UNIT-5
5.1 WIN RUNNER

Win Runner is widely used Automated Software Testing Tool for Functional testing.
It was developed by Mercury Interactive. It supports C and web technologies such as (VB,
VC++, D2K, Java, HTML, Power Builder, Delphe, Cibell (ERP)).

WinRunner facilitates easy test creation by recording how you work on your
application. As you point and click GUI (Graphical User Interface) objects in your
application.

WinRunner generates a test script in the C-like Test Script Language (TSL). We can
further enhance our test scripts with manual programming. WinRunner includes the Function
Generator, which helps quickly and easily add functions to our recorded tests.

The important aspects of WinRunner are:

1. We can do functional/regression testing of a variety of application software written in
programming languages such as PowerBuilder, Visual Basic, C/C++, and Java. We can
also carry out the testing on ERP/CRM software packages.

2. Performs testing in all flavors of Windows operating systems and different browser
environments such as Internet Explorer and Netscape Navigator.

3. We can record the GUI operations in the 'record’ mode. WinRunner automatically creates
a test script.

4. We can add checkpoints to compare actual and expected results. The checkpoints can be
GUI checkpoints, bitmap checkpoints and web links.

5. It provides a facility for synchronization of test cases.

6. Data Driver Wizard provides the facility to convert a recorded test into a data driven test.
So, We can replace data with variables within a test script.

7. Database checkpoints are used to verify data in a database during automated testing. The
records that are inserted, deleted, modified, or updated will be highlighted so that We can
ensure database integrity and transaction accuracy.

8. The Virtual Object Wizard of WinRunner is used to teach WinRunner to recognize,
record, and replay custom objects.

9. The reporting tools provide the facility to generate automatically the test reports and
analyze the defects.

10. WinRunner can be integrated with the testing management tool TestDirector to automate
many of the activities in the testing process.

WinRunner includes two modes for recording tests:
Context Sensitive
Context Sensitive mode records your actions on the application being tested in terms

of the GUI objects you select (such as windows, lists, and buttons), while ignoring the
physical location of the object on the screen.

https://www.wisdomjobs.com/e-university/winrunner-tutorial-171/winrunner-testing-modes-3416.html
https://www.wisdomjobs.com/e-university/winrunner-tutorial-171/winrunner-testing-modes-3416.html
https://www.wisdomjobs.com/e-university/winrunner-tutorial-171/winrunner-testing-modes-3416.html

Every time you perform an operation on the application being tested, a TSL statement
describing the object selected and the action performed is generated in the test script.

This allows you to easily reuse your Context Sensitive test scripts on future versions
of your application.

Analog

Analog mode records mouse clicks, keyboard input, and the exact x- and y-
coordinates traveled by the mouse. Use Analog mode when exact mouse coordinates are
important to your test, such as when testing a drawing application.

Starting WinRunner

To start WinRunner:

Testing an Application using WinRunner

After installing the WinRunner on your computer, invoke the WinRunner application
Start -> Programs ->WinRunner ->WinRunner

The opening screen of the WinRunner application is displayed, prompting you to select one
of the three options:

« New Test: To create a new test script

e Open Test: To open an existing test script
e Quick Preview: To view the quick preview of WinRunner

Welcome To WinRunner E3 I

(&i INTERACTIVE
WinRiintie

New Test
Create a new test script

Open Test

Open an existing test script

Quick Preview
View a Quick Preview of WinRunner

™ sShow on Startup

Recording Test Cases

To test any application, first we can run the application and understand its operation.
Then, you can invoke WinRunner, again run the application and record the GUI operations.

During the recording mode, WinRunner will capture all your actions, which button
you pressed, where you clicked the mouse etc. You need to work with the application as
usual and perform all the actions to be tested.

Once the recording is completed, WinRunner generates a script in TSL (Test Script
Language). You can run this test script generated by WinRunner to view the results. The test
results will show whether the test has passed or failed.

1

Each test you create or run is displayed by WinRunner in a test window. You can
open many tests at one time.

The WinRunner window
displays all open tests.

=7 IEie

&2 WinRunner - [C:\WinRunner\tests\tutorial\lesson3]

(dit Create Bun Debug Jools Seffing:

Window Help

=] B3

:
I

Each test appears in its own
test window. You use this

O == |Vevly 'I

window to record, program, —
and edit test scripts ¥ = >
set_ "
Buttons on the Standard menu_select_item (”File:Open Orde -
toolbar help you quickly open, - - 7
run, and save tests Bl =i
Ope rder i)
The User toolbar provides set_window ("
easy access to test creation button_set g
tools. edit_set (" 0,
The status bar displays button press L
information about selected @
commands and the current # Flight Reservation
test run set_window ("Flight Reservation®, 2): s
menu_select_item ("File:Fax Order 5]
°.8
Fax Order No. 53 o5
set_window No. 3w, =
obj_type (" ss", "
button_set on)y =
win_move ("Fa r No. 3", S5E &
&l
Analog Recording
move_locator_track (1): e
move_locator_track (2): = 2
|Ready |Line: 1 FAun Name: Z
il &

The procedure for recording a test case is as follows:

Step 1: Open a new document:
Welcome screen.

File -> New (or) Select "New Test" from the WinRunner's

Step 2: Open (run) the application to be tested.

Step 3: Start recording a test case.

Create ->Record - Context Sensitive (or) click on the toolbar's "Record" button once,
to record in Context Sensitive mode.

Step 4: Select the application to be tested by clicking on the application’s title bar.

Step 5: Perform all the actions to be recorded.

Step 6: Once all required actions are recorded, stop the recording.

Create -> Stop (or) Click on the toolbar's "Stop" button to stop the recording
WinRunner generates the script for the recoded actions.

The procedure for running a test case is as follows:
Step 1: Open the test script to be executed.
Step 2: Run the test
Run -> Run from top (or) press F5 to run the test.
WinRunner executes the generated script and displays the results in the Test Results window.

We will now illustrate using WinRunner to test the "Standard Calculator” application
available on your Windows system.we can invoke the calculator application from the desktop

Start -> Programs -> Accessories -> Calculator. The GUI of the "Calculator”
application is shown in Fig.

{7 Calculator ISIEES|

Edit - View Help

MA 4 5 6 %
e 1 2 3 17%
M+ 0 +/ . =

The symbols on the buttons of Calculator application represent the following functions:

+: To perform addition

- To perform subtraction
*: To perform multiplication
/- To perform division

. Decimal point

sqrt: To find square root of a number
% : To find percent

1/x: To find inverse of a number
MC : To clear the memory

MR : To recall from memory

MS: To save in the memory

M+ : To add to the memory

C: To clear the current calculation

CE: To clear the displayed number

+/-: To give sign to a number (positive or negative)
Backspace: To remove left most digit

To test the complete functionality of the application, we need to generate test cases in
such a way that all the buttons are made use of. We need to generate some test cases which
will give correct output and also some test cases which will give error messages. Table gives

such test cases and the expected output for each test case.

