acknowledgment: cumulative acknowledgment.
Today, some TCP implementations also use selective acknowledgment.

Cumulative Acknowledgment (ACK) TCP was originally designed to acknowl-
edge recelpt of segments cumulatively. The receiver advertises the next byte it expects
to recelve, ignoring all segments received and stored out of order. This is sometimes
referred to as positive cumulative acknowledgment or ACK. The word “positive” indi-
cates that no feedback is provided for discarded, lost, or duplicate segments. The 32-bit
ACK field in the TCP header is used for cumulative acknowledgments and its value is
valid only when the ACK flag bit is set to 1.

15.9 CONGESTION CONTROL

We briefly discussed congestion control in Chapter 13. Congestlon control in TCP is
based on both open-loop and closed-loop mechanisms. TCF uses a congestion window
and a congestion policy that avoid congestion and detect and alleviate congestion after it
has occurred.

Congestion Window

Previously, we talked about flow control and tried to discuss solutions when the receiver is
overwhelmed with data. We said that the sender window size 1s determined by the avail-
able buffer space in the receiver (rwnd). In other words, we assumed that it is only the
receiver that can dictate to the sender the size of the sender’s window. We totally lgnored
another entity here, the network. If the network cannot deliver the data as fast as it 1s cre-
ated by the sender, it must tell the sender to slow down. In other words, in addition to the
receiver, the network is a second entity that determines the size of the sender’s window.
The sender has two pleces of information: the receiver-advertised window size and
the congestion window size. The actual size of the window Is the minimum of these two.

Actual window size = minimum (rwnd, cwnd)

We show shortly how the size of the congestlon window (cwnd) is determined.

15.10 TCP TIMERS

To perform its operation smoothly, most TCP implementations use at least four timers
as shown in Figure 15.38.

Figure 15.38 TCF timers

[| I |
| Retransmission | | Persistence | [Keepalive | | TIME-WAIT |

Retransmission Timer

To retransmit lost segments, TCP employs one retransmission timer (for the whole con-
nection period) that handles the retransmission time-out (RTO), the waiting time for an
acknowledgment of a segment. We can define the following rules for the retransmission
timer:
1. When TCP sends the segment in front of the sending queue, it starts the timer.
2. When the timer expires, TCP resends the first segment in front of the queue, and
restarts the timer.
3. When a segment (or segments) are cumulatively acknowledged, the segment (or
segments) are purged from the queue.
4. If the queue is empty, TCP stops the timer; otherwise, TCP restarts the timer.

Round-Trip Time (RTT)

To calculate the retransmission time-out (RTO), we first need to calculate the round-
trip time (RTT). However, calculating RTT in TCP is an involved process that we
explain step by step with some examples.

Measured RTT We need to find how long it takes to send a segment and receive an
acknowledgment for it. This is the measured RTT. We need to remember that the seg-
ments and their acknowledgments do not have a one-to-one relationship; several seg-
ments may be acknowledged together. The measured round-trip time for a segment is
the time required for the segment to reach the destination and be acknowledged,
although the acknowledgment may include other segments. Note that in TCP, only one
RTT measurement can be in progress at any time. This means that if an RTT measure-
ment is started, no other measurement starts until the value of this RTT is finalized. We
use the notation RT Ty, to stand for measured RTT.

In TCP, there can be only one RTT measurement in progress at any time.

Smoothed RTT The measured RTT, RTTyy, is likely to change for each round trip.
The fluctuation is so high in today's Internet that a single measurement alone cannot

Keepalive Timer

A keepalive timer is used in some implementations to prevent a long idle connection
between two TCPs. Suppose that a client opens a TCP connection to a server, transfers
some data, and becomes silent. Perhaps the client has crashed. In this case, the connec-
tion remains open forever.

To remedy this situation, most implementations equip a server with a keepalive
timer. Each time the server hears from a client, it resets this timer. The time-out 1s usu-
ally 2 hours. If the server does not hear from the client after 2 hours, it sends a probe
segment. If there is no response after 10 probes, each of which is 75 s apart, it assumes
that the client is down and terminates the connection.

TIME-WAIT Timer

The TIME-WAIT (2ZM5L) timer is used during connection termination. We discussed
the reasons for this timer in Section 15.5 (State Transitlon Diagram).

15.11 OPTIONS

The TCP header can have up to 40 bytes of optional information. Options convey addi-
tional information to the destination or align other options. We can define two catego-
ries of options: 1-byte options and multiple-byte options. The first category contains
two types of options: end of option list and no operation. The second category, in most
implementations, contains five types of options: maximum segment size, window scale
factor, timestamp, SACK-permitted, and SACK (see Figure 15.41).