Test Cases and the Expected Output for Testing the Calculater

Test Case Expected Output
4 1/x 0.25
- 6 sqrt Err: “Invalid input for function’
4 C Clears the Display
12?3 3.6
5720 25
7+8-9 6
600*2 % 12
2, MS, C, MR 2
MC, 2, M+, 3, M+, C, MR 5

To test the functionality of the application perform the following steps:

Test Case #1: To test the Inverse operation (inverse of 4 using 1/x button)
Step 1: Open WinRunner application.

Step 2: Open Calculator application.

Step 3: Create a new document as shown in Figure.

File -> New or Click New option on tool bar or press Ctrl+N

Step 4: Start recording

Create -> Record-Context Sensitive (or) press F2 (or) Click on the toolbar
Click the (Record-Context Sensitive) button on the toolbar of WinRunner as shown in Figure
or Select "Record - Context sensitive" option from the "Create™ menu as shown in Figure.

Step 5: Select the Calculator application and start recording the actions. a Click "4" on the
Calculator

e Click the "1/x" button on the Calculator to find the inverse of 4.
e The result, 0.25 will be displayed on the Calculator.

Step 6: Stop the Recording process.
Create -> Stop Recording (or) Click (Stop) on toolbar

Click (Stop Recording) button on the toolbar of WinRunner as shown in Figure or Select the
"Stop Recording” option from the "Create™ menu as shown in Figure.

iv. WinRunner - [Noname2*|

Sy Mg

Step 8: Save the file as "inverse" in the selected folder.

File-»Save
In the "Save" dialog box that appears, save the test script with name "inverse"™.

Step 9: Run the test script generated by WinRunner.
Press F5 or Click (Run from Top) on the toolbar

('-,._

Step 10: After executing the TSL statements, WinRunner generates test results as shown in
Figure.

The Results column indicates whether the test has "Passed" or "Failed". The test
results also give useful information such as the name of the test case, the line numbers in the
test script and the time taken for executing the test case.

@ @ ®

1 Displays the name of the current 5 :
test.
2 Shows the current results res3
directory name.

@Tesl Result: oK
3 Sgow?' V};hgther atestrun |: +¥ Total number of bitmap checkpoints: 1}
passed orfalled. 4 Total number of GUI checkpoints: 0
4 Includes general information —
about the test run such as date, Date: ‘wednesday, November 23, 2000 03:37.05 P
operator name, and total run time. To [0perator name:
view these details, double click the EE2E xpected Results Folder: exp
Information lcon.) Total A Time: 00:00:08
5 The test log section lists the
major events that occurred during - 5
the test run. It also lists the test script e = GG (it e
line at which each event occurred. 3 start run lesson3 un 00:00:00

44 stop un lesson3) pass 00:00.08

Calling the Test Cases using "*call* Function

The "call” function can is used to execute a series of test cases without any user interaction.
The syntax of call function is:

call<test-case name> for example, call testl();

Create a new document

Write the following test script
Save the file as "callAll"
Execute the test case

All the preceding test cases can be combined into one file as follows:

Call inverseO; call sqrootO; call clearO; call MultiplayO; call divideO; call add_subtract()
call PercentO; call msjnrO; call maddmrO; call mclearO; call backspaceO;

When you execute this test script, all the earlier test cases are executed in one shot.
The test results screen will be as shown in Figure. As you can see from the table, the
"Details" column gives the various test cases executed. The "Result”" column shows whether
the test has passed or failed. The "Time" column gives the time taken to execute the test case.

03\ caltAnm)

RN

1 G vest Besur:
: tov T otal rumber of bimap checkponts:
+« v Total rumber of GUI checkponts:

When you have to retest the application using the same test cases, you can run the script in
unattended mode. You can save the script in a file and run the script at specified time.

This feature of WinRunner is extremely useful for regression testing. When you are
developing the software, you need to run the same set of test cases many times.

Test Script Language(TSL)

e Test Script Language (TSL) is a scripting language with syntax similar to
C language.

e TSL is a C-like procedural programming language. It has constructs like
statements, comments, constants, variables, mathematical operators,
control statements and functions.

e There are 4 categories of TSL functions.

1. Analog functions: These functions are used when you record in Analog mode, a
mode in which the exact coordinates of the GUI map are required.

2. Context sensitive functions: These functions are used where the exact coordinates
are not required.

3. Customization functions: These functions allow the user to improve the testing tool
by adding functions to the Function Generator.

4. Standard functions: These functions include all the basic elements of programming
language like control flow statements, mathematical functions, string related functions
etc.

The most frequently used functions in each category are as follows:

click: To click a mouse button.

Syntax: click(mouse_button,[time])

mouse button - specify LEFT, RIGHT or MIDDLE

dbl_click: To double click a mouse button.

Syntax: dbl_click(mouse_button,[time])

mouse_button - specify LEFT, RIGHT or MIDDLE

get_x: To get the current x coordinate of the mouse pointer.

Syntax: get_x();

Return value: integer

get_y: To get the current y coordinate of the mouse pointer.

Syntax: get_y();

Return value: integer

waitjwindow: Waits for a window bitmap to appear for synchronizing the test procedure.
Syntax: wait_window(time, image, window, width, height, x, y [, rebel, relyl, relx2, rely2])
get_text: To read the text from the screen specified by the location.

Syntax: get_text(location);

The location can be xI>yl, x2, y2 or x ,y or ()(no location).When no location is specified, it
considers the point closest to the mouse pointer.

button_check_info: To check the value of the button property.

Syntax: button_check_info (Button, property, property_value);

Button - Name of the button

Property - The property to be checked

Property_value - The property value

The other important features of WinRunner application are as follows:

« Synchronization of test cases
« Data driven testing

« Rapid testing GUI
o Checkpoints

Synchronization of Test Cases

In WinRunner, it takes by default one second to execute the next statement. But
sometimes there may be a case where the WinRunner has to wait for a few seconds to accept
the data from the user or wait till the current operation is completed, before executing the
next statement.

The Synchronization is required in the following cases:

. When data has to be retrieved from the database.
. When a progress bar has to reach 100%.
. To wait till some message appears.

Though, by default, WinRunner takes one second to execute the next statement, it is
possible to change the default time to any desired value.

Changing the value of the "Timeout for Checkpoints and CS Statement™ option in the Run tab
of the General option's dialog can do this.
Settings -> General Options.

Creating the Test Case
Creating a synchronized Test
step 1: Start WinRunner and open a new test.
step 2: Start the application which you are required to test
step 3: set to synchronization test
step 4: Start recording
step 5: Create a new order
Synchronizing the Test Cases
We will now create a synchronization point into the test script..
Step 1: Open the test script if it is closed.
File -> Open and select the "sync_be-fore" file.

Step 2: Place the cursor at the point where the test has to be synchronized.Insert a line after
the statement

obj_mouse_click ("Add", 49,12, LEFT);
as our aim is to make the WinRunner application wait till the insertion is over.

Step 3: Insert a synchronization point as shown in Figure to make WinRunner wait
until the insertion is completed. Create -> Synchronization Point -> For Object/Window
Bitmap

Once you select the status message, it inserts the following statement into the test
script: obj_wait_bitmap("ThunderRT6TextBox_4"."Irngl",1);

e ——

i WinRunner - Noname1*

Box_1%, S2, 13, LEFT):
"§000") ;
S50z 2", 14, 10, LEFT):
"Sotrware Engineer®):
S LEFT) ;

s LEFT);

Step 5: By default one-second delay time will be inserted. Manually change the wait time to
10 seconds as it takes about 10 seconds for the insertion action to be completed.

Click the run tab to change the time

Change the value to 7000

Step 6: Run the test script and observe that, WinRunner waits for the image to appear in the
application. If the image does not appear before the timeout time, it displays an error
message; otherwise it executes all the statements in the test script and displays the test result
as shown in Figure

s - [Nonamel]
TS TETRE BRI

R Test Resur

t +¥ Total number of bitmap checkpoints 0
+¥ Total numbes of GU| checkpoints: 0

(A General Information

inonamel

’;’3«‘{&'3' fun
14; weatt for bitmap limg!

"1—@ stop run inonamel

Data Driven Test

Once the test script is created, we may sometimes want to check how the test script behaves
for multiple data. This can be done by creating that many number of test cases and by running
each test case individually, which is a very tedious process. In such cases we make use of
Data-Driver wizard. This involves 3 steps.

1. Inserting the statements to open and close the data table.

. Retrieving the data from the data table

3. Replacing the static values (for example, the employee name) with the variables
containing the retrieved value from the data table. This is known as parameterizing
the test.

Rapid Test Script Wizard

The Rapid test script wizard is the fastest way of performing the test process. It
systematically opens up all the windows in the application, stores the learnt information in
the GUI Map file and generates the test cases based on the information learnt from the
application.

It is possible to apply these tests only on those applications, which open windows
upon performing some task (like clicking a button, selecting the menu item etc

GUI Checkpoint used to Verify Properties Of objects which has 3 options such as

e For Single Property (Verify a single property of an object)
e For Object/Window (Verify more than 1 property of a Single Object)
e For Multiple Objects (Verify multiple objects with multiple properties)

Checking GUI Objects
» GUI checkpoints are used to check the GUI object properties
* It is possible to check the behavior of the objects in the application by creating the
GUI Checkpoints.
» The GUI Checkpoints help to find the defects in the application, by examining the
objects.
There are 3 modes in which the application can be executed

1. Verify mode: By default it is in verify mode. This mode is used to run the test
script. It compares with the expected and actual values

2. Debug mode:This mode is used to check the values of the variables during runtime
to monitor the variables. The results will be stored in debug folder

3. Update mode: This mode is used to change the expected value that you assigned
during the checkpoint

5.2 LoadRunner

e Mercury Interactive’s load runner is used to test the client/server applications such as
database management systems and websites.

e Load runner accurately measures and analyzes the performance of the client/server
application.

e Load runner creates Virtual users(\Vusers). The Vusers submit the requests to the
server. Vuser script is generated and this script is executed for simulating multiple
users

What are the LoadRunner components?
LoadRunner contains the following components:
> The Virtual User Generator captures end-user business processes and creates an automated
performance testing script, also known as a virtual user script.
> The Controller organizes, drives, manages, and monitors the load test.
> The Load Generators create the load by running virtual users.
> The Analysis helps you view, dissect, and compare the performance results.
> The Launcher provides a single point of access for all of the LoadRunner components.

LoadRunner addresses the drawbacks of manual performance testing:

e LoadRunner reduces personnel requirements by replacing human users with virtual
users or Vusers. These Vusers emulate the behavior of real users operating real
applications.

e The LoadRunner Controller allows you to easily and effectively control all the Vusers
from a single point of control.

e LoadRunner monitors the application performance online, enabling you to fine-tune
your system during test execution.

e LoadRunner automatically records the performance of the application during a test.
You can choose from a wide variety of graphs and reports to view the performance
data.

e LoadRunner checks where performance delays occur: network or client delays, CPU
performance, 1/0O delays, database locking, or other issues at the database server.
LoadRunner monitors the network and server resources to help you improve
performance.

e Because LoadRunner tests are fully automated, you can easily repeat them as often as
you need.

Creating Vuser script using Virtual User Generator
For creating the Vuser script, follow the steps given below:

Step 1: Start the Virtual User Generator
Start -> Programs ->LoadRunner -> Virtual User Generator

Step 2: LoadRunner displays the welcome screen as shown in Figure.

Welcome to VMitual User Genotator
) ST I et

Step 3: Click the "New Single Protocol Script” button. It displays the list of protocols as
shown in Figure.

Select the "Category" under which the application to be tested falls. In case of our example,
select the "Web (HTTP/HTML)" option and click "OK" button.

New Vutual U

I New Single Protocel Script

vuser_nk include “as_webk h"
P vuser_end 0 k'
ction y
[¥
return 0; +
} #
3
g
i
{1 I i-Av'sfc L = B & 8 B 8 2 8 QA

The Virtual user script is divided into 3 sections: Vuser_init, Actions, Vuser_end.
Vuser_init: These actions are performed when the Vuser is loaded or initialized.
Actions: These actions are performed when the Vuser is in "Running” state.
Vuser_end: These actions are performed when the Vuser finishes or stops.

You can select the section before or while the recording is under progress.

Step 4: Select the "Actions" section. Click the »»«<*,« button or select the "Start Recording"
option from the "Vuser" menu as shown in Figure.

Step 5: On selecting "Start Recording" option, it displays the "Start Recording" dialog as
shown in Figure.

| Start Recording

This prompts you to enter the "URL" of the application for which the test has to be
performed. Enter the URL and select the "Action" section from the "Record into Action”
combo box as shown in Figure and click the "OK" button.