End of Option (EOF)

The end-of-option (EOP) option is a 1-byte option used for padding at the end of the
option section. It can only be used as the last option. Only one occurrence of this option is
allowed. After this option, the receiver looks for the payload data. Figure 15.42 shows an
example. A 3-byte option is used after the header: the data section follows this option.
One EOF option is inserted to align the data with the boundary of the next word.

Figure 15.41 Options

End of option list]|
MNo operation |

Maximum segment size ||
Window scale factor ||
Timestamp |
SACK-permitied

Options

Multiple-byte

SACK I
Figure 15.42 End-of-option
Kind: 0 3-byte option [EOP
00000000
a. £nd of option 115t T Data T

b. Used for padding

EOP can be used only once.

The EOP option imparts two pieces of information to the destination:
1. There are no more options in the header.
2. Data from the application program starts at the beginning of the next 32-bit word.

15.12 TCP PACKAGE

TCP is a complex protocol. It is a stream-service, connection-oriented protocol with an
involved state transition diagram. It uses flow and error control. It Is so complex that
actual code involves tens of thousands of lines.

In this section, we present a simplified, bare-bones TCP package. Our purpose is to
show how we can simulate the heart of TCP, as represented by the state transition
diagram.

The package involves tables called transmission control blocks, a set of timers. and
three software modules: a main module, an input processing module, and an output
processing module. Figure 15.52 shows these five components and their interactions.

Figure 15.52 7CP package

Messages to and from

application
Application layer
I S ™ |
I I
5w |
I imers
i > i |
; ®® |
: Main |
l Input module Output |
I processing — processing I
I module module I
i I
I I
[S 4
IP layer

TCP segment TCP segment

Transmission Control Blocks (TCBs)

TCP is a connection-oriented transport protocol. A connection may be open for a long
period of time. To control the connection, TCF uses a structure to hold information
about each connection. This is called a fransmission control Wock (TCB). Because at
any time there can be several connections, TCP keeps an array of TCBs in the form of a
table. The table is usually referred to as the TCE (see Figure 15.53).

Figure 15.53 TCHs

[StamE | Process POIMIET | Buffers

Many fields can be included in each TCB. We mention only the most common
ones here.

-1 State. This field defines the state of the connection according to the state transition
diagram.

- Process. This field defines the process using this connection at this machine as a
client or a server.

1 Local IP address. This field defines the IP address of the local machine used by
this connection.

1 Local port number. This field defines the local port number used by this connection.

1 Remote IP address. This field defines the [P address of the remote machine used
by this connection.

1 Remote port number. This field defines the remote port number used by this
connection.

O Interface. This field defines the local interface.

Local window. This field, which can comprise several subfields, holds information
about the window at the local TCF.

Remote window. This field, which can comprise several subfields, holds informa-
tion about the window at the remote TCP.

Sending sequence number. This field holds the sending sequence number.

[

[

Receiving sequence number. This field holds the receiving sequence number.
Sending ACK number. This field holds the value of the ACK number sent.
Round-trip time. Several fields may be used to hold information about the RTT.

Time-out values. Several fields can be used to hold the different time-out values
such as the retransmission time-out, persistence time-out, keepalive time-out, and
50 0.

Buffer size. This field defines the size of the buffer at the local TCP.

Buffer pointer. This field is a pointer to the buffer where the received data are kept
until they are read by the application.

Iy Iy

(M

Timers

We have previously discussed the several timers TCP needs to keep track of its
operations.

Main Module

The main module (Table 15.3) is invoked by an arriving TCP segment, a time-out event,
or a message from an application program. This is a very complicated module because
the action to be taken depends on the current state of the TCP. Several approaches have
been used to implement the state transition diagram including using a process for each
state, using a table (two-dimensional array), and so on. To keep our discussion simple, we
use cases to handle the state. We have 11 states; we use 11 different cases. Each state is
implemented as defined in the state transition diagram. The ESTABLISHED state needs
further explanation. When TCP is in this state and data or an acknowledgment segment
arrives, another module, the input processing module, is called to handle the situation.
Also, when TCF is in this state and a “"send data” message is issued by an application pro-
gram, another module, the output processing module, is called to handle the situation.

Input Processing Module

In our design, the input processing module handles all the details needed to process
data or an acknowledgment received when TCP is in the ESTABELISHED state. This
module sends an ACK if needed, takes care of the window slze announcement, does error
checking, and so on. The details of this module are not needed for an introductory textbook.

Output Processing Module

In our design, the output processing module handles all the details needed to send out
data recelved from application program when TCPF is in the ESTAELISHED state.
This module handles retransmission time-outs, persistent time-outs, and so on. One
of the ways to implement this module is to use a small transition diagram to handle
different output conditions. Again, the details of this module are not needed for an
introductory textbook.