Note that you need to give the URL based on where you installed the application.

Step 6: LoadRunner now opens the specified URL and a "Recording Toolbar..." appears as
shown in Figure.

LoadRunner is now in the "Recording™ mode. Perform the actions that are to be recorded
such as clicking on a link to obtain the weather information for a particular city. Once all the
actions are recorded, stop the recording by clicking the "Stop" button in the Recording
toolbajr.

Step 7: LoadRunner generates the script for the actions that are recorded as shown in Figure.

& Achon Action ()
P uzer_end { .:j
web_url("mainl.htm",
"URL=http: “sparno westher-mainl,htm",
"Resource=0",
"RecContentType=text html",
'‘Refwrer=",
"Snapshot=t1.iaf",
‘Mode~HIML",
EXTRARES,
"Uri=indiamapl.gif", ENDITEM,
LAST) ;

lr_think time(84);
&
web_url ("cityweather.asp",
"URL=http://aparna weather-citywesther.asp?cityli
"Resource~0", »
"RecContentType=text/html",
"Referer=",

"Snanshot=t? . inf" .

Vuser Scripts can be generated by using a number of tools such as WinRunner, VuGen,
QuickTest etc. which together form a testing suite of Mercury Interactive Corporation.

Step 8: Save the Test Script.
File -> Save

Step 9: Run the script.
Click the » button to run the test script or click the "Run" from "Vuser" menu or press F5.
Vuser -> Run

Step 10: Once the execution is completed, examine the "Execution log" to see whether the
script ran without errors or not.

Step 11: The test results are displayed in the "Test Results" window, which contains various
sections:"Vuser_init_summary", "lteration","Vuser_end_summary".

The Results Summary Report is shown in Figure, the Iteration Report is shown in Figure and
Vuser_end Summary Report is shown in Figure

i _rs by
¥ +0 weairsea
* & o e Samn

........

Test Iteration 1
_Summary:

Iteration Passed

vuser_end Results
Summary

Action ; vuser _erd

Raan stawrted : 3/7004 - 2315058
Run ended | 3702 - 231505
Resule :

Creating Virtual Users Using Loadrunner Controller

LoadRunner Controller is used to create the virtual users who replace the human users
to test the performance of the application.

By default, it creates 10 virtual users who will access the application simultaneously
and tests the load on the application. It is also possible to increase the number of virtual users.

Let us now create virtual users for the web-based application for which we have
already generated the test script using the LoadRunner Virtual User Generator.

To create the Virtual users and test the performance of the "Weather India™ application whose
home page is shown in Figure, follow the steps given below.

Step 1: Start the Load Runner - Controller
Start -> Programs ->LoadRunner -> Controller

Step 2: On starting the Controller, it displays the screen as shown in Figure.

Select the "Manual Scenario" option and the required test script from the "Available Scripts"
list and click the "OK" button.

Step 3: From the "LoadRunner Controller Scenario 1" dialog, click the "Generator" button or
select the "Load Generators™ from the "Scenario™ menu. "Load Generators™ dialog is opened
as shown in the Figure.

Click the "Add" button to add a generator, or double-click the "Status" column o the default
host details, which displays the "Load Generator Information™ as shown in Figure.

Host Name refers to the identity of the system. Enter the name of the system in this field.
Select the platform (in case of our example select "Windows") and click the "OK" button.

Step 4: In the "Load Generators" dialog, click the "Connect" button to change the status of
the load generator from "Down" to "Ready" and click the "Disconnect™ button to change the
status of the load generator from "Ready" to "Down".

Step 5: Click "Close" button to close the "Load Generators" dialog.

Step 6: In the "Load Runner Controller - Scenario 1" dialog, click the "Add Group" to create
the group for the virtual users. It then displays the "Add Dialog" as shown in Figure.

Enter the group name as "gl", select the host name from the "Load Generator Name" and
select the test script from the "Select Script™ list box that has to be tested. Enter the number of
virtual users to be created in the "Vuser Quantity" and click the "OK" button.

Step 7: The Group "gl" will be displayed along with its host name and the number of virtual
users in the "Load Generator Controller - Scenariol™ dialog as shown in Figure.

Step 8: Click "Vuser" button to view the virtual users. Initially all the users are in "Down"
State as shown in Figure. Select all the users and right click to select the "Initialize Vuser/s"
option as shown in Figure.

& Down e e A
L L. Do - vt o

A Dowe Ttk o

.
P

% L

3 s 2ok oy AL G R

All the Vusers will change their state from "Down" - "Initializing" - "Ready" mode. Now to
run the Vusers, again select all the VVusers, right click and select "Run Vuser/s" or click the
"Run" button. The status of the Vusers will change from Ready - Running - Done. Passed or
Done. Failed.

Step 9: Once all the Vusers complete the execution of the script, it displays which user has
passed the test and which has not, as shown in Figure

1 feration{s] atempted 1 tuccynew_tast
1 barstionds] stempled 1 succinew_teil
Yo Done Passed 1 Reratioeds) atterptec 1 succaneve_tast

x:’['\:ve Patzed | dmiahionds] aftempbad 1 succ Mo _tadt
XDone Passed 1 Reratioeds) altengted 1 naccnes, tosl
?‘:’Dcne Fassed 1 kerationfs) Stempled 1 sucoyhsw_ et
$xDone Faded 1 dsestonis] afisegted 0 suconndw_teil
iif.fm Faied 1 secsbonfs] atempted O succenew_tec!
X/ 0cne Passed 1 daratioeds) Mlatrptad | succ v _tes

If only 5 Vusers are allowed to test the "Weather India™ application simultaneously, then all
the Vusers successfully complete the test as shown in Figure.This means that the "Server"
that is processing the requests is not able to take the load of all the 10 users at a time.

1 kevation(s] shempted: 1 sucsfew_lest
1 dessior(z) atamoted 1 sucanew_test
1 berabor(s) stemgted | sucsnev test
1 Resation(s] atempled: 1 sucsnew_test

1 decabion(s) sbemphed 1 sucstem_leel

Step 10:Click the "Close" button to close the "Vusers" window.

Step 11: Analyze the test results.

Tools -> Analysis Load Runner internally opens the "Load Runner Analysis". It displays
"LoadRunner Analysis" dialog as shown in Figure.

It automatically displays the list of reports that can be analyzed. You can obtain the following

reports:
1.

2.

Running Vusers: Whole Scenario graph lets you monitor the number of Vusers that
are running at a given time.

Hits per second: Whole Scenario graph lets you monitor the number of hits (HTTP
requests) on the Web server made by Vusers during each second of the scenario run.
This enables you to follow the amount of load that is generated on the server.
Transaction Response Time - Whole Scenario graph lets you monitor the amount of
time it takes for each transaction to be completed. You can see how long it takes for
your customers to log on, search flights, purchase flights, check itineraries, and log
off the system
Windows Resources graph lets you monitor the Windows resource usage measured
during a scenario (such as CPU, disk, or memory utilization).

5. Throughput

Step 12: Analyze the results by studying graphs shown in Figure which shows the transaction
summary report.

The Transaction Summary report specifies the number of Vusers that passed and failed the
various sections of the script i.e. Action, Vuser_init,Vuser_end in the form of Bar graph.

- R .

gives the Throughput Report. The Throughput Report shows the rate which the Vusers run
the script and produce the test results.

39.3“"0""‘? hﬁl".ﬁ‘u- ;
: lmuhnmimlmimvwmhl _1.‘-

o — v - . i
: !
e ’ - o
Machoe i 2 T
- R
® e
‘
| 3
| H
‘
’ .
ul L i 3
Lngnd | agn Dot | o et | Gt B | R |
Dok] ok | Shimssian &
= IR

"Running Vusers" report, shown in Figure, describes the elapsed time for each user in mnv.ss
format shows the graph which indicates the number of requests made by user per secondl

T 9 Yo G Brow) Tk o
Uﬂﬂi’)l’ha’ﬂ SRR e
® - Prvey hamy 00w Mttt | Ihaghont | Turmamen fovme | dmmgm L Smmmee lon| 210§
% - T por Srcond
i Z = S
Eﬁ ‘
| 4
B
el .
| ® § |
i S |
| 8 |
= |
| b 2
- i
!
' |
i) 5 J
| LA s wie e L e
| Lt R L
|3} —)
100t | Gt ot | <om Mome | Gotngn Dot | Piae S |
Aguml.mm_, —— N | beve Apwt v . Lirgt Vo).
| Aliy

JMeter is a software that can perform load test, performance-oriented business
(functional) test, regression test, etc., on different protocols or technologies.

Stefano Mazzocchi of the Apache Software Foundation was the original developer of
JMeter.

Apache later redesigned JMeter to enhance the GUI and to add functional
testing capabilities.

JMeter is a Java desktop application with a graphical interface that uses the Swing
graphical API. It can therefore run on any environment / workstation that accepts a Java
virtual machine, for example: Windows, Linux, Mac, etc.

The protocols supported by JMeter are:
e Web: HTTP, HTTPS sites ‘web 1.0" web 2.0 (ajax, flex and flex-ws-amf)
e Web Services: SOAP / XML-RPC
e Database via JDBC drivers
e FTP Service

JMeter Features

Following are some of the features of JMeter:

e Being an open source software, it is freely available.

e |t has asimple and intuitive GUI.

e JMeter can conduct load and performance test for many different server types:
Web HTTP, HTTPS, SOAP, Database via JDBC, LDAP, JMS, Mail - POP3, etc.

e It is a platform-independent tool. On Linux/Unix, JMeter can be invoked by
clicking on JMeter shell script. On Windows, it can be invoked by starting the
jmeter.bat file.

e It has full Swing and lightweight component support (precompiled JAR uses
packages javax.swing.*).

e JMeter stores its test plans in XML format. It means you can generate a test plan
using a text editor.

e Its full multi-threading framework allows concurrent sampling by many threads
and simultaneous sampling of different functions by separate thread groups.

e Itis highly extensible.

e It can also be used to perform automated and functional testing of the applications

How JMeter Works?

e JMeter simulates a group of users sending requests to a target server, and returns
statistics that show the performance/functionality of the target server/application
via tables, graphs.

e Take a look at the following figure that depicts how JMeter works:

Creates requests to targel server
Start and simulates a number of users > End
Jmeter gathers Data
to calculate statistical
info Server Responds Report

N\ /

Jmeter Saves all responses

Fig: Working process of JMeter

JMeter test plan

Test Plan
e A Test Plan can be viewed as a container for running tests. It defines what to test and
how to go about it.
e A complete test plan consists of one or more elements such as thread groups, logic
controllers, sample-generating controllers, listeners, timers, assertions, and

e configuration elements. A test plan must have at least one thread group.
Writing a Test Plan
Follow the steps given below to write a test plan:

Step 1: Start the JMeter Window
Open the JMeter window by clicking /home/manisha/apache-jmeter-
2.9/bin/jmeter.sh.

The JMeter window will appear as shown below:

OS5 Apache JMeter (23 r1437561)

£ile EdR-. Search Run Gotions Holp ‘

@ %HW S B0 =4 » K % did Ny ERE 0= 0/01]

Zex oo Test Plan

Name: 7

B
[}

Commants:

User Definad Varlasbles

Derait Audd Add fram Clipboacd el up Down

Fun Thread Groups consecutivaly (i.e. run groups one ak a tisse)
| Run tearDown Thread Groups after shutdown of maén threoads
Functional Test Mode (Le. cave Responce Data and Sampler Data)
ey Adverssty affect padformance
Add directory or jar to classpath | Browse., Delete Clear

Library

This is a plain and blank JMeter window without any additional elements added to it. It
contains two nodes:

e Test Plan node: It is where the real test plan is kept.

e Workbench node: It simply provides a place to temporarily store test elements while
not in use, for copy/paste purposes. When you save your test plan, Workbench items
are not saved with it.

Step 2: Add/Remove Elements

e Elements can be added to a test plan by right-clicking on the Test Plan node and
choosing a new element from the "add" list.

e Alternatively, you can load an element from a file and add it by choosing the "merge"
or "open" option.

For example, let us add a Thread Group element to a Test Plan as shown below:

Apache JMeter (2.9 r1d37961)

Eile Edit Search Bun Options Help

SR Tt L I S NS SRt L AN S t ol ey =R ok 010
& Tenpid f
5 e AGE b ade (R ¥ THead Group e
Paste v Test Fragmant b setUp Thvead Group
Reset Gui Config Element . ¥ tearDown Thread Group
Oben. Timer » 7
| *:: o Pre Processors User Defined Varfables
'i.wz Selection As POstErecesactst Kame value
5 h Assections »
| Save Node As image. tlebaae S
Save SCreen AS IMAQO CoborAD e -
isble
Disable
Toggie
Help = — e A
Detait Add Ada from Ciphoard Doty up | Down

1] Run Thread Groups consecutively (Le. cun groups one at 3 time)

LR tearDown Thread Groups Mter shatdown of main theeads
Functional Test Mode (i, save Response Data and Samplér Data)

Selatting Funchional Teat Mode may odversely offect padtoemance

Add directory or jar to dasspath | Browse... | {}fbc{l» Al ,:"“" |

ubrary }

To remove an element, make sure the element is selected, right-click on the element, and
choose the "remove" option.

Apache JMeter (2.9 r1437951)

file [Search Hon Options MHelp

DR = 187 E P e o S R S b o ol ei%l =B o4 o0
T e e e e e e = =
v E s | Thread Group
B warksunsh Mr’_ Piithrend Groug
Cut == ot
Capy i ¥ to be token after s Sampler ertor
paste y ® Continue O Start Noxt Thread Loop O Stop Theead) Stop Test . Stop Tost Now
Dupiicate 40t
_Bs-ieiﬁui '|d Properties
| Ramove. sk Ner of Threads lusees); |
Open.,. “p Perlod fin seconds): L
Mergo k . F
Save Solection As... SRR bt
“Save Node As fmage lay Thread creation untll needed
Save Screen AsImage (kS Lo anrar
Fnabfe
Disable
Toggle
Help

Step 3: Load and Save the Elements

To load an element from file:
e Right-click on the existing tree element to which you want to add the loaded element.
e Select Merge.
e Choose the file where you saved the elements.
e JMeter will merge the elements into the tree.

By default, JMeter does not save the element, you need to explicitly save it.

Apache JMeter (2.9 r1437561)

Eile Edit Seacch Run Qotions Help

3 WorrBen

D@k K00 %~ e B | % i d % B ss 00
= Yart Plas
- T — Thrgad Group
ey | Add b o {Thread Grous
Cut Cotx ments:
Copy C on to be taken after a Sampler error
Paste W Coninua Start et Thraad Loop Stop Theoad o Stop Tost Stop Tost Now
Duplicate
Reset Gui rad Properties
Romaye ¢ ber of Threads lusers): ||
I_(_)g«t_r-_-; _pdip Period Gn soconds): L
oo Salbtlion As.. o Count: L) Forewver 13
Save Hoda As image Cms telay Thread crestion omil nesdsd
Save Screen As Mmage e cheduler
Enab| |
Disable
Toggle
Help

To save a tree element:

Right-click on the element.
Choose the Save Selection As ... option.

JMeter will save the element selected, plus all the child elements beneath it. By
default,

JMeter doesn't save the elements, you need to explicitly save it as mentioned earlier.

Step 4: Configure the Tree Elements

Any element in the Test Plan can be configured using the controls present in JMeter's
righthand side frame. These controls allow you to configure the behavior of that
particular test element.

For example, the Thread Group can be configured for a number of users, ramp up
periods, etc., as shown below:

1Eblc £dit - Search Fun COetians Help

Apache JMeter (2.9 r1d37961)

EE T S IR LA b Wiy EiE LRI
- TR L
F weralAGE * Thenads (Users) o) Thread Group: ~?tb:3
Paste v Test Fragmant b setUp Theead Group
Heset Gul Config Element ¥ tearDown Thread Group
e Timer ’
i M::g;" Pra Processors » User Defined Varfables
Sove Selection As.. Post Pfo\'essws) Name value
Asseetions »
Save Node As dmage Ot Listener >
S S<reon AS ImMago cooonaa oy -
able
Disable
Toggie
Help .| — - '
T Detait Add Ada from Cliphoard Dolety Up | Down

L Run Thread Groups consecutively (Le. cun groups one at 3 time)

L tearDown Thread Groups Mier chutdown of main theeads
Functional Test Mode {i.¢, save Respanse Data and Samplér Data)

| Selatting Funchional Teat Mode may odversely offect padtcemance

| Add divectory or far to dasspath i Browse... j Delete || (.lc.u A

brary |

Step 5: Save the Test Plan

You can save an entire Test Plan by using either Save or "'Save Test Plan As ..."" from the
File menu.

7 Apache JMeter (2.9 r1d379417)

;;ﬁ,'e Edit Seacch Run Options Help

Close L B e i A ¥, ” »
Open , J| 2 . 73 Y 4 ﬂw“ o 010
Marge
S Test Plan
Save - i
[Save Tost Plan o i Q‘“ [Name: |Teit #lan
Save Selection As,, Comments:
b User Defined Variables
1 Usars. jmx

Name Vae

ZMcter Users, pmx
L 2Rt TestMisitGoogle. jose
et ct

| Detadl || Add || Add frem Clipboard. | Delets up Down

ftun Thread Gloups consecotively (e, run groups one at & tims)
_ Run tearDown Thread Groups after shutdown of main threads
Functional Toct Mode (Le. save Response Data and Sampler Data)
Selasting Fomctions! Test Mods =y sdvarsely alfed] peclormanta
Add directory or jar to cdasspath Browse... Deicte Clear

Loranry

Step 6: Run the Test Plan

You can run the Test Plan by clicking Start (Control + r) from the Run menu item.
When JMeter starts running, it shows a small green box at the right-hand end of the section
just under the menubar.

Apache JMeter{2.9 r1437961)

file R Search BUN] Gpticns Hedp
L 0) SR e, = v
& H![“.” SO v Ew %% 4 8 8% = H o4 o0f1
Tazt Al femote Start I
B read Gres Remote Start All
i§ Mondench Siop
Tl (fawn ' T T

flemote Stop »

Remeote Stop All A User Defined Varlablos

Remote Shutdown v Name Value

Remole Shutdown All A=<

lemot o §xit ’

flemoto Exit AH

Lloar
Clear AN

Detall || Add || Add from Clipboard late Up Down

[Run Thread Groups consecutively (Le, run groups one at a tisse)
1 Tan tearDeown TheéGad Gloups aftes shutdown of madn thivady

| Functional Test Mode (Le. save Response Data and Sampler Data)

Selest g Functionad Tast Mede may adwirssly Sifect 2atamancs
Add dicectory o jor to classpath . Browse,,, Delete Clear
Linrary

The numbers to the left of the green box are the number of active threads / total number of
threads. These only apply to a locally run test; they do not include any threads started on
remote systems when using client-server mode.

Step 7: Stop the Test Plan
You can stop your test in two ways:
e Using Stop (Control +."). It stops the threads immediately if possible.

e Using Shutdown (Control +',"). It requests the threads to stop at the end of any
e current work.

Jmeter Test Plan Elements

e A JMeter Test Plan comprises of test elements.

e A Test Plan comprises of at least one Thread Group. Within each Thread Group, we
may place a combination of one or more of other elements: Sampler, Logic
Controller, Configuration Element, Listener, and Timer.

e Each Sampler can be preceded by one or more Pre-processor element, followed by

Post-processor element, and/or Assertion element. Let us see each of these elements
in detail

Thread Group

Thread Group elements are the beginning points of your test plan. As the name
suggests, the thread group elements control the number of threads JMeter will use during the
test. We can also control the following via the Thread Group:

e Setting the number of threads
e Setting the ramp-up time
e Setting the number of test iterations
The Thread Group Control Panel looks like this:

DT Apache JMeter {2.7 r1437903)
| Eile Edit. Search Run Options: Hedp

‘
JOHWn D SRR TS R d W 8 -};E ok o1

o

17 {
oy B feacsn Thread Group

3 "t Nasne: Threpd s

Comments:
Adtion to be Laken afer o Sampler waror

* Continue Start Next Thread Loop Stop Thread Stop Test Stop Test Now
Thread Proparties
Nusber of Throads (users):
Ramp-Up Pediod (n seconds): ||
Loop Count: Forever
Delay Thread aestion until necded
vi Schwdulor

Schedoler Configuration
SEart Time (20)

End Timve 2013.02/30
Duration {seconds)

Startup delay {veconds)

The Thread Group Panel holds the following components:

e Action to be taken after a Sampler error: In case any error occurs during test
execution, you may let the test either:

e Continue to the next element in the test

e Stop Thread to stop the current Thread.

e Stop Test completely, in case you want to inspect the error before it continues
running.

e Number of Threads: Simulates the number of users or connections to your server
application.

e Ramp-Up Period: Defines how long it will take JMeter to get all threads running.

e Loop Count: Defines the number of times to execute the test.

e Scheduler checkbox: Once selected, the Scheduler Configuration section appears at
the bottom of the control panel.

e Scheduler Configuration: You can configure the start and end time of running the
test.

e Controllers

JMeter has two types of Controllers: Samplers and Logic Controllers.

Samplers

Samplers allow JMeter to send specific types of requests to a server. They simulate a
user request for a page from the target server. For example, you can add a HTTP Request
sampler if you need to perform a POST, GET, or DELETE on a HTTP service.

Some useful samplers are:

HTTP Request

FTP Request

JDBC Request

Java Request

SOAP/XML Request

RPC Requests

The following screenshot shows an HTTP Request Sampler Control Panel:

T Apache JMeter {29 r1437903)

éEl!‘.‘ Edit Search Run Options: Help
|Dlalodie 2100 [+ =4 »e

It - Rl ! HTTP Request

Name: HITTY P st

4 W % R 0 0

o

* YT ficcuent

a Comments:

Waob Secver el
Server Nome or iP: Port Number: Cq
MITH Request

Implement Mion;) |w | Protocol Ittp): Mathod: GLY - Content encodng
Pathc
Redirect Auvtomatically v Follow Red@recs ¢ Use KoepAiive | | Use multipartform-data for POST |

| Parameters. Post Body
Send Pazameters With the Reqoest:

biarne

Detall Add Add from Clipboard lete Up Down

Send Files with the Request:

Logic Controllers

Logic Controllers control the order of processing of Samplers in a Thread. Logic
controllers can change the order of a request coming from any of their child elements. Some
examples are: For Each Controller, While Controller, Loop Controller, IF Controller, Run
Time Controller, Interleave Controller, Throughput Controller, and Run Once Controller.

The following screenshot shows a Loop Controller Control Panel:

MO T Apeache JMeter {2.% r1437903)

| Eite Edit. Search RBun Dptions: Help ‘
ad UH W on G ¥ o | A b B % a W N i E o o2
v Teet § (
Y B Teensd oree | Leop Controlier
@ Lep Canbiole 1 Hosnn: |
8 | Comments:

Loop Count: Forever 1

The following list consists of all the Logic Controllers JMeter provides:

Simple Controller
Loop Controller
Random Controller
Runtime Controller
If Controller
While Controller
Switch Controller
ForEach Controller
Module Controller
Include Controller
Transaction Controller
e Recording Controller
Test Fragments

A Test Fragment is a special type of element placed at the same level as the Thread
Group element. It is distinguished from a Thread Group in that it is not executed unless it is
referenced by either a Module Controller or an Include_Controller. This element is purely for
code re-use within Test Plans.

Listeners

Listeners are used to view the results of Samplers in the form of tables, graphs, trees,
or simple text in some log files. They provide visual access to the data gathered by JMeter
about the test cases as a Sampler component of JMeter is executed. Listeners can be added
anywhere in the test, including directly under the test plan. They will collect data only from
elements at or below their level. The following list consists of all the

Listeners JMeter provides:

e Sample Result
Graph Results
Spline Visualizer
Assertion Results
View Results Tree
Aggregate Report
View Results in Table
Simple Data Writer
Monitor Results
Distribution Graph (alpha)
Summary Report

Timers

By default, a JMeter thread sends requests without pausing between each sampler.
This may not be what you want. You can add a timer element which allows you to define a
period to wait between each request.
The following list shows all the timers that JMeter provides:
Constant Timer
Gaussian Random Timer
Uniform Random Timer
Constant Throughput Timer
Synchronizing Timer
JSR223 Time
BeanShell Time
BSF Time
Poisson Random Time

The following screenshot shows a Constant Timer Control Panel:

T Apeche JMeter {29 r1437903)
| Eifle Edit Search Run Options: Hedp

D@l K08 +i=4 »le 5 W wln g 0x on
[fe E . Constant Timer
\ . ‘ Nasnn:
T4 Canstant Tiner Comments:
1 hedanll Thrcad Doelay (in mdicoconds) 30
B
Assertions

Assertions allow you to include some validation test on the response of your request
made using a Sampler. Using assertions you can prove that your application is returning the
correct data. JMeter highlights when an assertion fails.

The following list consists of all the assertions JMeter provides:
Beanshell Assertion
BSF Assertion
Compare Assertion
JSR223 Assertion
Response Assertion
Duration Assertion

Size Assertion

XML Assertion

HTML Assertion

XPath Assertion

XML Schema Assertion

The following screenshot shows a Response Assertion Control Panel:

DT Apache JMeter {2.7 r1437903)
| Eite Edit. Search Bun Options:. Help ‘

] W HE . 8 (#i=& b e % W &% R 0k 017
1 (& B o ! Response Assertion
" Neaptast RaseDo ‘ Namne: 1=y
W WnBenct Comments:
Appdy to:
O Mair sample and sob-samples ® Main saesple only Sub-campies ondy IMater Variabie
Response Field to Test
* Toxt Response Docoment (text) URL Sampled Responsc Code Response Message Ros
Pattern Matching Rules
» Containe Matches Equals Substring i Not

Patterns to Tost

Pattorns to Test

Adt

Configuration Elements

Configuration Elements allow you to create defaults and variables to be used by
Samplers. They are used to add or modify requests made by Samplers. They are executed at
the start of the scope of which they are part, before any Samplers that are located in the same
scope. Therefore, a Configuration Element is accessed only from inside the branch where it is
placed.

The following list consists of all the Configuration Elements that JMeter provides:
Counter

CSV Data Set Config

FTP Request Defaults

HTTP Authorization Manager
HTTP Cache Manager

HTTP Cookie Manager
HTTP Proxy Server

HTTP Request Defaults
HTTP Header Manager

Java Request Defaults
Pre-processor Elements

A pre-processor element is something that runs just before a sampler executes. They
are often used to modify the settings of a Sample Request just before it runs, or to update
variables that are not extracted from response text. The following list consists of all the pre-
processor elements that JMeter provides:

e HTML Link Parser
HTTP URL Re-writing Modifier
HTTP User Parameter Modifier
User Parameters
JDBC Pre-processor

Post-processor Elements
A post-processor executes after a sampler finishes its execution. This element is most

often used to process the response data, for example, to retrieve a particular value for later
use.

The following list consists of all the post-processor elements that JMeter provides:

e Regular Expression Extractor

e XPath Extractor

e Result Status Action Handler
JSR223 Post-processor
JDBC Post-processor
BSF Post-processor
CSS/JQuery Extractor
BeanShell Post-processor
Debug Post-processor

Execution Order of Test Elements
Following is the execution order of the test plan elements:
1. Configuration elements
2. Pre-Processors
3. Timers
4. Sampler
5. Post-Processors (unless SampleResult is null)
6. Assertions (unless SampleResult is null)
7. Listeners (unless SampleResult is null)

JMeter has some limitations especially when it is run in a distributed environment.
Following these guidelines will assist in creating a real and continuous load:

Use multiple instances of JMeter in case, the number of threads are more.
Check the Scoping Rules and design accordingly.

Use naming conventions always for all elements.

Check the default browser Connectivity settings, before executing scripts.
e Add Listeners appropriately.

5.4 TEST DIRECTOR

Mercury Interactive TestDirector is an excellent tool for managing the testing process
effectively. To deliver quality software, the testing process has to be very well defined and
managed.

The important features of TestDirector are listed below:

e |t is a web-based tool (the earlier versions being Client/Server based) and hence it
facilitates distributed testing.

e As testing the software is linked to the requirements of the software, it provides the
feature of linking the software requirements to the testing plan.

e |t provides the features to document the testing procedures.

e |t provides the feature of scheduling the manual and automated tests—the testing can
be done during nighttimes or when the system load is less

e |t provides the feature of setting groups of machines to carry out testing. For example,
if you want to test the software on both Windows and Linux machines, you can group
the machines based on their OS.

e It keeps a history of all the test runs.

e The audit trail feature allows keeping track of changes in the tests and test runs.

e |t keeps a log of all defects (or bugs) found and the status of each bug can be changed
by authorized persons only.

e It provides the feature of creating different users with different privileges (e.g.,
developer, tester, QA manager, beta tester etc.).

e |t generates test reports and analysis for the QA manager to decide when the software
can be released into the market.

TEST MANAGEMENT PROCESS

While using the TestDirector, the testing management process can be defined using the
following four steps:

Testing Requirements management

Test planning

Design and develop tests

Run the tests in manual mode or automatic mode
Test execution

Test results analysis

Analyze the defects Accordingly,

Managing the Testing Process Using Testdirector

The TestDirector testing process includes four phases:

Test Requirements Management

Requirements Manager is used to link the requirements with the tests to be carried
out. Each requirement in the Software Requirement Specification(SRS) has to be tested at
least once.

In the SRS, the functional requirements and performance requirements are specified.
Functional requirements are generated from use-case scenarios. Performance requirements
are dependent on the application.

Specifying Requirements

» Requirements are linked to tests and defects to provide complete traceability and
aid the decision-making process.
» See what percent of requirements are covered by tests

https://www.wisdomjobs.com/e-university/testing-tools-tutorial-239/testing-management-process-14523.html

» Each requirement in the tree is described in detail, and can include any relevant
attachments. The QA tester assigns the requirement a priority level which is taken
into consideration when the test team creates the test plan

Test Planning

In test planning, the QA manager does a detailed planning and addresses the following issues:

 Hardware and software platforms on which the testing has to be carried out.

 The various tests to be performed (functional/regression testing, performance testing,
source code testing etc).

 Time schedule for conducting the tests.

« Roles and responsibilities of the persons associated with the project.

« Procedure for running the tests (manual or automatic).

« Various test cases to be generated.

« Procedure for tracking the progress of the testing.

« Documents to be generated during the testing process.

» The test engineers also identify the common test scripts that can be reused to test
different modules and map the workflow between tests.

« The test plan is communicated to all the test engineers and also the development team.

Note: TestDirector can be integrated with other tools such as WinRunner and LoadRunner.
Hence, the test scripts generated using these tools can be incorporated in the test plan.

Test Execution

> As the application constantly changes, using test lab, run manual and automated tests
in the project in order to locate defects and assess quality.

> By creating test sets and choosing which tests to include in each set, test suite can be
created. A test set is a group of tests in a Test Director project database designed to
achieve specific testing goals.

» Tests can be run manually or scheduled to run automatically based on application
dependencies.

> In the case of automated testing, the test scheduling is done as per the plan.

» A history of all test runs is maintained and audit trail, to trace the history of tests and

test runs, is also maintained. During this phase, Test Sets are created. A test set is a set
of test cases

Test Results Analysis

In this phase, the test results are analyzed—which tests passed and which tests failed.
For the tests that failed, an analysis has to be carried out as to why they failed. Also, each bug
is classified based on its severity. A simple way of classification is

Critical
Major
Minor

When a bug is reported to the developer, it is not enough if you inform that there is a
bug. we need to give additional information such as what is the problem, what is the system
configuration on which the test was run, what is the version of the software ?The bug report
is stored in a database.

Based on the bug tracking and analysis tools, the QA manager and the project manager can
take the decision whether the software can be released to the customer or still more testing is
required.

Tracking Defects:

Locating and repairing application defects efficiently is essential to the testing
process. Defects can be detected and added during all stages of the testing process.
In this phase you perform the following tasks:

e This tool features a sophisticated mechanism for tracking software defects, enabling
Testing Team and the project Team to monitor defects closely from initial detection
until resolution

e By linking TestDirector to e-mail system, defect tracking information can be shared
by all Development and Management Teams

e Software Quality Assurance personnel

